
Waardenburg syndrome (WS), which equally affects 
both sexes and all races, is an inherited disorder charac-
terized by varying degrees of sensorineural deafness and 
pigmentary abnormalities affecting the skin, hair, and eye 
with an incidence of 1 in 40,000 [1,2]. Five major and five 
minor diagnostic criteria for WS were proposed by the 
Waardenburg Consortium [3]. Two major or one major and 
two minor criteria must be found in an individual to diagnose 
WS [3,4]. WS is classified into four major types depending on 
the presence or absence of dystopia canthorum and additional 
symptoms [1,5-8].

WS shows genetic heterogeneity. WS1 and WS3 are 
caused by mutations in the paired box 3 (PAX3) gene [9-12]. 
WS2 is due to mutations in the microphthalmia-associated 
transcription factor (MITF) gene [13-17] and the encoding 
snail homolog 2 (SNAI2) gene [18]. However, the molecular 
etiology of most patients with WS2 is still unknown [19]. 
WS4 is associated with mutations in the endothelin receptor 
type B (EDNRB) gene [17,20,21], the endothelin-3 (EDN3) 
gene [22-25], and the SRY (sex determining region Y)-box 10 

(SOX10) gene [6,7,19,24]. Recently, deletions in SOX10 were 
also identified in patients with WS2 and WS4 [26].

PAX3, located on the long arm of chromosome 2 (2q35), 
includes ten exons [27]. This gene is a member of the 
mammalian PAX gene family that encodes for DNA-binding 
transcription factors and plays a role in maintaining stem cell 
pluripotency, cell-lineage specification, proliferation, migra-
tion, apoptosis, and inhibition of terminal differentiation 
[28,29]. PAX3 is expressed in neural crest cells including the 
spinal ganglia, the craniofacial mesectoderm, and the limb 
mesenchyme during embryogenesis and plays an important 
role in the migration and differentiation of melanocytes, 
which originate from the embryonic neural crest [17,28].

More than 70 pathogenic PAX3 mutations including 
missense, nonsense, and frameshifts mutations, small inser-
tions or deletions, and splice alterations have been reported 
in patients with WS1 [17]. Most PAX3 mutations are located 
in exon 2; no mutations have been described in exons 9 and 
10. Approximately 50% of the described mutations of PAX3 
are missense; the remaining are truncating variations [17]. 
Partial or total gene deletions have been reported in 10% 
of patients without identified point mutations [30-35]. The 
literature that studied patients with WS1 caused by muta-
tions in PAX3 was reviewed in 2009 by Pingault et al., and 
no relationship was found between the severity of disease and 
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the type of mutation [17]. In this report, clinical features and 
intrafamilial heterogeneity of eight affected individuals in a 
Turkish family with WS1 with a novel mutation are presented.

METHODS

Family description: Eight affected including the proband, 
and 5 unaffected members of the study family, as well 
as 50 healthy volunteers were included in the present 
study. Informed consent conforming to the tenets of 
the Declaration of Helsinki, blood samples, and clinical 
evaluations were obtained from each study participant, 
under protocols approved by Dr. Behçet Uz Children’s 
Hospital ethics committee (approval number and date: 
B-10-4-ISM-4-35-65-72; 29.03.2012/25). Informed consent 
conforming to the tenets of the Declaration of Helsinki, 
blood samples, and clinical evaluations were obtained from 
each study participant, under protocols approved by the 
Behçet Uz Children’s Hospital ethics committee (approval 
number and date: B-10–4-ISM-4–35–65–72; 29.03.2012/25). 
The female patient was referred to us for genetic evaluation 
because of dysmorphic facial features at the age of 13 months. 
The proband and her family were evaluated at the Medical 
Genetics Clinic, Dr. Behçet Uz Children’s Hospital, Izmir, 
Turkey. The proband (Patient IV:6) was diagnosed with WS1 
according to the WS Consortium criteria [3]. Her family 
history revealed eight affected members in three generations 
(Figure 1). Routine clinical examination and detailed audio-
logical and ophthalmologic evaluation were performed on 
eight affected and five healthy members of the study family. 
Two major or one major and two minor criteria must be found 
in an individual to diagnose WS. In four patients (IV:3, IV:4, 
IV:5, and IV:6), premature graying of the hair was not evalu-
ated because of the patients’ youth.

Hearing loss was assessed with pure tone audiometry 
or, in children, with brainstem-evoked response audiometry 
(BERA). Degree of hearing loss was computed by using a 
four-frequency average called the pure-tone average. The 
average of the hearing threshold levels (decibels) taken at 
500 Hz, 1000 Hz, 2000 Hz, and 4000 Hz was calculated for 
each patient to find the pure-tone average level. Afterwards, 
hearing loss was graded according to the classification 
defined by J.G. Clark in 1981 [36]. Dystopia canthorum, 
which is characterized by an increase in the distance between 
the inner angles of the eyelids with normal distances between 
the pupils and the outer canthus, was defined for each affected 
member of the family with a W index that exceeds 1.95 [1].

Mutation analysis: Peripheral blood samples which were 
collected in EDTA tubes and stored fresh (-20 °C) were 
obtained from participating members of the family and 

50 unrelated healthy volunteers. Genetic analyses were 
performed in Duzen Laboratory Groups, Genetics Divi-
sion, Ankara, Turkey. Genomic DNA was extracted from 
leukocytes using the QIAamp DNA mini kit (Qiagen, 
51304, Dusseldorf, Germany), according to manufacturer’s 
instructions. Genomic fragments including coding regions 
and adjacent intronic regions of PAX3 were amplified with 
PCR, using nine primer pairs described previously [7] (Table 
1). The amplicons from individual exons were purified and 
analyzed with cycle sequencing with ABI BigDye Terminator 
Cycle Sequencing Kit v3.1 (ABI Applied Biosystems, Foster 
City, CA) on an automatic DNA sequencer (ABI 3130 Genetic 
Analyzer, Applied Biosystems). Sequencing results from 
patients and the consensus sequences from the NCBI Human 
Genome Database (NCBI Reference Sequence: NG_011632.1) 
were imported into the ABI SeqScape program and aligned to 
identify variations. Each found mutation was confirmed with 
bidirectional sequencing. The mutation was named following 
the nomenclature recommended by the Human Genomic 
Variation Society.

RESULTS

Phenotype analysis: Eight affected patients (five women 
[III:7, IV:3, IV:4, IV:5, and IV:6] and three men [II:3, III:5, 
and III:9]) and five nonaffected members (three women [III:2, 
IV:1, and IV:2] and two men [II:1 and III:1]) of three genera-
tions in the study family were enrolled in the present study 
(Figure 1). Case I:1 was not evaluated in this study as he died 
before enrollment. The diagnostic criteria for WS proposed 
by the Waardenburg Consortium and the clinical features of 
the study patients are shown in Table 2.

Dystopia canthorum was detected in all affected patients 
(Figure 2). A brilliant blue iris was present in five patients 
who also had mild retinal hypopigmentation (III:5, III:7, III:9, 
IV:5, and IV:6; Figure 2 and Figure 3). Orthoptic assessments 
were within normal limits, and nystagmus was not present 
in affected patients or nonaffected members of the family; 

Figure 1. The pedigree of the family is shown. The squares indi-
cate men, and the circles indicate women. Filled quadrants indicate 
phenotype associated with WS1. Upper left represents dystopia 
canthorum. Lower left represents brilliant blue iris. Upper right 
represents hearing loss. Lower right represents synophyris.

http://www.molvis.org/molvis/v19/196
http://www.ncbi.nlm.nih.gov/nuccore/NG_011632.1


Molecular Vision 2013; 19:196-202 <http://www.molvis.org/molvis/v19/196> © 2013 Molecular Vision 

198

however, astigmatic refractive errors were found frequently 
in all affected members. Synophrys was presented in five 
out of eight patients (II:3, III:5, III:7, III:9, and IV:4), and this 
finding was more prominent in two (II:3 and III:9; Figure 2). 
Clinical features of all unaffected family members (II:1, III:1, 
III:2, IV:1, and IV:2) were revealed as normal.

Four patients had a sensorineural hearing impairment. 
Three (III:5, IV:5, and IV:6) were profoundly and one (III:9) 
was moderately deaf. Out of the three profoundly deaf 
patients, two (IV:5 and IV:6) had received a cochlear implant. 
None had a white forelock, whereas premature graying of the 
hair (before the age of 30 years) was present in patients II:3, 
III:5, III:7, and III:9. Due to the patients’ youth, premature 

graying of the hair was not evaluated in four patients (IV:4 
was 15 years old, IV:5 was 10 years old; IV:3 and IV:6 were 
younger than 2 years old). Hypopigmented patches of the skin 
were present in only one patient (III:9; Table 2). No patients 
had limb defects.

Mutation analysis: After direct sequencing of PAX3, a hetero-
zygous change T>G in exon 5, at position 788 of the transla-
tion start site was detected in all affected patients (Figure 
4A). This position belongs to helix 3 of the homeodomain in 
the PAX3 protein, and converts the 45th amino acid in this 
domain from valine to glycine. This mutation was not found 
in the other unaffected relatives (II:1, III:2, IV:1, and IV:2) 

Table 1. Primers for amplifying and sequencing PAX3 genomic fragments [7].

Exon Forward primers Reverse primers Product size 
(bp)

1 5′ GATGGGAAGAGAAAGTGGTC 3′ 5′ TGCAGAAAGGAAATCGAGTA 3′ 788
2 5′ CCGATGTCGAGCAGTTTCAG 3′ 5′ CGCACCTTCACAAACCTCAG 3′ 503
3 5′ TGGGATGTGTTCTGGTCTG 3′ 5′ TCCCAATAGCTGAGATCGA 3′ 420
4 5′ CTGGAGAAGGATGAGGATGT 3′ 5′ CGTCAGATCACCAATGTCAG 3′ 383
5 5′ TACGGATTGGTTAGACTTGT 3′ 5′ AACAATATGCATCCCTAGTAA 3′ 508
6 5′ CAACACAGAAGGCAGAGA 3′ 5′ ATAGGTACGTTCAGGACAA 3′ 445
7 5′ TGTGCAGAGATAGGTGTGAC 3′ 5′ TTTGATGAAGCCAGTAGGA 3′ 586
8 5′ TCTCCTGGACAGCTCTTTAA 3′ 5′ GGCATGTGTGGCTTAATCT 3′ 480
9&10 5′ GGTCAGCTCCAGGATCATAT 3′ 5′ GCAAATGGAATGTTCTAGCT 3′ 580

Table 2. Diagnostic criteria of WS, and clinical evaluation of affected family members. Two major, 
or one major and two minor criteria have to be found in an individual to be diagnosed as WS

DIAGNOSTIC 
CRITERIA FEATURES

STUDY PARTICIPANTS
II-3 III-5 III-7 III-9 IV-3 IV-4 IV-5 IV-6

MAJOR 
CRITERIA

Sensorineural hearing loss - + - + - - + +
Iris pigmentary abnormality (heterochromia 
iridis, or segmentary heterochromia of the 
iris, or characteristic brilliant blue iris)

- + + + - - + +

Hair hypopigmentation (white forelock, white 
hairs at other sites on the body)

- - - - - - - -

Dystopia canthorum + + + + + + + +
First-degree relative previously diagnosed 
with Waardenburg syndrome

+ + + + + + + +

MINOR 
CRITERIA

Skin hypopigmentation - - - + - - - -
Synophrys + + + + - + - -
Broad nasal root - - - - + - + +
Hypoplasia alae nasi + - + - - - - +
Premature graying of the hair (before the age 
of 30 years)

+ + + + N/A N/A N/A N/A

N/A: Not applicable
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in the healthy controls (Figure 4B). Case III:1 declined the 
molecular genetic analysis.

DISCUSSION

A careful clinical evaluation is necessary to differentiate 
various types of WS. Dystopia canthorum is a commonly 
seen feature of WS with an incidence of 41.2% to 99% [1,2]. 
However, dystopia canthorum is also the most penetrant (%99) 
and the most distinguishing feature of WS1 [1,2,6,37,38]. All 
affected patients in the present study had dystopia canthorum.

In 2006, the frequencies of heterochromia iridis and 
synophrys were reported as 25% and 45% of WS1 patients, 
respectively [6]. However, incidence of synophrys in patients 
with WS1 was reported as 85% in a review published in 2009 
[17]. Although a brilliant blue iris was present in five out of 
eight patients, heterochromia iridis was not detected in any 
members of the study family. However, synophrys, a minor 
criterion, was also present in five out of eight patients.

WS accounts for approximately 2% to 5% of congenital 
sensorineural deafness [30,39]. Congenital sensorineural 

deafness is a feature in approximately 25% to 75% of patients 
with WS1 [17,40,41]. Deafness related to WS can be moderate 
to severe, unilateral, or bilateral but most commonly non-
progressive [40,42]. In our study, three patients had total 
bilateral severe sensorineural deafness, and one patient had 
moderate bilateral deafness. Hearing tests were normal in 
the other four affected patients and five unaffected members 
of the family. However, Wang et al. reported a lack of deaf-
ness among their Chinese patients with WS1, and indicated 
a possible ethnic specific variation in clinical expression 

Figure 2. Photographs of eyes from patients with Waardenburg 
syndrome type 1. A: Dystopia canthorum (W index: 2.03) and 
synophyris were present in a 68-year old man (II:3). B: Dystopia 
canthorum (W index: 2.08), brilliant blue iris, and synophyris were 
present in a 32-year old man (III:5). C: Dystopia canthorum (W 
index: 1.96), brilliant blue iris, and synophyris were present in a 
30-year old woman (III:7). D: Dystopia canthorum (W index: 2.35), 
brilliant blue iris, and synophyris were present in a 26-year old man 
(III:9). E: Dystopia canthorum (W index: 2.49) and broad nasal root 
were present in a 5-month old girl (IV:3). F: Dystopia canthorum 
(W index: 2.19), brilliant blue iris, and broad nasal root were present 
in a 10-year old girl (IV:5). G: Dystopia canthorum (W index: 2.39), 
brilliant blue iris, and broad nasal root. W index: 2.39.

Figure 3. Retinal hypopigmentation was seen on the fundus photo-
graph of the proband.

Figure 4. Sequence chromatography. A: The heterozygous change, 
c.788T>G, was identified in affected family members. B: Unaf-
fected members and 50 healthy controls are wild-type at this 
position.
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of the syndrome [43]. The incidence of hearing loss among 
Turkish patients with WS1 was published as 75% by Oysu et 
al. in 2000 [40]. Hearing loss was present in 50% of our study 
patients with WS1, which is in accordance with the literature 
[17,30,39-42].

Mutations of PAX3 on chromosome 2q37 have been 
reported in 33% to 80% of patients with WS1 in familial and 
sporadic cases [3,7,13,44]. PAX3 is a transcription factor that 
plays a major role in embryogenesis [45]. By 2009, about 
70 mutations of PAX3 related to WS had been introduced 
[17]. The PAX3 protein is a member of the family of paired 
domain proteins that bind DNA and regulate gene expression 
[7]. PAX3 encodes a paired domain and a homeodomain [6]. 
Missense mutations are almost exclusively located within 
the two DNA binding domains. One, the homeodomain, 
includes three α-helices. Most PAX3 mutations are located 
in the paired domain or in helix 3 of the homeodomain [6]. 
Helix 3 of the homeodomain makes sequence-specific DNA 
contacts and several phosphate contacts in the major groove 
[6,7]. Mutations that affect helix 3 of the homeodomain in the 
PAX3 protein may lead to a decrease in DNA binding affinity 
and/or specificity [7]. We identified the novel c.788T>G 
mutation in PAX3 leading to V→G substitution on the 45th 
position of helix 3.

The phenotypic variability among the eight affected 
patients with the same mutation is well matched with inheri-
tance properties of the disease. PAX3 mutations are inherited 
dominantly with variable expressivity [43]. The disease is 
known as fully penetrant when at least one of its signs is 
detected, but the penetrance for each one is not complete. 
The fact that there is no obvious association between different 
types of mutations and the severity of disease could be due 
to the role of gene dosage as the pathophysiology of the 
syndrome. It is hypothesized that stochastic events were not 
solely responsible for its expression, so that genetic factors 
and/or the environmental background can modify the pheno-
type [17]. A few mutations of PAX3 have been tested for 
their functional consequences. The functional experiments 
mostly included DNA-binding activity and transactivation 
capabilities. Although missense mutations are thought to 
abolish PAX3 ability to bind and activate its transcriptional 
targets, further functional studies are necessary to evaluate 
the precise molecular mechanism caused by the c.788T>G 
mutation.

In conclusion, we identified a novel missense mutation in 
PAX3 that is associated with the occurrence of WS1. The new 
mutation, like all other defined mutations, lead to phenotypic 
variability within the same family, which is one of the most 
important features of the disease.
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