
Diabetic retinopathy (DR), a form of microangiopathy, 
is one of the leading causes of blindness around the world 
[1]. Chronic uncontrolled hyperglycemia has been suggested 
as a major influencing factor for retinal microvascular peri-
cyte and endothelial cell (EC) dysfunction in type 2 diabetes 
mellitus (DM) [2,3]. Among the different biochemical path-
ways implicated in the pathogenesis of DR, the process of 
formation and accumulation of advanced glycation end-prod-
ucts (AGEs) and their modes of action have been considered 
as major initiators of retinal microvascular complications in 
type 2 DM [4,5]. AGEs are nonenzymatically glycated and 
oxidized proteins or lipids that accumulate in the vessel wall, 

where they may perturb vascular endothelial and pericyte cell 
structure and function [6]. In vitro studies have shown that 
N-epsilon–carboxy methyl lysine (Nε-CML) and other AGEs 
are toxic to retinal pericytes and have a deleterious influ-
ence on pericyte cell survival [7-9]. In particular, Nε-CML, 
the most prevalent AGE, interacts with receptors of AGE 
(RAGE), which in turn activates signal transduction path-
ways that leads to the expression of proinflammatory genes 
[10,11]. AGEs may also modify the action of free radicals, and 
may thus impact on the function of intracellular proteins via 
the interaction with RAGE [12]. AGE-bound RAGE worsens 
microvascular dysfunction through increased microvascular 
EC permeability and increased production of reactive oxygen 
species (ROS) through the activation of reduced nicotinamide 
adenine dinucleotide phosphate (NADPH) oxidase [13,14].

Increased production and the consequent ineffective 
elimination of ROS by a poor cellular antioxidant system 
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is one of the major causes of the development of oxidative 
stress among patients with type 2 DM [15]. A family of 
multisubunit (intracellular and membrane-bound) NADPH 
oxidases appears to be the predominant contributor for 
endothelial and pericyte ROS production, which have been 
increasingly appreciated to have a detrimental role in retinal 
microvascular pathophysiology [16-18]. In this regard, total 
thiols (–SH) that exist extra- as well as intracellularly in free 
(reduced glutathione) or bound form (protein-bound thiol), 
reduce the highly reactive super oxide radicals and thereby 
maintain intracellular homeostasis [19,20]. However, the 
involvement of endothelial and pericyte cell dysfunction in 
the pathogenesis of DR still remains enigmatic. Compara-
tively fewer amounts of data and information are available 
on AGE activation along with the ROS generation rate and 
antioxidant status at different stages of DR.

The aim of the present study was to investigate whether 
AGE and their late oxidative product Nε-CML levels in 
normal individuals without diabetes (healthy control; HC), 
type 2 DM patients without retinopathy (DNR), and patients 
with DR, i.e., both nonproliferative DR (NPDR) and prolifera-
tive DR (PDR), were significantly different. We focused on 
serum and vitreous levels of Nε-CML to evaluate whether 
these glycoxidized ligands of RAGE intimately associated 
with intracellular ROS formation and in turn initiate the 
pathogenic process of retinopathy. We also evaluated the 
relationship between AGEs and oxidative stress and their 
combined impact on different stages of DR, i.e., in NPDR 
and PDR, by measuring the following parameters:

I) Serum levels of total AGEs and Nε-CML were 
measured among different study subjects. Further, total 
AGE and Nε-CML were analyzed in vitreous from PDR and 
controls. II) The peripheral blood mononuclear cell (PBMC) 
ROS levels were analyzed to evaluate oxidative stress in 
different study subjects. Antioxidant status at different stages 
of DR was determined by the measurement of serum and 
PBMC total thiol level.

METHODS

Study subjects: One-hundred and five PDR subjects (mean 
age=53.4±8.15 years), 70 NPDR subjects (mean age=52±8.8 
years), 102 DNR subjects (mean age=53.1±7.86 years), and 
95 HC subjects (mean age=51.5±7.24 years) were enrolled 
in this cross-sectional study. A presence of coronary artery 
disease (CAD) or a strong family history of CAD, hyper-
tension (defined according to the new criteria i.e., systolic 
blood pressure >140 mmHg and diastolic blood pressure 
>90 mmHg), peripheral vascular disease, recent acute infec-
tion, thrombotic events, urinary microalbumin >300 mg/day, 

prediabetes (fasting blood glucose >100 mg/dl but <126 mg/dl 
and postprandial blood glucose >140 mg/dl but <200 mg/dl), 
and ocular disorder (glaucoma, Eale’s disease, branch retinal 
venous occlusion, etc.) were considered exclusion criteria for 
this study.

The samples were obtained from the retina clinic of 
Regional Institute of Ophthalmology and diabetic clinic of 
Institute of Postgraduate Medical Education and Research, 
Kolkata. All the subjects enrolled in this study belonged 
to same geographical area (Gangetic Delta, eastern India). 
Written informed consent was collected from each patient 
according to the Declaration of Helsinki and was approved 
by ethical committee of the institute.

Age, sex, and blood pressure were matched within the 
study groups. DM was diagnosed according to the World 
Health Organization criteria [21]. We investigated the 
glycemic status of all diabetic subjects by the oral glucose 
tolerance test and glycosylated hemoglobin (HbA1c %) test. 
None of the study subjects were on insulin treatment during 
the study period. PDR and NPDR were diagnosed by dilated 
fundus examination with slit-lamp biomicroscopy by ±90D 
and three-mirror lens seven field digital fundus photography 
with fluorescence angiography. Grading of the retinopathy 
was carried out according to a modified early treatment DR 
study.

Sample collection and processing: Study subjects were 
advised to be in a 12 h strict fasting state before collection of 
blood samples. Thereafter, 15 ml venous blood samples were 
drawn. A 10 ml blood sample was collected in a heparinized 
tube for PBMC isolation and a 5 ml sample was taken in a clot 
vial to obtain serum. Finally, serum samples were collected 
in CryoCube vials for total AGE, Nε-CML, and thiol assay.

Mononuclear cells from peripheral whole blood were 
obtained from 10 ml heparinized blood by using Histopaque 
1077 separating media (Sigma Aldrich, St Louis, MO) density 
gradient for 40 min at 150 ×g and 20  °C, as previously 
described [22]. PBMCs were further subjected to centrifuga-
tion at 200 ×g for 10 min and washed twice with 1× PBS 
(pH 7.2). Then, 5×105 and 5×106 cells were pelleted into two 
different tubes and resuspended in 1× PBS (pH 7.2) for the 
estimation of ROS and intracellular thiol, respectively.

Vitreous samples were drawn by three-port pars plana 
vitrectomy from 45 PDR and 36 control subjects (normal 
vitreous was collected from study subjects undergoing emer-
gency vitrectomy after an accident). Only AGEs and Nε-CML 
levels were measured from the vitreous fluid of PDR subjects 
and from those considered nondiabetic controls. Two hundred 
microliters of undiluted vitreous gel was excised from the 
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midvitreous using a vitreous cutter and carefully aspirated 
into a handheld sterile syringe attached to the suction port 
of the vitrectomy probe. Immediately after collection, the 
vitreous samples were kept on ice and centrifuged at 8,950 
×g for 15 min at 4 °C. After centrifugation, the supernatant 
was aspirated and stored at −20 °C for immediate use.

Measurement of total advanced glycation end-products from 
serum and vitreous: The AGE protein adducts present in the 
sample were measured by enzyme-linked immunosorbent 
assay by using the Cell Biolabs kit (catalog No. STA 317; Cell 
Biolabs, San Diego, CA). AGEs present in the sample were 
probed with an anti-AGE polyclonal antibody, followed by a 
horseradish peroxidase–conjugated secondary antibody. The 
AGE protein adduct content in the sample was determined 
by comparison with a standard curve prepared from AGE–
bovine serum albumin (BSA) standards ranging from 0.25 to 
5 µg/ml. The absorbance of the final color product was read at 
450 nm as the primary wavelength using a Bio Rad multiplate 
reader (Model 680, Bio Rad, Laboratories, Hercules, CA) 
against the reduced BSA standard as the absorbance blank. 
The AGE–BSA provided in the kit was prepared by reacting 
BSA with glycolaldehyde, followed by extensive dialysis and 
column purification. AGE – BSA contains CML, pentosidine, 
and other AGE structures.

Measurement of N-epsilon carboxy methyl lysine from serum 
and vitreous: CML protein adducts present in the sample 
were measured by enzyme-linked immunosorbent assay 
by using the Cell Biolabs kit (catalog No. STA 316). CML 
present in the sample was probed with an anti-CML antibody, 
followed by a horseradish peroxidase–conjugated secondary 
antibody. The CML protein adduct content in the sample was 
determined by comparison with a standard curve prepared 
from CML–BSA standards ranging from 0.035 to 2.2 ng/
ml. The absorbance of the final color product was read at 
450 nm as the primary wavelength by a Bio Rad multiplate 
reader (Model 680) against the reduced BSA standard as the 
absorbance blank.

Measurement of peripheral blood mononuclear cell reactive 
oxygen species: Intracellular ROS generation in mononuclear 
cells was measured by ROS-sensitive cell-permeable dye 
2´7´ dihydrodichlorofluorescein diacetate (2´7´ H2DCF-
DA), which in the presence of ROS was oxidized to highly 
fluorescent 2´7´- dichlorofluorescein (2´7´ DCF) in the cell. 
Production of intracellular ROS is directly proportional to 
the oxidation of 2´7´ H2DCF-DA, and thereby elevates the 
cellular fluorescence level. Pelleted cells (5x105) were washed 
twice with 1× PBS (pH 7.2) by centrifuging at 1,430 ×g for 5 
min and cells were resuspended in 500 µl of 1× PBS (pH 7.2). 
Thereafter, cells were incubated with 20 µm 2´7´ H2DCF-DA 

for 30 min at 37 °C. Finally, the cells were washed again 
with 1× PBS (pH 7.2) and resuspended in 400 µl 1× PBS. 
The mononuclear cells exhibiting increased fluorescence of 
oxidized DCF were measured by flow cytometry (FACS-
Calibur, Becton Dickinson, San Jose, CA) equipped with 
an argon ion laser (15 mW) tuned to 488 nm [23,24]. The 
f luorescence of DCF was collected in the FL1 channel, 
equipped with a 530/30 nm band pass filter. Fluorescence was 
measured in the long mode using CellQuest Pro software (BD 
Bioscience, San Jose, CA) and expressed as the geometrical 
mean fluorescence channel. Cells were gated on the basis of 
their characteristic morphology, i.e., forward scatter and side 
scatter of monocytes and lymphocytes. Acquisitions were 
performed on 10,000 gated events, while data analysis was 
performed with CellQuest Pro software (BD Bioscience).

Measurement of total thiol: Total thiol or sulfhydryl groups 
(–SH) in PBMC and serum were measured spectrophoto-
metrically by Elman’s method, modified by Hu et.al [25,26]. 
Mononuclear cells from each sample (5×106) were homog-
enized in 100 µl cold buffer (100 mM Tris–HCL containing 
1 mM EDTA, pH 7.5) for the estimation of PBMC total thiol 
level. Cells were centrifuged at 8.950 ×g for 15 min at 4 °C 
and the cell lysate soup from the supernatant was removed 
and diluted in Tris EDTA buffer to obtain the cell soup, 
which should contain 50 µg/µl of protein. Twenty microliters 
of diluted cell soup was used for intracellular thiol assay and 
expressed as µmol of thiol/mg of protein. Thiols present in 
the sample (serum/cell soup) reacted with 5, 5′- dithiobis-(2–
nitrobenzoic acid) (DTNB) and formed a highly colored 
anion. According to the manual protocol, 25 µl of fresh serum 
was mixed with 1 ml Tris EDTA buffer (0.25 mmol/l Tris 
base, 20 mmol/l EDTA, pH 8.2) and the absorbance (A1) was 
measured spectrophotometrically (Halo DB-20; Dynamica, 
Salzburg-Mayrwies, Austria) at 412 nm, and in the next step, 
12.5 µl of DTNB solution (10 mM in absolute methanol) was 
added into the solution. After 15 min incubation in ambient 
temperature, the absorbance (A2) was read again at 412 nm 
together with a DTNB blank. The concentration of total thiol 
in serum and PBMC samples were determined from the linear 
standard curve established by 0.2 to 1.6 mmol/l and 0.05 to 
0.8 μmol/l of reduced glutathione as the sulfhydryl group 
standard.

Statistical analysis: Data obtained from each sample group 
were expressed as (median [minimum to maximum range], 
mean±SD [standard deviation]). The means obtained from 
different sample groups were compared by the one-way anal-
ysis of variance test and the nonparametric Mann–Whitney U 
test. The parameters showing a statistically significant differ-
ence between the two groups were further analyzed using 
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the two-tailed Student t test. To determine the correlation 
between two variables, Pearson’s product moment correlation 
coefficient was used. A value of p<0.05 was considered statis-
tically significant. All statistical analyses were performed 
using GraphPad Prism software (version 5, 2007; Graph 
Pad software, San Diego, CA). Statistical analyses for sex 
distributions were evaluated by the χ2 test by using STATA 
statistical software (version 8, Copyright 1984–2003, Stata 
Corporation, College Station, TX).

RESULT

There was no statistical difference in age, sex distribution, 
duration of diabetes, body mass index, or blood pressure in 
PDR, NPDR, DNR, or HC individuals (Table 1). Fasting and 
postprandial blood glucose were elevated significantly among 
NPDR and PDR subjects compared to DNR and HC indi-
viduals (p=0.0001). HbA1c% was higher in NPDR patients 
(9.9±1.2%) compared to the DNR group (8.1±1.1%) and those 
with PDR (9.1±1.15%).

Association of advanced glycation end products and N–
epsilon carboxy methyl lysine with diabetic retinopathy 
occurrence: The serum AGE level was significantly elevated 
in subjects with PDR (2.87 [0.35–7.85], 3.2±1.86 versus 1.92 
[0.25–5.64], 2.16±1.29 µg/ml; p<0.0001) and NPDR (2.34 
[0.39–8.32], 2.93±1.93 versus 1.92 [0.25–5.64], 2.16±.29 µg/
ml; p=0.0297) compared to DNR subjects. Further, PDR 
subjects showed higher levels of serum AGEs than the NPDR 
group, but the difference was not statistically significant 
(p=0.2643). However, the level was found to be strikingly 
lower among HC subjects than those who were considered 
as DNR (1.02 [0.21–3.02], 1.05±0.61 versus 1.92 [0.25–5.64], 
2.16±1.29 µg/ml; p<0.0001; Figure 1A).

The serum Nε-CML level was also elevated in a similar 
pattern to that of serum AGEs among PDR (0.69 [0.18–2.34], 
0.89±0.53 versus 0.35 [0.11–1.31], 0.5±0.34 ng/ml; p<0.0001) 
and NPDR (0.91 [0.29–2.34], 1.05±0.51 versus 0.35 [0.11–
1.31], 0.5±0.34 ng/ml; p<0.0001) subjects compared to the 
DNR group. However, NPDR subjects showed a significantly 

Figure 1. Serum and vitreous 
advanced glycation end-product 
levels among the different study 
groups. A: The box-and-whisker 
plot represents the median and 
minimum to maximum range of 
serum advanced glycation end-
product (AGE) levels (µg/ml) 
among the different study groups. 
The serum AGE level was signifi-
cantly elevated in subjects with 
proliferative diabetic retinopathy 
(PDR; p<0.0001) and nonprolifera-
tive diabetic retinopathy (NPDR; 
p=0.0297) compared to diabetes 
without ret inopathy (DNR) 
subjects. Further, PDR subjects 
showed a higher level of serum 
AGEs than the NPDR group, but 
the difference was not statistically 
significant (p=0.2643). The level 
was found strikingly lower among 
healthy control (HC) subjects than 
those considered DNR (p<0.0001). 
Serum level of AGEs was measured 
in 105 subjects with PDR, 70 

subjects with NPDR, 102 subjects with DNR and from 95 subjects considered as HC. B: The box-and-whisker plot represents the median 
and minimum to maximum range of vitreous AGE levels (µg/ml) among both the study groups. The vitreous level of AGEs was found to 
be significantly high among PDR subjects compared to the control group (p<0.0001). In this study, vitreous AGEs was measured among 45 
subjects with PDR and 32 subjects considered as control. 
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higher level of Nε-CML compared to the PDR group, and the 
difference was statistically significant (p=0.017; Figure 1B).

The vitreous level of AGEs (1.1 [0.05–3.31], 1.04±0.75 
versus 0.25 [0.12–0.58], 0.29±0.14 µg/ml; p<0.0001) and 
Nε-CML (0.31 [0.08–0.84], 0.35±0.19 versus 0.17 [0.05–0.37], 
0.18±0.09 ng/ml; p<0.0001) were found to be significantly 
higher among PDR subjects than in the control group (Figure 
1B and Figure 2B).

Association of peripheral blood mononuclear cell reactive 
oxygen species level and diabetic retinopathy occurrence: 
The PBMC ROS level was expressed as the mean±SD of the 
geomean of DCF fluorescence/5x105 cells among the study 
subjects (Figure 3A-D). PBMC ROS production was found 
to be significantly high among NPDR (170.4 [112.3–235.6], 
171.39±35.98 versus 98.49 [62.34–147], 102.44±21.25; 
p<0.0001) and PDR (159.6 [91.42–234.5], 162.29±31.58 
versus 98.49 [62.34–147], 102.44±21.25; p<0.0001) subjects 
compared to DNR subjects. Further, an increased trend of 
ROS production was observed among NPDR subjects in 
comparison to those were with PDR. However, this was not 

statistically significant (p=0.1147), whereas the level of ROS 
was found to be significantly lower among HC subjects even 
compared to the DNR group (65.24 [41.26–95.34], 66.48±14.7 
versus 98.49 [62.34–147], 102.44±21.25; p<0.0001; Figure 4).

Correlation between serum advanced glycation end prod-
ucts and peripheral blood mononuclear cell reactive oxygen 
species levels at different stages of diabetic retinopathy: 
A significant correlation was observed in between serum 
AGEs level and PBMC ROS level among subjects with PDR 
(p=0.0019; r=0.2991), NPDR (p=0.0044; r=0.3363), and DNR 
(p=0.0145; r=0.2415), but not in HC individuals (p=0.182; 
r=0.1381; Figure 5A-D).

Correlation between serum Nε-CML and PBMC ROS levels 
at different stages of DR: Significant correlation was observed 
in between serum Nε-CML level and PBMC ROS level among 
NPDR (p<0.0001; r=0.5687) and PDR (p=0.0034; r=0.2863) 
subjects. However, no significant correlation was found in 
DNR (p=0.2344; r=0.1188) and HC individuals (p=0.3875; 
r=0.0896; Figure 6A-D).

Figure 2. Serum and vitreous 
N-epsilon–carboxy methyl lysine 
levels among the different study 
groups. A: The box-and-whisker 
plot represents the median and 
minimum to maximum range of 
serum N-epsilon–carboxy methyl 
lysine (Nε-CML) levels (ng/ml) 
among the different study groups. 
The serum Nε-CML level was 
remarkably elevated among nonpro-
liferative diabetic retinopathy 
(NPDR; p<0.0001) and prolif-
erative diabetic retinopathy (PDR; 
p<0.0001) subjects compared to 
the diabetes without retinopathy 
(DNR) group. However, NPDR 
subjects showed significant higher 
levels of Nε-CML compared to the 
PDR group, and the difference was 
statistically significant (p=0.017). 
B: The box-and-whisker plot repre-
sents the median and minimum 
to maximum range of vitreous 

Nε-CML levels (ng/ml) among both study groups. The vitreous level of Nε-CML was found to be strikingly high among PDR subjects 
compared to the control group (p<0.0001).
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Correlation of serum and vitreous levels of AGEs and 
Nε-CML at different stages of DR: A significant correlation 
was observed between serum AGE and Nε-CML levels among 
NPDR (p<0.0001; r=0.641) and PDR (p=0.0021; r=0.2974) 
subjects. However, no significant correlation was found in 
DNR (p=0.0771; r=0.1758) and HC individuals (p=0.1345; 
r=0.1547). In vitreous, the level of AGEs showed a signifi-
cant correlation with the Nε-CML level among PDR subjects 
(p=0.0066; r=0.3992), but not in control subjects (p=0.3079; 
r=0.3992).

Association of serum and PBMC total thiol level and DR 
occurrence: Serum and PBMC total thiol levels decreased 
significantly among NPDR (0.36 [0.15–1.05], 0.45±0.24 
versus 0.57 [0.18–1.47], 0.64±0.33 mmol/l; p<0.0001 
and 0.15 [0.03–0.47], 0.18±0.1 versus 0.24 [0.05–0.54], 
0.23±0.11 µmol/mg of protein; p=0.0043, respectively) and 

PDR (0.52 [0.13–1.09], 0.51±0.24 versus 0.57 [0.18–1.47], 
0.64±0.33 mmol/l; p=0.0108 and 0.17 [0.03–0.49], 0.2±0.12 
versus 0.24 [0.05–0.54], 0.23±0.11  µmol/mg of protein; 
p=0.0332, respectively) subjects than those who were consid-
ered DNR. The highest level of serum and PBMC total thiol 
was found in HC subjects, even compared to the DNR group 
(0.68 [0.22–1.44], 0.75±0.35 versus 0.57 [0.18–1.47], 0.64±0.33 
mmol/l; p=0.0428 and 0.27 [0.08–0.63], 0.28±0.12 versus 0.24 
[0.05–0.54], 0.23±0.11 µmol/mg of protein; p=0.0105, respec-
tively). However, no significant difference was observed in 
serum and PBMC total thiol level between NPDR and PDR 
subjects (p=0.0747 and p=0.3568, respectively; Figure 7A,B).

Figure 3. Histogram of peripheral 
blood mononuclear cell reactive 
oxygen species (PBMC ROS) 
level. The histograms in A, B, C, 
and D represent the geomean of 
PBMC dichlorofluorescein (DCF) 
fluorescence as a measure of ROS 
level among proliferative diabetic 
retinopathy (PDR), nonprolifera-
tive diabetic retinopathy (NPDR), 
diabetes without ret inopathy 
(DNR), and healthy control (HC) 
subjects, respectively.
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DISCUSSION

Microvascular pericyte dysfunction has been considered one 
of the earliest histopathological sign of DR. Apart from peri-
cyte loss, some other key features like basement membrane 
thickening, blood barrier dysfunction, formation of micro-
aneurysms, and capillary dropout are also observed in the 
retinal microvasculature in the early stages of DR [27,28]. 
These structural alterations herald irreversible retinal micro-
vascular damage through EC proliferation associated with 
neovascularization [29]. Previous large-scale studies have 
emphasized the pathogenic role of AGEs in retinal pericyte 
dysfunction and DR-related complications [30-32]. To clarify 
this hypothesis, we have determined serum and vitreous total 

AGE and Nε-CML levels in subjects with NPDR, PDR, and 
DNR, as well as HC individuals.

Interaction of circulating AGEs with endothelial and 
pericyte RAGE transduces the signal for NADPH oxidases, 
which in turn produces oxidative stress. Generation of ROS 
through this signaling cascade perturbs cellular function 
by the upregulation of transcription factor nuclear factor 
kappa beta (NFκβ) [33,34]. AGEs may modify some vaso-
regulatory functions in retinal microcirculation and block 
the bioavailability as well as the antiproliferative activity of 
endothelium-derived nitric oxide [35,36]. AGEs promote DR 
and subsequent retinal ischemia by enhancing the process 
of platelet aggregation and fibrin stabilization, which are 
predisposed to the formation of microthrombuses in retinal 
microvessels [37,38]. Moreover, Nε-CML, the late oxidative 
product of AGEs, has been proposed as a biomarker of oxida-
tion rather than glycation, and the level of Nε-CML reflects 
cellular metabolic disparity in subjects with type 2 DM [7-9].

Previous studies have suggested a detrimental role of 
AGEs in diabetic microvascular complications by demon-
strating elevated serum total AGE levels among DR and 
nephropathy patients as compared to type 2 DM subjects 
without retinopathy and nephropathy and normal individuals 
[39,40]. Boehm et al. [9] reported that increased serum levels 
of CML were significantly associated with advance stages of 
retinopathy. In the present study, serum levels of total AGEs 
increased significantly in NPDR and PDR compared to DNR 
and HC subjects. However, the serum Nε-CML level was 
raised significantly in NPDR subjects even compared to PDR 
subjects, suggesting that the late oxidative product of AGEs, 
i.e., Nε-CML, would be expected to have pathogenic implica-
tions for retinal microvascular function in the early stages of 
DR. The significant increase of total AGEs in PDR subjects 
indicates that the total AGEs are the major contributor in EC 
and pericyte dysfunction in the proliferative stages of DR, 
and might be the key mediators for the development of prolif-
erative retinopathy from the nonproliferative stage.

Total AGE and Nε-CML concentrations were found to 
be significantly higher in PDR vitreous compared to vitreous 
from normal individuals without type 2 DM. This represents 
the first time that Nε-CML was measured from the vitreous 
body of PDR subjects. Vitreous is a hydrated gel matrix 
composed of a complex network of cross-linked collagen 
fibers [41]. Stitt et al. [42] reported that cross-linking of AGEs 
with the vitreous collagen network leads to liquefaction and 
several abnormalities of vitreous in subjects with type 2 DM. 
Our study supports the theory that AGEs are toxic to retinal 
pericytes and activate a subsequent signaling cascade for 
cellular apoptosis that might have an aggravative impact on 

Figure 4. Peripheral blood mononuclear cell reactive oxygen 
species (PBMC ROS) levels in the different study groups. The bar 
columns represent the PBMC ROS level, which was expressed 
as mean±standard deviation (SD) of the geomean of DCF 
fluorescence/5x105 cells among the study subjects. PBMC ROS 
production was found to be significantly high among nonprolif-
erative diabetic retinopathy (NPDR) and proliferative diabetic reti-
nopathy (PDR) subjects compared to diabetes without retinopathy 
(DNR) subjects (p<0.0001). A further increased trend of ROS 
production was observed among NPDR subjects than those with 
PDR. However, this production was not statistically significant 
(p=0.1147), whereas the level of ROS was found to be significantly 
lower among healthy control (HC) subjects even compared to the 
DNR group (p<0.0001).
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blood-retinal barrier integrity [31]. An accumulation of AGEs 
along with Nε-CML in PDR vitreous might be due to blood-
retinal barrier dysfunction, which is caused by extensive loss 
of retinal pericytes and EC.

We found a significant correlation between Nε-CML 
and AGEs in serum and vitreous samples of PDR subjects. 
However, the relatively highly significant correlation between 
Nε -CML and AGEs in serum samples of NPDR subjects 
caused us to speculate that Nε -CML, the key molecule, 

which is significantly associated with NPDR occurrence 
and rises remarkably with AGE levels in preproliferative and 
proliferative stages of retinopathy. Yet again, this assessment 
has clearly revealed that elevated levels of Nε-CML along 
with AGEs commence the process of retinopathy, and their 
prolonged elevation worsens the process of retinopathy in 
type 2 DM.

Persistent hyperglycemia induces oxidative stress when 
ROS are overproduced or endogenous antioxidant systems 

Figure 5. Correlation between serum advanced glycation end products (AGEs) and peripheral blood mononuclear cell reactive oxygen 
species (PBMC ROS) levels. A, B, C, D: The XY scatterplot represents the correlation between serum AGE level and PBMC ROS level 
among healthy control (HC), diabetic without retinopathy (DNR), nonproliferative diabetic retinopathy (NPDR), and proliferative diabetic 
retinopathy (PDR) subjects. A significant correlation was observed in between serum AGE levels and PBMC ROS levels among subjects 
with PDR (p=0.0019; r=0.2991), NPDR (p=0.0044; r=0.3363), and DNR (p=0.0145; r=0.2415), but not in HC individuals (p=0.182; r=0.1381).
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are impaired [43,44]. Members of the ROS family have 
divergent effects on EC function, such as cell proliferation, 
migration, angiogenesis, and modulation of extracellular 
matrix production and breakdown [45]. Increased production 
of ROS is also due to the uncoupling of NADPH oxidases 
and upregulates the transcription factor NFκβ, which in 
turn transcribes its target genes and leads to the expression 

of vascular cell adhesion molecule 1, intracellular adhesion 
molecule 1, E selectin, vascular endothelial growth factor, and 
likely proinflammatory cytokines, including interleukin-6, 
interleukin-α, and tumor necrosis factor α [11,46]. A growing 
body of evidence suggests that these growth factors, along 
with cytokines, play an important role in the development 
and progression of DR in type 2 DM [15,47]. Nam et al. [48] 

Figure 6. Correlation between serum N – epsilon carboxy methyl lysine (Nε-CML) and ” and peripheral blood mononuclear cell reactive 
oxygen species (PBMC ROS) level. A, B, C, D: The XY scatterplot represents the correlation between serum Nε-CML levels and PBMC 
ROS levels among healthy control (HC), diabetic without retinopathy (DNR), nonproliferative diabetic retinopathy (NPDR), and proliferative 
diabetic retinopathy (PDR) subjects. A significant correlation was observed in between serum Nε-CML levels and PBMC ROS levels among 
NPDR (p<0.0001; r=0.5687) and PDR (p=0.0034; r=0.2863) subjects, but no significant correlation was found in DNR (p=0.2344; r=0.1188) 
and HC individuals (p=0.3875; r=0.0896).
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reported that increased PBMC ROS generation is strongly 
involved in the pathogenesis of diabetic nephropathy via the 
activation of NFκβ. Isoni et al. [49] found that ROS produc-
tion by PBMCs in type 2 DM subjects was approximately 
1.6 times higher than in healthy individuals. In vitro studies 
on bovine retinal pericytes and aortic EC have demonstrated 
that ROS generation from NADPH oxidase plays a key role in 
the intracellular metabolic disparity and apoptosis of retinal 
capillary pericytes [50]. In our study, we observed that the 
PBMC ROS level increased significantly in NPDR and PDR 
subjects compared to DNR and HC subject. In addition, an 
increased trend of ROS was observed among NPDR subjects 
compared to PDR subjects, but the difference was not statis-
tically significant. However, our observations suggest that 
increased PBMC ROS production may cause early patho-
logical changes in the retinal capillaries of NPDR subjects, 
further rendering retinal capillaries vulnerable to further 
sustained oxidative stress and resulting in the development 
of PDR.

We observed that PBMC ROS levels correlated signifi-
cantly with serum Nε-CML and AGEs in NPDR and PDR 
subjects. An even more significant correlation was observed 

between serum AGE and PBMC ROS levels among DNR 
subjects. However, the strongest correlation was seen between 
serum Nε-CML and PBMC ROS levels in NPDR subjects; 
this was extremely statistically significant, elucidating that 
Nε-CML might be the key molecule to trigger the produc-
tion of ROS and thereby activate intracellular downstream 
signaling molecules, which are intimately associated with 
development of retinopathy in type 2 DM.

Based on the above discussion, it may be hypothesized 
that the elevated levels of serum and vitreous AGEs among 
PDR subjects compared to NPDR group suggests that the 
detrimental effect of AGEs is intimately associated with 
the severity of retinopathy. Mainly, the interaction of circu-
lating AGEs and RAGE has attracted the support for the 
notion that EC homeostasis is perturbed among DR subjects 
with elevated levels of AGEs [51]. Large-scale studies have 
reported that intracellular AGE–RAGE interaction–medi-
ated ROS generation induces monocyte chemoattractant 
protein 1, plasminogen activator inhibitor 1, and increased 
vascular endothelial growth factor messenger RNA expres-
sion by NFκβ activation via the Ras mitogen-activated protein 
kinase pathway in retinal microvascular ECs. ROS mediated 

Figure 7. Serum and peripheral 
blood mononuclear cell (PBMC) 
total thiol level. A: The bar column 
represents the mean±standard 
deviation (SD) of total serum thiol 
level (mmol/l) among the different 
study groups. Total serum thiol 
levels were significantly decreased 
among nonproliferative diabetic 
retinopathy (NPDR; p<0.0001) 
and proliferative diabetic reti-
nopathy (PDR; p=0.0108) subjects 
in comparison to those considered 
as having diabetes without reti-
nopathy (DNR). The highest level 
of serum total thiol was found 
in healthy control (HC) subjects, 
even compared to the DNR group 
(p=0.0428). However, no significant 
difference was observed in total 
serum thiol level among NPDR 
and PDR subjects (p=0.0747). B: 
The bar columns represent the 

mean±standard deviation (SD) of PBMC total thiol levels (µmol/mg of protein) among the different study groups. The PBMC total thiol level 
was decreased significantly among NPDR (p=0.0043) and PDR (p=0.0332) subjects than those who were considered as DNR. The highest 
level of PBMC total thiol was found in HC subjects, even compared to the DNR group (p=0.0105). However, no significant difference was 
observed in PBMC total thiol levels between NPDR and PDR subjects (p=0.3568).
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increased upregulation of these downstream molecules 
further aggravates and again promotes the process of reti-
nopathy by favoring retinal angiogenesis, thrombogenesis, 
and inflammation [37,52,53]. Following the results of the 
above reports, we believe that inhibition of AGE formation or 
blockage of AGE–RAGE interaction–mediated downstream 
signaling pathways might be a potential therapeutic approach 
for preventing the proinflammatory roles of AGEs among 
NPDR and PDR subjects who already have an elevated level 
of circulating AGEs.

The total thiol pool constitutes the majority of the total 
body antioxidants and plays a major role in defense against 
ROS [19,54]. Baskol et al. [20] observed that serum thiol 
levels were significantly lower in DR subjects compared to 
those without DR and controls. Our study showed a signifi-
cant decrease in serum and PBMC thiol levels in NPDR 
and PDR subjects compared to DNR and HC subjects. The 
decreased level of total thiols in the PBMCs and serum of 
NPDR subjects could be due to increased oxidation of –SH 
groups due to oxidative stress, which was reflected by the 
increased ROS level in NPDR subjects. This deprived anti-
oxidant state in NPDR and PDR patients may explain the 
increased susceptibility of retinal microvasculature to oxida-
tive injury in poorly controlled patients with type 2 DM.

In conclusion, it may be said that elevated levels of 
serum and vitreous Nε-CML and AGEs are associated with 
an increased occurrence of DR in subjects with type 2 DM. 
In particular, Nε-CML is linked with the early development of 
retinopathy, which might accelerate intracellular ROS produc-
tion, and total AGEs may influence the proliferative changes 
in retinal capillaries of NPDR subjects. As a whole, sustained 
oxidative stress induced by increased ROS production under 
an antioxidant-deprived state among NPDR subjects with 
poor glycemic control might be the key regulator in the 
development of PDR.
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