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Abstract
There is a wide gap between the generation of large-scale biological datasets and more detailed,
structural and mechanistic studies. However, recent studies that explicitly combine data from
systems and structural biological approaches are having a profound effect on our ability to predict
how mutations and small molecules affect atomic-level mechanisms, disrupt systems-level
networks and ultimately lead to changes in organismal fitness. In fact, we argue that a shared
framework for analyzing non-additive genetic and thermodynamic responses to perturbations will
accelerate the integration of reductionist and global approaches. A stronger bridge between these
two areas will allow for a deeper and more complete understanding of complex biological
phenomenon and ultimately provide needed breakthroughs in biomedical research.

As sequencing efforts reveal unprecedented levels of genetic diversity in populations, key
challenges remain in linking heritable variation to organismal fitness (Lander, 2011). The
functional effect of sequence changes are commonly predicted starting from the top-down
(using a network from systems biology) or the bottom-up (using an atomic structure from
structural biology). However, biologists now consciously (and unconsciously) straddle the
line between global, systems and reductionist, structural approaches. Here, we review how
the growing synergies between these two tactics are advancing our understanding of the
mechanisms of phenotypic change. A theme emerging from both systems and structural
biology is that multiple perturbations can function non-additively. We anticipate that further
parallels between non-additive effects on both network and macromolecular dynamics will
emerge as scientists working at the systems-to-structure interface probe complex biological
phenomenon. Learning how mutations and small molecules affect both atomic interactions
and network organizations will advance our abilities to predict the phenotypic responses to
perturbations and to design new therapies that restore homeostasis.
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The interface between systems and structure: conservation is king
A major goal of systems biology is to determine the abundance of each protein, nucleic acid,
or metabolite component and all the interactions that exist between them. In protein-protein
interaction networks, an edge represents more than just a construct of graph theory - a
connection between nodes implies a direct atomic contact between proteins. Aside from
using a co-crystal structure to provide the ultimate “true-positive” confirmation of an
interaction, what can structural biology contribute to our knowledge of systems-level
organization?

The number of interactions discovered by proteomics experiments (Havugimana et al.,
2012) can dwarf the total number of protein structures available in the PDB (Rose et al.,
2011). To bridge this gap, homology models can be used to approximate the interfaces of
many interactions (Pieper et al., 2011; Zhang et al., 2012a). Using these principles, Kim and
Gerstein developed a systems-level structural interaction network in yeast (Kim et al., 2006).
The atomic-level details afforded by this structural network representation allowed them to
distinguish interactions that can simultaneously assemble on a single receptor from those
that are mutually exclusive (Figure 1A). For example, the GTPase Ras interacts with
multiple proteins that compete for an overlapping interaction surface (Figure 1B). Only one
of these proteins can therefore bind Ras at any given time (Wittinghofer and Vetter, 2011).
In contrast, macromolecular machines often assemble many interaction partners
simultaneously. Indeed, the SCF Ubiquitin Ligase complex must assemble Rbx1, Skp1 and a
member of the F-box protein family along a Cullin scaffold to properly ubiquitinate target
proteins (Zheng et al., 2002). Systematically characterizing overlapping and simultaneous
binding within a protein-protein interaction network has resolved long-standing ambiguities
about the relationship between a protein's evolutionary rate and its degree (i.e. number of
interaction partners), by establishing a central role for the amount of accessible surface area
buried upon protein-protein association (Kim et al., 2006). This approach can also be
inverted: structural information can be leveraged to predict new protein-protein interactions.
Remote structural alignments that consider geometric relationships between interacting
proteins have recently been used to predict protein-protein interactions on a proteomic-scale
(Zhang et al., 2012a).

Similarly, structural insights can be used to assess the evolution and functional role of
posttranslational modifications, such as phosphorylation, ubiquitination, and acetylation
(Beltrao et al., 2012). The increased sensitivity of mass spectrometry to identify
posttranslational modifications in proteomic samples has been a blessing and a curse: while
new hypotheses can be generated based on the identification of modified sites, the functional
significance of the vast majority of these modifications remains unknown. By examining
posttranslational modifications in a structural context, Beltrao et al. found phosphosites
located at protein-protein interaction interfaces are more highly conserved (Beltrao et al.,
2012). Additionally, this study proposed and tested the hypothesis that posttranslational
hotspots for controlling protein function are structurally conserved across family members.
However, these data suggest that most post-translational modifications likely have no
biological role. They proposed the near-neutrality of modifications probably increases the
evolvability of interaction networks. Structural principles, therefore, can be applied to
proteomic studies to pinpoint only those modifications that are highly conserved and likely
to be functional.

The recent construction of a human-viral structural interaction network revealed an
exception to the principle that highly conserved surfaces are the most interesting regions
(Franzosa and Xia, 2011). Consistent with the earlier work, these studies confirmed that
interfaces involved in host protein-protein interactions evolve more slowly. However,
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interfaces exploited by pathogens tend to evolve much faster (Figure 2A). This result
provides structural rationale for an evolutionary arms race between host and pathogen: there
is selective pressure on host interfaces to evolve incompatibilities with their pathogen
interaction partners. For example, the human kinase PKR has evolved under intense positive
selection to avoid interactions with viral proteins such as poxvirus K3L, while maintaining
interactions with endogenous interaction partners such as eIF2alpha (Elde et al., 2009)
(Figure 2B). In the case of PKR, co-evolving mutations on multiple structural elements are
likely required to decrease the affinity of binding the pathogenic protein while maintaining
the proper connections to the host protein-protein interaction network.

The idea that co-evolution of interface residues across interacting proteins plays an
important role in the evolution of network structure has also been tested in model systems.
Using the yeast proliferating cell nuclear antigen (PCNA) DNA clamp as a model for
studying protein-protein interaction network evolution, Aharoni and colleagues discovered
that disrupting the delicate balance of affinities between different interaction partners can
yield more severe phenotypes than gene deletions (Fridman et al., 2010). These studies
suggest that large-scale genetic interaction studies, using deletion libraries or RNAi screens,
should be supplemented with targeted mutations on specific components to tease apart the
roles of multifunctional proteins. Because these mutations can, in principle, affect only one
edge of a protein-protein interaction network, they have been termed “edgetic” mutations to
contrast from gene deletions, which remove all edges associated with a given node (Amberg
et al., 1995; Charloteaux et al., 2011). Similarly, structurally guided mutants could be used
to dissect the roles of multifunctional macromolecular machines, such as RNA polymerase
II (Braberg et al, submitted), which interact with different protein partners during complex
functional cycles.

Mutations that tune the affinity of specific interactions or introduce new, unwanted
interactions may have more severe phenotypic consequences than can be accessed with
traditional gene knockouts. Mapping human disease-associated mutations onto structures
has provided a structural rationale for pleiotropic genes, where distinct mutations are
implicated in different diseases (Wang et al., 2012a). Mutations on a single interface are
more commonly associated with a single disease, whereas mutations at different interfaces
within the same protein tend to be associated with distinct diseases. Furthermore, mutations
at interfaces with known disease implications provide a guilt-by-association indication for
new genes, which may be more therapeutically tractable. For proteins with multiple domains
or protein-protein interaction interfaces, these analyses can greatly narrow the scope of
candidate genes to those most likely to be functionally relevant for the disease of interest. As
both structural coverage of the human proteome and disease associated mutations discovered
by exome sequencing studies increase, applying structural insights will likely increase the
leverage of network-level observations to understand the genetic basis for disease (Aloy and
Russell, 2003; Wang and Moult, 2001).

Making the complex whole: systems organize structure
As structural biology shifts increasingly to characterizing complex, heterogeneous
macromolecular assemblies, datasets generated from unbiased, global systems biology
studies are playing prominent role. The influence of systems biology has already begun
changing the normal course for identifying members of protein complexes from a “fishing
trip” to a “mining expedition”. Because identifying all members of a protein complex is
often a necessary pre-requisite for structural characterization, a common fishing approach is
to use a yeast two-hybrid screen with single defined bait against a large, proteomic-scale
prey library. An early example of how this approach can facilitate a deeper structural and
mechanistic understanding of an important biological problem involves BRCA2, a DNA
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binding protein with important roles in breast cancer (Zheng et al., 2000). When structural
studies of BRCA2 were initiated, baculovirus expression of BRCA2 in the absence of any
interaction partners yielded insoluble protein (Yang et al., 2002). A two-hybrid screen based
on cDNA derived from HeLa cells and mammary tissues identified DSS1 as a new
interaction partner for BRCA2 (Marston et al., 1999). Co-expression of DSS1 and BRCA2
eventually yielded a co-crystal structure and the structure of a ternary complex with DNA
demonstrating the importance of fishing out new interaction partners to enable structural
studies (Yang et al., 2002) (Figure 3A). Interestingly, DSS1 has been shown to be part of
multiple complexes, including an evolutionarily conserved component of the 26S
proteasome (Wilmes et al., 2008).

In contrast to the BRCA2-focused yeast-two hybrid study that identified DSS1, most
systems biology studies are performed with limited bias, systematically focusing on
functionally related sets of proteins (Babu et al., 2012; Behrends et al., 2010; Krogan et al.,
2004; Sowa et al., 2009) or even entire the entire proteome within an organism (Gavin et al.,
2006; Havugimana et al., 2012; Hu et al., 2009; Krogan et al., 2006). These comprehensive
approaches facilitate “mining expeditions” through a large database of interactions to
identify multiprotein complexes that can be reconstituted biochemically and structurally
(Figure 3B) (Aloy et al., 2004; Brooks et al., 2010). For example, in a recent global survey
of the HIV proteome, Jager et al. identified interactions between human proteins and all 18
HIV-1 proteins and polyproteins (Jager et al., 2012a). The resulting 497 high confidence
interactions provide many new opportunities to observe the atomic details of how a
pathogen utilizes and subverts the normal function of host proteins. Examination of the
interaction maps across two different cell lines revealed a surprising association of the
transcription cofactor CBF-β, which heterodimerizes with Runx to regulate transcription in
T-cells (Wong et al., 2011), with the HIV protein Vif. Although Vif was previously known
to hijack an endogenous CUL-5 ubiquitin ligase complex to target for ubiquitination and
degradation the host restriction factor APBOBEC3G (Yu et al., 2003), the architecture of
this complex had remained elusive. Similar to DSS1 with BRCA2, co-expression of CBF-β
provided the missing puzzle piece, enabled biochemical reconstitution and structural
characterization of the Vif-Cul-5 complex (Jager et al., 2012b; Zhang et al., 2012b).
Interestingly, Vif may be facilitating a dual hijack, one that affects a cullin-containing
ubiquitination pathway as well as the rewiring of the transcriptional landscape regulated by
the CBF-β -RUNX1 complex (Kim et al, Mol Cell, in press). Consistent with these results, a
knockdown of CBF-β adversely affected HIV infectivity (Jager et al., 2012b; Zhang et al.,
2012b). Future studies will investigate if and how both functional hijackings are required for
efficient HIV infection. As further atomic-level details of this interaction emerge, it will
likely serve as a paradigmatic example of how unexpected interaction partners can emerge
from unbiased global studies to enable mechanistic studies.

Hybrid strategies that build on “-omics” techniques normally associated with systems
biology are being used to uncover new binding partners and to accelerate biophysical studies
for intrinsically disordered proteins (Dyson, 2011), macromolecular machines (Alber et al.,
2007b) and transient complexes (Herzog et al., 2012). A particular challenge faced by these
studies is to integrate and weight diverse data types into a self-consistent structural model
(Alber et al., 2007a). For example, when performed on purified proteins, chemical cross-
linking coupled with mass spectrometry provides distance restraints (Rappsilber, 2011).
Crosslinking restraints can be incorporated into structure determination using well
established methods similar to those used routinely in NMR (Havel et al., 1983); however,
additional complications are encountered as crosslinking studies are extended to even more
heterogeneous samples. In these studies, network context inferred from previous systems-
level studies is essential for separating signals resulting from sterically incompatible
complexes, allosteric distortion of individual subunits and entirely novel assemblies. The
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complexity of deconvoluting signals emerging from proteomic studies is exemplified by the
Protein Phosphatase 2A (PP2A) holoenzymes, which consist of regulatory, catalytic, and
scaffold subunits that provide combinatorial specificity to substrate proteins (Herzog et al.,
2012). By purifying endogenous PP2A. Aebersold and colleagues revealed new players in
the PP2A network, but also provided insights into the structural basis for how specific PP2A
holoenzymes achieve interactions with a wide array of cellular processes. Proteomic-based
crosslinking methods are a valuable source of structural data that can be obtained directly
from heterogeneous mixtures and complement methods such as X-ray crystallography,
NMR, and electron microscopy that rely on purified samples.

In addition to the natural links between structural biology and proteomics, other “-omics”
technologies are beginning to generate interesting mechanistic problems. Synergies between
genomics, metabolomics and structural studies are exemplified by an interesting mutation
(R132H) in the metabolic enzyme isocitrate dehydrogenase-1 (IDH1). This mutation was
first uncovered in a large genomics study, where it was present in 12% of Glioblastoma
multiforme brain cancer patients (Parsons et al., 2008). Initial studies suggested that the
mutation led to a dominant negative effect on the catalytic formation of the metabolite α-
ketoglutarate (Zhao et al., 2009). Surprisingly, subsequent metabolomics profiling revealed
no significant changes in levels of α-ketoglutarate between cells expressing mutant or wild
type versions of the enzyme (Dang et al., 2009). However, levels of a different metabolite,
R(-)-2-hydroxyglutarate, were significantly elevated. A crystal structure of the mutant
enzyme revealed the key changes in active site geometry that enable this novel catalytic
activity. The discovery of a new activity has motivated further systems-level studies into the
role of R(-)-2-hydroxyglutarate in epigenetics (Sasaki et al., 2012) and the structural
information provides additional hope that the mutant IDH1 enzyme represents a new target
for therapeutic intervention in glioblastomas and acute myeloid leukaemias.

A new coupling of thermodynamics and genetic interactions
The examples discussed above represent only the initial cross-pollination between
reductionist and global approaches. By recognizing the importance of non-additive
interactions in genetics and biophysics, a common framework is being developed to more
fully integrate systems and structural biology (Lehner, 2011). These interactions are
commonly referred to as “epistatic” effects because the extent of the interaction depends on
its genetic context (Phillips, 2008). In both genetics and biophysics, most perturbations act
independently, yielding purely additive effects on fitness (Mani et al., 2008) or
thermodynamic parameters (Wells, 1990). However, many functionally important
perturbations may be benign in one context and deleterious in another (Cadwell et al., 2010).
The non-additive effects of mutations may underlie “missing” genetic heritability - the
limitation in our ability to explain functional consequences of sequence changes (Zuk et al.,
2012). Exciting new efforts are underway to correlate genetic interaction measurements used
in systems biology (Mani et al., 2008) with thermodynamic coupling analyses used in
structural biology (Horovitz, 1996) to establish general principles of non-additivity and
robustness that scale from systems to structure.

The most complete analyses of non-additive effects at a systems-level are from genetic
interaction screens in the budding yeast, Saccharomyces cerevisiae. High throughput
measurements, such as Synthetic Genetic Array (SGA) (Costanzo et al., 2010) or Epistatic
Mini-Array Profile (E-MAP) experiments (Collins et al., 2010), compare quantitative
measures of the fitness of individual gene knockouts to double knockouts (Figure 4).
Positive genetic interactions occur when the fitness of the double mutant is higher than
would be expected based on growth rates of the individual mutants. These alleviating
interactions are enriched in gene products that physically interact or are part of a linear
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signaling pathway (Beltrao et al., 2010; Collins et al., 2007; Roguev et al., 2008). In
contrast, cases where the double mutant is less fit than expected based on the individual
mutations are termed negative genetic interactions. These aggravating interactions have been
used to often identify proteins that function in parallel pathways of a given process (Tong et
al., 2001). The extension of high-throughput genetic interaction methods to other organisms
(Horn et al., 2011; Lin et al., 2012; Tischler et al., 2006; Typas et al., 2008) (Roguev et al.,
submitted) has created great interest in mining these datasets to generate combination
therapies for human diseases. In general, genetic interactions are most conserved between
species within protein complexes, less conserved within biological processes, and least
conserved across distinct biological processes. This suggests a hierarchical modularity that
governs how non-additive connections between proteins, complexes, and processes are
functionally rewired and repurposed during evolution (Ryan et al., 2012). These genetic
interaction approaches can extend across species to reveal dependencies between organisms
in disease and symbiotic contexts (Fischbach and Krogan, 2010). A recent integration of
insertional mutagenesis and depletion (iMAD) in the bacteria Legionella combined with
RNAi in the host Drosophila melanogaster identified interesting cross-species synthetic
lethal interactions that are relevant for pathogenesis (O'Connor et al., 2012). The
fundamental principles of these genetic conflicts between species will likely be revealed by
careful studies in classic host-pathogen systems such as bacteriophages and bacteria (Bondy-
Denomy et al., 2012).

The hierarchical design principles revealed by high-throughput genetic interaction studies
have many parallels in the principles revealed by biophysical studies of protein function.
Analysis of non-additive effects in biophysics studied in the context of protein folding
(Horovitz and Fersht, 1990; Perry et al., 1989), enzyme mechanism (Carter et al., 1984),
allostery (Sadovsky and Yifrach, 2007) and protein-ligand interactions (Baum et al., 2010;
Schreiber and Fersht, 1995). As with genetic interaction studies, biophysical double mutant
cycles reveal that most perturbations act independently (Wells, 1990) (Figure 4). However,
both bioinformatics (Breen et al., 2012) and experimental (Bershtein et al., 2006; Tenaillon
et al., 2012) studies suggest that non-additive (epistatic) effects play a dominant role in
shaping the evolution of proteins. In the context of protein structure, non-additive effects of
mutations often occur between residues that are in direct contact (Horovitz, 1987). For
example, mutating two Alanine residues to form a new Lysine-Aspartate salt bridge results
is only beneficial when both mutations are made as neither the Lysine-Alanine nor
Aspartate-Alanine pair is likely to be stabilizing This “contact-based mechanism” of
interactions parallels the positive genetic interactions observed between gene products that
physically interact (Collins et al., 2007). A similar analogy of “parallel pathway
mechanisms” exists between negative genetic interactions (Tong et al., 2001) and mutations
that form new stabilizing intraprotein contacts or alternative intermolecular interaction
binding modes. Promiscuous proteins with multiple binding modes may mask the negative
effects of substitutions that only affect one interaction mechanism. Ancestral reconstruction
of a nuclear hormone receptor revealed how two potential binding modes can be
interconverted through conformational epistasis: where mutation at one site indirectly
repositions the three-dimensional position of a remote second site and changes the
functional effects of mutations at the second site (Ortlund et al., 2007). Similar to negative
genetic interactions, conformational epistasis can lead to double mutations that affect both
binding modes that are not apparent from the individual mutations.

However, despite general trends across atomic- and network-scales for positive and negative
interactions, it remains difficult to predict the strength of non-additive interactions from
network, structural, or evolutionary principles (Lehner, 2011). The simple contact-based or
parallel pathway models can break down when long-range compensatory interactions occur
(Lunzer et al., 2010), consistent with the fact that the correlation between direct protein-
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protein interactions and positive genetic interactions is not absolute, especially for
complexes containing essential proteins (Costanzo et al., 2010). Mapping the genotype-
phenotype-fitness relationship (Lunzer et al., 2005) can be additionally complicated by the
ability of molecular chaperones to act as buffers that may enhance non-additive interactions
as a protein nears its stability limit (Tokuriki and Tawfik, 2009) or a network is challenged
by an external perturbation (Geller et al., 2007). To address the significance of these trends,
comprehensive studies of protein mutations – on a scale similar to the genetic interaction
studies – must be carried out. The advent of new sequencing methods now makes it possible
to survey comprehensive sets of mutations under different selective pressures (Hietpas et al.,
2011). One recent survey of all possible mutations in a PDZ domain revealed a strongly co-
evolving set of amino acids within which two mutations act non-additively to change
peptide binding specificity (McLaughlin Jr et al., 2012). Studies on this newly accessible
scale have the potential to reveal new principles of non-additivity underlying protein
stability and function (Araya et al., 2012). The extension of these principles to the co-
evolution of protein-protein interactions will address the similarities in molecular
mechanisms underlying epistatic interactions between and within individual gene products
(Fridman et al., 2010; Skerker et al., 2008). Therefore, quantitative measures that
intrinsically calibrate thermodynamic quantities to fitness measurements present new
opportunities to discover unifying principles of buffering, non-additivity and adaptation
across the atomic and network scales.

Looking dynamically forward
As these more comprehensive surveys of protein sequence and genetic interaction space
continue to emerge, an additional challenge will be to adapt the common analytical models
used in both systems and structural biology to include the fourth dimension: time. Much of
the work we have highlighted here has focused on integrating multiple static representations,
as exemplified by incorporating crystal structure information in a protein-protein interaction
network diagram. Recently, structural interaction networks have been adapted to incorporate
multiple protein conformations (Bhardwaj et al., 2011). Disease mutations that have only a
minor effect on the dominant structure of a protein can exert a deleterious function by
altering the ability to dynamically switch between near-native conformations (Shan et al.,
2012). Indeed, mutations remote (Fraser et al., 2009; Wang et al., 2012b) and within
(Bhabha et al., 2011) the active sites of enzymes can have large functional consequences
without dramatically altering protein structure. Conservation of protein motions have been
proposed to be a major constraint in protein evolution and may provide a mechanistic
explanation for non-additive effects between residues that are not in direct contact
(Reynolds et al., 2011). Microsecond-millisecond protein conformational dynamics can be
exploited in the development of new protein therapeutics (Levin et al., 2012) and tuning the
biophysical properties of small molecule inhibitors (Carroll et al., 2012).

At longer timescales, measuring the dynamics of non-additive responses in network contexts
will also likely reveal new principles of modularity (Alexander et al., 2009). Indeed,
profiling the changes in protein-protein interactions of the scaffold protein GRB2 after
perturbations designed to activate different receptor tyrosine kinases revealed that the time-
dependent rewiring and elaboration of new complexes centered around a conserved set of
core interactions (Bisson et al., 2011). A comparison of genetic interactions in yeast in the
presence and absence of DNA damaging agents revealed that although relationships within
protein complexes are largely conserved, there is substantial rewiring in the functional
relationships between complexes (Bandyopadhyay et al., 2010). These results suggest that
the concept of a network “module” may become more diffuse as a time dimension and
additional perturbations are incorporated. Similar to genetic interactions, current efforts are
underway to discover non-additive effects in drug combinations (Yeh et al., 2009).
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Multiplex profiling of approved and clinically tested drugs uncovered new interactions that
synergize to inhibit HIV replication (Tan et al., 2012). Varying the timing and dynamics of
different perturbations may discover additional synergistic combinations. Methods, such as
mass cytometry, that can dynamically read out the response of the cell across many
parameters simultaneously can be used to guide the optimization of perturbation dynamics
(Bodenmiller et al., 2012). Indeed, new therapeutic regimens are currently being developed
around non-additive effects on the order and time course of drug combinations by exploiting
network level principles (Lee et al., 2012). This study found that EGFR inhibition was
ineffective when combined simultaneously with genotoxic drugs; however, staggered
administration of the two perturbations dynamically rewires the cells and leading to a more
efficient potential therapy. Collectively, these studies point to emerging parallels of the role
of non-additivity on the sub-second timescale in protein dynamics, on the hours-weeks
timescale in the cellular response to perturbations, and on the million-year timescale in the
adaptations that shape interaction networks (Ideker and Krogan, 2012).

In this review, we highlighted how the use of systems and structural biological approaches
are truly synergistic when used in combination to understand complex biological
phenomenon. For example, unbiased, systems approaches can identify key components that
facilitate structural analysis whereas structural information can provide insight into and even
guide large-scale biological studies. Furthermore, we argue that there are striking similarities
between the framework used to interpret quantitative genetic interactions and
thermodynamic responses. Finally, detailed “small-scale” systems and synthetic biology
efforts, which examine network motifs and quantitatively model signaling networks, are
complimentary to the large-scale studies since they can be used to define core interactions
and network principles (see review by Lim et al. in this issue). A challenge for future work
will be to determine and integrate the quantitative relationships that exist at these different
levels, including cell biology (Slack et al., 2008), pharmacology (Lounkine et al., 2012), and
ecology (Hekstra and Leibler, 2012). In the near future, we expect methods that explicitly
investigate these parallels from “systems to structure” will play an increasingly larger role in
efforts to predict the phenotypic response to mutation, small molecules, pathogens, and other
perturbations.
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Figure 1. Interpretation of physical networks
A) A generic physical interaction network that could be derived from various systematic
protein-protein interaction platforms. B) The interaction map in A) could represent a set
mutually exclusive protein-protein interactions involving one common target (e.g. Ras
complexes: Ras:GEF (1BKD), Ras:GAP (1WQ1), Ras:Raf (3KUD)) or a simultaneous
assembly of proteins into a complex (e.g. SCF complex (1LDK)).
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Figure 2. Evolutionarily analysis of interfaces involved in mediating protein-protein interactions
A) Regions of host proteins that are directly hijacked by viral factors are less conserved than
interfaces that mediate interactions between host proteins. B) The human kinase PKR
interacts with eIF2α and the viral protein K3L via a common surface. Residues coloured in
blue line the interface region and display evidence for positive selection (elevated rates of
amino acid substitutions). K3L (1LUZ) was docked to PKR based on a superposition of the
PKR: eIF2α co crystal structure (2A1A).
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Figure 3. Using unbiased systems approaches to solve, important biochemically intractable
problems
A) Use of a targeted two-hybrid approach for BRCA2 identified DSS1, which allowed for
the structural elucidation (1MJE) of this important factor involved in breast cancer
progression. B) An unbiased affinity tag-purification mass spectrometry approach on all
HIV proteins revealed a connection between the accessory protein Vif and the human
transcription factor CBF-β. This host protein, which is required for efficient HIV infection,
allowed for the reconstitution and structural characterization of an active Vif-Cul-5
ubiquitination complex, which is required for the degradation of the host restriction factor
APOBEC3G. The unbiased systems approach allowed for the discovery that by hijacking
CBF-β, Vif is manipulating the ubquitination machinery and adversely effecting host
transcriptional regulation.
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Figure 4. A common framework for understanding genetic and thermodynamic perturbations
Non-additive effects are analyzed by similar methods and have similar distributions in a
genetic (left) or biophysical context (right). For non-neutral genetic interactions and
biophysical couplings, the effects of perturbations are context dependent. Quantitative
genetic analysis distinguishes between negative ((a Δ b Δ) < (a Δ)(b Δ)), positive ((a Δ b
Δ) > (a Δ)(b Δ)), and neutral ((a Δ b Δ) = (a Δ)(b Δ )) interactions based on the fitness of
the organism, represented here by colony size. Biophysical studies measure the free energy
of a process, for example protein folding, across different variants to distinguish between
negative (Δ G3> Δ G4; Δ G1> Δ G2), positive (Δ G3< Δ G4; Δ G1< Δ G2), or the absence
(Δ G3= Δ G4; Δ G1= Δ G2) of thermodynamic coupling (Δ Δ G).
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