
Previous studies have shown the maintenance of the 
corneal epithelial cell mass as determined by a distinct popu-
lation of unipotent stem cells (SCs), which is probably located 
in the basal layer of the corneoscleral limbal epithelium [1,2]. 
These cells simultaneously retain their capacity for self-
renewal and maintain a constant cell number by giving rise to 
fast-dividing progenitor cells, termed transit-amplifying cells 
(TAC), which proliferate and differentiate into post-mitotic 
corneal epithelia [3].

Various pathologic conditions that affect the ocular 
surface can partially or completely destroy the limbal 
epithelial SC repository giving rise to what is called limbal 
SC deficiency [4]. Total limbal SC deficiency (TLSCD) is 
characterized by 3,600 conjunctival epithelial ingrowth, 
vascularization, chronic inflammation, recurrent erosions, 
and destruction of the basement membrane, leading to severe 
functional impairment [4–8]. A renewal of the limbal epithe-
lial progenitor cells population is required for regenerating 

the transparent corneal surface and restoring visual function 
in these eyes [9–11].

Limbal epithelial transplantation has allowed us to treat 
TLSCD with an acceptable anatomic and functional outcome 
[4]. However, autologous limbal epithelial transplantation is 
limited by the availability of limbal tissue from the same 
patient, and allogeneic transplantation requires systemic 
immune suppression to improve graft survival [1,4,8,11].

Alternatively, ex vivo cultivation and transplantation of 
limbal epithelial cells have been reported in animal models 
and in patients with TLSCD with variable results [1]. Ques-
tions related to the percentage of progenitor cells transplanted 
and their adhesion, survival, and mechanism of action have 
been raised [9,12,13]. This variation in the clinical outcome 
observed by investigators may be explained by differences 
in the culture techniques [14]. These differences include the 
use of explant or single-cell suspension systems, the presence 
or absence of a 3T3 feeder layer, the use of different carriers 
including fibrin and amniotic membrane, and the use of 
airlifting to promote epithelial differentiation and stratifica-
tion [1,6,14–19].

In most cases, the current methods used to estab-
lish the cultures do not favor preserving stemness, but 
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promote proliferation and terminal differentiation of TAC 
[3,16,19]. The long-term restoration of the damaged ocular 
surface, however, may require preserving limbal epithelial 
progenitor cells during the culture process and post-grafting 
[5,6,8,10,13,16]. With this background in mind, we aimed 
to explore the effectiveness of three culture media (SHEM, 
KSFM, and Epilife) for the growth, proliferation, differen-
tiation, and viability of ex vivo cultured limbal epithelial 
progenitor cells.

METHODS

Explant culture: Limbal tissue was obtained from ten human 
corneal rims of the remaining trephination of in penetrating 
keratoplasty at the Operating Room at the Department of 
Ophthalmology, Federal University of São Paulo (UNIFESP). 
Corneal rims were transported in Optisol GS (Chiron 
Ophthalmics, Irvine, CA) to the cell biology laboratory 
(Ocular Surface Advance Center, CASO). The research 
protocol was previously approved by the Institutional Ethics 
Committee for Research of the Federal University of São 
Paulo (UNIFESP), São Paulo, Brazil, in accordance with 
the tenets of the Declaration of Helsinki for experiments 
involving human tissue.

Each donor corneoscleral rim was divided into six equal 
pieces, in a laminar flow chamber, under aseptic conditions 
[12,20] and using a dissecting microscope. The endothelial 
and posterior stromal layers were carefully peeled off, and 
each explant was placed, with the epithelial surface facing 
upward, on a six-well 35 mm plate, one piece per well (TPP, 
Zurich, Switzerland). The explants were left on the covered 
plate for approximately 15 min under laminar flow and then 
cultured with one of the three studied culture media. After-
ward, 1 ml of each culture medium to be tested was carefully 
placed on the explants. The cultures were maintained in a 
37 °C humidified incubator with 5% CO2. The medium was 
changed three times a week for 4 weeks, and the explants 
were left in the culture plates during the incubation period.

Culture media: The following culture media were used to 
cultivate limbal epithelial cells: A) The first was supple-
mental hormonal epithelial medium (SHEM), a combination 
of Dulbecco’s Modified Eagle’s Medium/Ham’s F-12 nutrient 
mixture (DMEM/F12; Invitrogen, Gibco Cell Culture, Port-
land, OR; 1:1) containing 1.05 mM calcium supplemented 
with 5 µg/ml crystalline bovine insulin (Sigma Aldrich, St. 
Louis, MO), 30 ng/ml cholera-toxin (Calbiochem, San Diego, 
CA), 2 ng/ml epidermal growth factor (EGF, R & D Systems, 
Inc., Minneapolis, MN), 0.5% dimethyl sulfoxide (DMSO, 
Sigma Aldrich), 0.5 µg/ml hydrocortisone, 5 ng/ml sodium 
selenite, and 5 µg/ml apo-transferrin, and supplemented with 

10% fetal bovine serum (FBS). All reagents were obtained 
from Invitrogen Corporation (Grand Island, NY), except those 
indicated in the text [15,21]. B) The second was keratinocyte 
serum-free medium (KSFM) containing 0.09 mM calcium 
supplemented with 30 mg/ml pituitary bovine extract, 0.2 ng/
ml EGF, 10% FBS, and ampicillin/streptomycin [22,23]. C) 
The third was Epilife medium (Cascade Biologics, Portland, 
OR), containing 0.06 mM calcium supplemented with 1% 
“human corneal growth supplement” (Cascade Biologics), 
containing 0.2% pituitary bovine extract, 5 g/ml bovine 
insulin, 0.18 mg/ml hydrocortisone, 5 μg/ml bovine trans-
ferrin, 0.2 ng/ml EGF, added 1% penicillin G sodium (Peni-
cillin G sodium 10,000 g/ml, streptomycin sulfate 25 mg/ml, 
amphotericin B in 0.85% NaCl), and 5% FBS [8,24,25].

Epithelial growth area and morphology: Cell morphology 
and the growth area of the limbal epithelial cells were deter-
mined in the three culture media conditions (ten different 
donor explants expanded in each of the three culture media). 
During the medium exchange, the margin of the epithelium 
adhered to the bottom of each culture plate was externally 
marked with a porous pen tip, delimiting the growth cell area. 
Subsequently, a transparent graph paper was placed under 
the sheet of the plate to count the previously defined area in 
mm2 [9].

Immunocytochemistry: After 28 days of culture (five different 
donor explants expanded in each of the three culture media), 
the epithelial cells were washed three times with PBS (combi-
nation of sodium chloride, sodium phosphate, potassium 
chloride, potassium phosphate) and incubated with Trypsin/
EDTA (EDTA) 0.5% (Invitrogen, Gibco Cell Culture, Port-
land, OR and Sigma Aldrich) at 37 °C for 5 min, and the 
detached cells were washed twice with the tested medium 
containing FBS [11]. Then the cells were placed in compart-
ments of a Cytospin (Shandon, Pittsburgh, PA) and centri-
fuged at 900 rpm for 10 min to prepare slides containing 
20,000 cells each. After centrifugation, the cells were dried 
for 15 min at room temperature, fixed in cold acetone for 1 
min, and incubated for 10 min with blocking solution.

After being washed five times with PBS, the slides were 
incubated for 2 h in a moist chamber with the following 
primary monoclonal antibodies: Ki67 (1:100, Dako A/S, 
Glostrup, CPH) for cell proliferation [9,18]; cytokeratin 3 
(CK3, 1:300, Chemicon International, Temecula, CA) for 
corneal epithelium [5,18,26]; adenosine 5′-triphosphate-
binding cassette sub-family G member 2 (ABCG2, 1:50, 
R&D Systems, Emeryville, CA) for epithelial stem cells and 
progenitor cells [5,26]; p63 (1:50, Chemicon International), a 
putative epithelial stem-cell marker [5,18,26]; and vimentin 
(VMT, 1:300, R&D Systems) for mesenchymal cells [18]. 
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Negative controls containing only antibody diluents were 
incubated in the same way.

After 2 h, the slides were washed with PBS, placed in a 
buffer bath for 5 min, and then incubated with amplification 
solutions of labeled streptavidin-biotin for 30 min each. The 
reactions were revealed with diaminobenzidine chromogen 
solution. The slides were then washed with distilled water, 
counter-stained with hematoxylin, and dehydrated with 100% 
alcohol for 15 min each, followed by a bath with xylol for 
15 min. Slides were mounted with Entellan (Merck, Darm-
stad, HE) and coverslipped. The proportion of positive cells 
in each slide was determined by analyzing 200 cells/slide, 
using a light microscope (40x; Nikon Inc., New York, NY). 
All immunocytochemical reagents were obtained from Dako 
North America, Inc. (Carpinteria, CA) [5].

Real-time reverse transcription polymerase chain reac-
tion: To compare the gene expression of CK3, ABCG2, and 
p63 among the epithelial cells grown in the culture media, 
mRNA was extracted and analyzed with real-time PCR tech-
niques after 28 days of culture (ten different donor explants 
expanded in each of the three culture media). Total RNA was 
obtained using the TRIzol kit (Invitrogen, Los Angeles, CA), 
which lyses cells and dissolves cell components, maintaining 
RNA integrity. The RNA quality was evaluated with electro-
phoresis in an agarose gel containing 1% formaldehyde for 
denaturing conditions.

The cDNA was obtained from the total RNA using the 
reverse transcriptase enzyme. The samples were treated with 
1 U/μl of DNase. The reaction was performed in buffer solu-
tion with the specific enzyme for the reverse transcriptase 
enzyme, 0.5 mg/ml polythymine, 0.1 M of dithiothreitol, and 
10 mM of each nucleotide. This solution was transferred to 
a tube containing 2 μg RNA, and finally, 1 μl of the reverse 
transcriptase enzyme was added. The reaction was performed 
at 42 °C for 50 min and stopped by raising the temperature to 
70 °C for 15 min. The cDNA obtained was then used in PCR 
to amplify specific fragments of the CK3, p63, and ABCG2 
gene.

The level of mRNA expression was estimated with quan-
titative real-time PCR using the GeneAmp 5700 Sequence 
Detection System SDS (ABI Prism 7700, Applied Biosys-
tems, Branchburg, NJ), which was developed to detect gene 
expression with high specificity and sensitivity. The product 
obtained with real-time PCR was monitored using TaqMan 
(TaqMan Universal PCR Master Mix, Applied Biosystems, 
Branchburg, NJ). Relative expression of the gene was calcu-
lated using the logarithmic phase of amplification and was 
correlated to the number of initial copies of gene transcrip-
tion. Fluorescence for each cycle was quantitatively analyzed 

with the ABI Prism 7700 SDS (Applied Biosystems). The 
relative amount of mRNA was estimated using a benchmark 
calculated from the control group as the average number 
of cycles determined by the threshold of all samples. The 
results for the experiments for each group were corrected 
by the expression of glyceraldehyde-3-phosphate dehydroge-
nase, which was used as the quantitative endogenous control 
and expressed in arbitrary units [5]. All PCR reagents were 
obtained from Invitrogen, except those indicated in the text.

Hoechst staining: To evaluate and compare the devitalized 
throughout cells between the culture media, a quantitative 
method using Hoechst 33,342 dye (Sigma Aldrich) was 
applied. The cells were washed twice with PBS, trypsinized, 
and then neutralized with supplemented medium. The cells 
were collected in 1.5-ml tubes and centrifuged for 5 min at 
1800 rpm, and the supernatant was discarded. An aliquot 
of 7 μl of the pellet was mixed in 3 μl of Hoechst solution, 
10 mg/mL, for 10 min, placed on a slide and coverslipped. 
The slides were examined with a fluorescence microscope, 
and positive cells were expressed as a percentage [26].

Statistical analysis: The Student t test and one-way ANOVA 
(ANOVA; SPSS ver.12, SPSS Inc. Chicago, IL), where non-
parametric measure of correlation was performed using the 
Kruskal–Wallis test with Müller-Dunn’s post-test, were used 
to compare variables among the three groups. Probabilities 
of less than 5% were considered statistically significant. For 
repeated tests, we used the Bonferroni correction to correct 
for cumulative type I errors.

RESULTS

Epithelial growth area and morphology: Optical morpho-
logical analysis of the limbal epithelial cells cultivated in 
three culture media is presented in Figure 1. The evolution of 
the cell growth area in the culture media is shown in Figure 
2. In SHEM, the cells started to grow by 3–5 days, showed 
faster and progressive migration in 17–19 days of culture, and 
reached confluence in 24.61±8.35 days. The cells cultivated 
in this medium were initially smaller and better defined, with 
a 1:2 nucleus-cytoplasm ratio. As migration occurred, the 
cell layer demarcation became clear with a 1:3, 1:4 nucleus-
cytoplasm ratio.

In KSFM, the cells started to grow in 3–5 days, showed 
faster migration at 19–22 days of culture, and reached conflu-
ence in 27.28±4.41 days. The cells grown in this medium 
displayed epithelial characteristics, a 1:2 nucleus-cytoplasm 
ratio, but as soon as the migration started, they started to 
show a 1:3 nucleus-cytoplasm ratio.
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The cells cultured in Epilife medium grew more slowly; 
growth began after 3–10 days. Cell growth reached a peak 
after 19–22 days of culture, and total confluence occurred 
after 29.22±5.35 days. The cells grown in this medium were 
more uniform, with a better definition of cell boundaries and 
a cuboidal appearance with a 1:2 nuclear-cytoplasm ratio.

The cell growth area comparison can be better observed 
in Figure 2 and Table 1. Significant differentiation in the 
growth area rate can be seen on days 10, 12, and 15 of cell 
culture.

Immunocytochemistry: Immunocytochemical analysis 
(Figure 3) showed that the cells grown in SHEM had a lower 
percentage of positive cells for putative stem cell markers 
(ABCG2 and p63) compared to KSFM and Epilife. As for 
cell proliferation, SHEM showed a lower percentage of Ki67 
compared to KSFM and Epilife. For differentiated epithe-
lium markers, a higher percentage of CK3 was found with 
SHEM; however, KSFM and Epilife had a lower tendency 

for CK3-positive cells. SHEM-cultivated cells also showed 
a higher propensity of positive cells for VMT compared to 
the other groups.

Real-time reverse transcription polymerase chain reaction: 
The results of real-time PCR analysis are presented in Figure 
4. ABCG2 and p63 expression was statistically higher for 
Epilife (p=0.001, one-way ANOVA) compared to SHEM and 
KSFM. However, CK3 expression was statistically lower for 
KSFM (p=0.039, one-way ANOVA) compared to SHEM and 
Epilife.

Cell viability: Assays for cells devitalized throughout with 
Hoechst 33,342 showed that cells in the isolated corneal–
limbal epithelial sheets remained viable. There was no signif-
icant difference in the proportion of devitalized throughout 
cells among the three culture media (one-way ANOVA, 
p=0.9253) presented in Table 2.

Figure 1. Optical morphological 
analysis of the limbal epithelial 
cells cultivated in three different 
culture media. A: supplemental 
hormonal epithelial medium 
(SHEM), B: keratinocyte serum-
free medium (KSFM), and C: 
Epilife. Light microscope=40×.

Figure 2. Plot of cell growth area 
over time for limbal epithelia culti-
vated in the culture media supple-
mental hormonal epithelial medium 
(SHEM), keratinocyte serum-free 
medium (KSFM), and Epilife. 
There were significant differences 
in cell growth area in SHEM and 
KSFM media at 10, 12, and 15 days 
of culture. One-way ANOVA was 
performed. Bars represent the stan-
dard deviation.
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Table 1. Cell migration of limbal epithelia cultivated in the culture media SHEM, KSFM and Epilife®

Days in culture SHEM Mean KSFM Mean Epilife P value
3 0.13±0.35 0.13±0.35 0 0.5929
5 7.89±2.67 2.67±4.42 5.44±3.07 0.1146
7 7.89±8.66 2.67±4.42 5.44±3.07 0.1146
10 58.40±30.20 26.10±18.70 51.40±37.00 0.0317*
12 100.80±52.90 46.90±27.80 80.40±58.60 0.0275*
15 160.50±104.30 72.20±39.5 119.00±92.80 0.0440*
17 233.40±139.50 136.10±71.75 130.90±59.64 0.1711
19 314.80±190.50 176.20±82.20 176.40±61.50 0.291
22 334.10±144.80 263.90±84.30 262.70±71.80 0.6388

SD=standart deviation; SHEM=supplemental hormonal epithelial medium; KSFM=keratinocyte serum-free medium; One way ANOVA 
was performed.

Figure 3. Immunocytochemistry of limbal epithelial cells cultured in supplemental hormonal epithelial medium (SHEM), keratinocyte 
serum-free medium (KSFM) and Epilife showing the number of positive cells (N cell +) and percentage of positive cells. The Kruskal–Wallis 
test was performed. There were significant differences for p63. (Light microscope 40x).
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DISCUSSION

The present study provides evidence that limbal epithelial 
cells grew differently in the three tested culture media and 
showed different phenotypes and expression of markers for 
putative progenitor cells and differentiated cells. In SHEM, 
growth and confluence occurred earlier, around 24 days of 
culture when compared to the other groups. As confluence 
progressed, the cell size and nuclear size increased. Cell 
proliferation was significantly higher at 12–19 days, but 
decreased at the end of the experiment to levels no longer 
significant. This decrease in the proliferation rate was 
confirmed with the lower percentage of positive cells for Ki67 
(43.5%), a cell proliferation marker, in immunocytochemistry. 
These findings suggest that cultured cell were in the process 
of higher differentiation.

KSFM and Epilife showed significantly slower growth 
compared to SHEM between 17 and 22 days. Nevertheless, 
Ki67 gene expression was high at the 28th day of culture. The 
smaller cell size and slower proliferation observed in KSFM 
and Epilife are compatible with the less differentiated epithe-
lium reported by Romano et al. [27], who used a combination 

of in vivo confocal microscopy and flow cytometry to char-
acterize the limbal basal epithelium.

ABCG2, a member of the ABC transporters, formally 
known as breast cancer resistance protein 1 (BCRP1), has 
been identified as a molecular determinant for bone marrow 
SCs, and has been proposed as a universal SC marker [28]. 
Similarly, the nuclear transcription factor p63, a member of 
the p53 family, was proposed as a marker of corneal epithelial 
SCs. In all tested culture media, gene expression for puta-
tive progenitor cells markers was detected with RT–PCR and 
immunocytochemistry. Although ABCG2 and p63 protein 
expression did not present discrepant differences among the 
three culture media conditions tested, our findings demon-
strate that Epilife better maintained the progenitor cell char-
acteristic due to higher mRNA expression of ABCG2 and 
p63 when compared to KSFM and SHEM at the 28th day 
of culture. The immunocytochemistry study also presented 
higher protein expression for ABCG2 and p63 for the Epilife 
culture. Immunocytochemistry and RT–PCR studies were 
also comparable for lower signal from cells in SHEM. In 
KSFM, however, higher expression on immunocytochemistry 
was dissociated from low mRNA detection for progenitor cell 
markers. This may represent protein synthesis in earlier stage 
of cell culture with less mRNA activity at the 28th day of 
culture. In contrast, all groups, excepting KSFM with a lower 
signal, expressed CK3, indicating the presence of differenti-
ated cells. Although Epilife seemed to be more effective in 
maintaining the limbal epithelial progenitor cells phenotype, 
the cultures were heterogeneous, and we found CK3-positive 
cells.

However, all groups expressed CK3, indicating the pres-
ence of differentiated cells, and the KSFM was the medium 
that less expressed CK3. Although KSFM and Epilife seemed 
to be more effective in maintaining the limbal epithelial 
progenitor cells phenotype, the cultures were heterogeneous, 
and we found CK3-positive cells.

In this study, we did not evaluate the colony-forming 
efficiency in culture media described by Pellegrini [13] in 
cultures established with the cell suspension technique. 
Nevertheless, we followed the concept described by Li et al. 
and others [26,29] that proposes that human limbal epithelial 

Figure 4. Expression level of cell differentiation marker CK3, 
stem cell marker ABCG2 and undifferentiated cell marker p63, 
determined with reverse transcription polymerase chain reaction 
(RT–PCR) of limbal epithelial cells cultured in supplemental 
hormonal epithelial medium (SHEM), keratinocyte serum-free 
medium (KSFM), and Epilife. One way ANOVA was performed.

Table 2. Percentage of devitalized throughout cells with Hoechst staining

Days in culture SHEM Mean KSFM Mean Epilife P value
Hoechst 60 75 51 0.9253
  −30 −37.5 −25.5  

N cells +=number of positive cells; SHEM=supplemental hormonal epithelial medium; KSFM=keratinocyte serum-free medium; Krus-
kal–Wallis test was performed.

http://www.molvis.org/molvis/v19/69


Molecular Vision 2013; 19:69-77 <http://www.molvis.org/molvis/v19/69> © 2013 Molecular Vision 

75

cells with stem cell properties express high levels of ABCG2 
RNA, and this fact correlates with the greatest colony-
forming efficiency and growth capacity.

A notable difference among culture media components 
is the calcium concentration. KSFM and Epilife, which kept 
cells in a more undifferentiated state, presented a lower 
calcium concentration than SHEM.

The influence of calcium in cellular differentiation has 
been known for 30 years and was reported by Boyce and 
Ham [30] and other authors [22,31–33]. These authors have 
shown that the presence of a high extracellular calcium 
concentration produces a stimulatory effect on cell prolifera-
tion, because the calcium interacts with the mitogenic effects 
of growth factors, such as EGF. Moreover, Kruse et al. [33] 
reported that calcium can also induce keratinocytes to synthe-
size transforming growth factor-β (TGF-β) mRNA promoting 
epithelial differentiation. Nevertheless, the presence of TGF-β 
produces a negative effect on cell proliferation induced by 
EGF. In this study, at the initial stage of the culture, the prolif-
eration of limbal epithelial cells probably occurred due to the 
interaction with EGF and the high calcium concentration, and 
in a more advanced stage of culture, the cells start to produce 
TGF-β, causing a decline in cell proliferation. The release 
of TGF-β may also occur in prolonged culture life or high 
cell density [33]. In addition, some authors described that 
only in cultures with a high calcium concentration abnormal 
differentiation with expression of cornified envelopes can be 
found [22,31–34].

Transplantation of cultured epithelium that presents 
more differentiated cells may perceive short-term success 
due to better cellular adhesion by desmosomes. However, it 
has the disadvantage of reducing the stemness of the trans-
planted cells, which can compromise the viability of new 
epithelia formed in the long term. Sangwan and colleagues 
[4] demonstrated the clinical benefit of using monolayer 
limbal epithelial cells transplanted in a lower differentiation 
condition, since the authors were able to induce a healthy and 
longstanding stratified epithelium.

Others authors have shown that epithelial cells cultured 
in low calcium concentration media had a cobblestone-
like morphology in a monolayer, with well defined edges, 
ref lecting a lack of calcium needed in the desmosome 
formation for cell adhesion [22,31–33]. In the present study, 
we observed that limbal epithelial progenitor cells cultured 
in KSFM and Epilife began to proliferate, even with low 
calcium. These results should be addressed in future studies.

Another important component of culture media is FBS, 
which stimulates epithelial growth [22,35]. The influence of 

FBS concentration on epithelial growth was described by 
Kruse et al. [33], who demonstrated that adding FBS at a 
high concentration (10%–20%) stimulates the proliferation of 
limbal epithelial cells. The calcium presented in the FBS has 
significant influence on the final calcium concentration in the 
culture media. Furthermore, the TGF-β and other components 
present in the FBS can stimulate cell differentiation. Never-
theless, the differences in the calcium concentrations among 
the media used in the present study were maintained with 
a higher concentration for SHEM, followed by KSFM, and 
Epilife with the lowest concentration of calcium, as measured 
preliminarily.

Although some of the immunocytochemistry and PCR 
results were not statistically significant and despite the 
different trend profiles of cell differentiation in the culture 
media tested, they all exhibited progenitor cells even after 30 
days of culture. Clinical studies comparing epithelial cells in 
different culture media with various stem cell profiles should 
still be tested.

The use of a 3T3 feeder layer is a precondition for culti-
vating and expanding limbal epithelial progenitor cells using 
the cell suspension technique. Varghese et al. [36] showed 
that in culture with the limbal explant without 3T3 feeder 
layer fibroblast-like cells form, which probably migrate out 
from the limbal stroma and may act as a feeder layer for 
limbal epithelial progenitor cells. Ghoubay-Benallaoua et al. 
and Ma et al. [37,38] described that the cholera toxin used 
in SHEM is capable of inhibiting the growth of fibroblasts 
in culture. However, in the current study, we observed the 
presence of fibroblast-like cells and expression of VMT, a 
marker of mesenchymal cells, in all groups, even in SHEM, 
suggesting that fibroblasts were growing in the cultures. The 
presence of fibroblast may mimic natural tissue architecture 
and niche by enabling the formation of an auto-feeder layer 
and thereby eliminating the need for xeno-feeder layers for 
ex vivo expansion of epithelial progenitor cells. This may 
represent a safety advantage compared to the cell suspension 
techniques proposed by Pellegrini and others [11,36], since 
the xenogenic component in the culture may present a risk of 
cross-transfer of pathogens that limits medical application. 
Future research should address the influence of culture media 
in stem cell proliferation cocultured with autogenic fibroblast 
cells.

In summary, cells cultured in KSFM and Epilife 
presented a higher percentage of limbal epithelial progenitor 
cells when compared to SHEM. More studies are needed to 
further characterize the ideal culture condition for limbal 
epithelial progenitor cells to be used for ex vivo transplanta-
tion in ocular surface reconstruction.
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