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Abstract
Cochlear implant (CI) surgery is considered standard of care treatment for severe hearing loss. CIs
are currently programmed using a one-size-fits-all type approach. Individualized, position-based
CI programming schemes have the potential to significantly improve hearing outcomes. This has
not been possible because the position of stimulation targets is unknown due to their small size
and lack of contrast in CT. In this work, we present a segmentation approach that relies on a
weighted active shape model created using microCT scans of the cochlea acquired ex-vivo in
which stimulation targets are visible. The model is fitted to the partial information available in the
conventional CTs and used to estimate the position of structures not visible in these images.
Quantitative evaluation of our method results in Dice scores averaging 0.77 and average surface
errors of 0.15 mm. These results suggest that our approach can be used for position-dependent
image-guided CI programming methods.

Keywords
Spiral ganglion; modiolus; cochlear implant; weighted active shape model segmentation

1 Introduction
Cochlear Implants (CIs) are considered standard of care treatment for severe-to-profound
sensory-based hearing loss. CIs restore hearing by applying electric potential to neural
stimulation sites in the cochlea with an implanted electrode array. An audiologist programs
the CI by determining how it maps the spectrum of detected sound frequencies to the set of
electrodes for each recipient. Programming is performed based solely upon patient response
to judgments of perceived loudness for individual electrodes. This process can be difficult
and time intensive, and the majority of potentially adjustable parameters are typically left at
the default settings determined by the manufacturer. Because of this one-size-fits-all
approach, standard programming methods may not result in optimal hearing restoration for
all recipients.

In the natural hearing process, ear anatomy mechanically translates sound into vibrations of
the basilar membrane, which separates the two principal cavities of the cochlea, the scala
tympani and the scala vestibuli (see Figure 1). These vibrations stimulate nerve cells
connected to the spiral ganglion (SG) and, eventually, the auditory nerve. Researchers have
extracted the tonotopic mapping between the frequency of the sound and the SG nerve cells
that are stimulated, i.e., higher frequencies lead to stimulation of more basal SG nerve cells,
whereas, lower frequencies stimulate more apical SG nerve cells [1]. CIs exploit this natural
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tonotopy by applying an electric field to more apical (basal) SG nerve cells to induce
perceived lower (higher) frequency sounds. It is widely believed that programming schemes
that use more explicit knowledge of electrode position hold great promise for improving
hearing outcomes and could potentially be transformative to the field of CI audiology.

Since methods for identifying the position of implanted electrodes have already been
established [2], the major obstacle for position-dependent programming is that there have
been no techniques for accurately identifying the stimulation targets – the SG nerve cells.
Identifying the SG in vivo is difficult because the nerve bundles have diameter on the order
of microns and are too small to be visible in CT, which is the preferred modality for
cochlear imaging due to its otherwise superior resolution (see Figure 1). However, the
external walls of the cochlea are well contrasted in CT. Since the cochlea wraps around the
SG, and, as shown in [3], external cochlear anatomy can be used to estimate the location of
intra-cochlear anatomy using a statistical shape model (SSM); it is possible that a similar
external anatomy driven SSM can be used to estimate the SG. In this work, we test such an
approach for automatic segmentation and frequency mapping of the SG for computer
assisted CI programming. The rest of this paper presents our approach.

2 Methods
The data set we have used in this study consists of images of six cadaveric cochlea
specimens. For each specimen, we have acquired one μCT image volume with a SCANCO
μCT. The voxel dimensions in these images are 36 μm isotropic. We also have acquired
CTs of the specimens with a Xoran xCAT® fpVCT scanner. In these volumes, voxels are
0.3 mm isotropic. In each of the μCT volumes, the scala vestibuli, scala tympani, and SG
were manually segmented. Figure 1 shows an example of a conventional CT image and its
corresponding μCT image.

2.1 Overview
Since the SG lacks any contrast in CT, we cannot segment it directly. The goal with our
approach is to use the location of external cochlear features to predict the position of the SG.
To do this, we have constructed a SSM of cochlear anatomy that includes the SG. Prior to
constructing the SSM, we identify which points in the model will correspond to strong
cochlear edges in CT. To those points we arbitrarily assign an importance weighting of 1. To
all others we assign a lesser weighting of 0.01. These weights are used to construct a point
distribution model (PDM) for weighted active shape model (wASM) segmentation [4]. The
SSM is built as a standard PDM computed on the registered exemplar point sets. To segment
a new image, the SSM is iteratively fitted in a weighted-least-squares sense to features in the
target image. The edge points with their weight of 1 are fitted to strong edges in the CT. The
non-edge points with low weight are fitted to the positions determined by non-rigid
registration with an atlas image. With the weights that we have chosen, the non-edge points
provide enough weak influence on the optimization to ensure that the wASM stays near the
atlas-based initialization position, while the edge points strongly influence the whole wASM
towards a local image gradient-based optimum for a highly accurate result. During model
construction, the set of SG points in the model that interface with intra-cochlear anatomy
were also identified. These points are referred to as the active region (AR) since they
correspond to the region most likely to be stimulated by an implanted electrode. The
tonotopic mapping of each point in the AR in the reference volume is computed based on
angular depth using known equations [1]. Once a segmentation is completed, the tonotopic
frequency labels from the model can be transferred to the target image. The following sub-
sections detail these methods.
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2.2 Model Creation
To model cochlear structures, we: (1) establish a point correspondence between the
structures’ surfaces, (2) use these points to register the surfaces to each other with a 7
degrees of freedom similarity transformation (rigid plus isotropic scaling), and (3) compute
the eigenvectors of the registered points’ covariance matrix. Point correspondence is
determined using the approach described in [3]. Briefly, non-rigid registration is used to map
each of the training volumes to a reference volume, and any errors seen in the results are
manually corrected. Then, a correspondence is established between each point on the
reference surface with the closest point in each of the registered training surfaces. Once
correspondence is established, each of the training surfaces is point registered to the
reference surface. Since the cochlear edge points will be the highest weighted points for the
wASM segmentation, identical weights are used to register the training shapes in a
weighted-least-squares sense using standard point registration techniques [5] prior to
computation of the eigenspace so that the model will best capture the shape variations at
these points.

To build the model, the principal modes of shape variation are extracted from the registered
training shapes. This is computed according to the procedure described by Cootes et. al. [6]:
First, the covariance matrix of the point sets’ deviation from the mean shape is computed as

(1)

where the v⃗j’s are the individual shape vectors and v̄ is the mean shape. The shape vectors
are constructed by stacking the 3D coordinates of all the points composing each structure
into a vector. The modes of variation in the training set are then computed as the
eigenvectors {u⃗j} of the covariance matrix,

(2)

These modes of variation are extracted for the combined shape of the scala tympani, scala
vestibuli, and SG for all the samples in the training set.

2.3 Weighted Active Shape Segmentation
The procedure we use for segmentation with a wASM follows the traditional approach, i.e.,
(1) the model is placed in the image to initialize the segmentation; (2) better solutions are
found while deforming the shape using weighted-least-squares fitting; and (3) eventually,
after iterative shape adjustments, the shape converges, and the segmentation is complete.
Initialization is performed using the atlas-based methods proposed in [3].

Once initialized, the optimal solution is found using an iterative searching procedure. At
each search iteration, an adjustment is found for each model point, and the model is fitted in
a weighted-least-squares sense, as described below, to this set of candidate adjustment
points. To find the candidate points, two approaches are used. For cochlear edge points,
candidates are found using line searches to locate strong edges. At each external point y⃗i, a
search is performed along the vector normal to the surface at that point. The new candidate
point is chosen to be the point with the largest intensity gradient over the range of −1 to 1
mm from y⃗i along this vector. For all other points, it is impossible to determine the best
adjustment using local image features alone because there are no contrasting features at
these points in CT. Therefore, the original initialization positions for these points, which
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were provided by atlas-based methods, are used as the candidate positions. The atlas-based
result, as our results will show, is sufficiently accurate to provide this useful information to
the segmentation process.

The next step is to fit the shape model to the candidate points. We do this in the
conventional wASM manner. A standard 7 degree of freedom weighted point registration is
performed, creating similarity transformation T, between the set of candidate points {y⃗i′}
and the mean shape {v̄i}, where v̄i are the 3D coordinates of the ith point in the mean shape.
Then, the residuals

(3)

are computed. To obtain the weighted-least-squares fit coordinates in the SSM’s eigenspace,
we compute,

(4)

where d⃗ is composed of {d⃗i} stacked into a single vector, U = [u⃗1 u⃗2 … u⃗N−1] is the matrix
of eigenvectors, and W is a diagonal matrix with the importance point weightings in the
appropriate entries along the diagonal. This equation results in a vector b⃗ that represents the
coordinates in the SSM space corresponding to a weighted-least-squares fit of the model to
the candidate points. The final approximation to the shape is computed by passing the sum
of the scaled eigenvectors plus the mean shape through the inverse transformation,
equivalently,

(5)

where u⃗j,i is the ith 3D coordinate of the jth eigenvector. As suggested by Cootes, the
magnitude of the bj’s are constrained such that

(6)

which enforces the Mahalanobis distance between the fitted shape and the mean shape to be
no greater than 3.

At each iteration, new candidate positions are found and the model is re-fitted to those
candidates. The wASM converges when re-fitting the model results in no change to the
surface. The tonotopic mapping of the SG points in the model, computed when the model
was built, are directly transferred to the target image via the corresponding points in the
converged solution. A result of this is shown in Figure 1f.

Validation—Segmentation was performed on CT’s of the cochlea specimens using a leave-
one-out approach, i.e., the volume being segmented is left out of the model. For one of the
six specimens a CT was not available, and it was used as the model reference volume to
simplify the leave-one-out validation study. Thus, the validation study measures
segmentation error on the remaining five specimens when using PDMs with four modes of
variation. Because these samples were excised specimens, rather than whole heads, the atlas-
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based initialization process required manual intervention—however, in practice the
approach is fully automatic. To validate the results, we again exploit the set of
corresponding μCT volumes. Each CT was rigidly registered to the corresponding μCT of
the same specimen. The automatic segmentations were then projected from the CT to μCT
space. Finally, Dice index of volume overlap [7] and surface errors were computed between
the registered automatic segmentations and the manual segmentations to validate the
accuracy of our results. The distributions of surface error we report include distances in the
forward (automatic-to-manual) direction as well as the reverse (manual-to-automatic)
direction. A smaller distance between the automatic and manually segmented surfaces
indicates higher accuracy.

3 Results
Quantitative comparisons between manual and automatic segmentations of the SG are
shown in Figure 2. The Dice index and bi-directional mean/max surface distances were
computed between each pair of automatic and manual segmentations. Figure 2 shows the
overall distributions of these recorded values. Surface errors were recorded between the
whole SGs (WSG) and also between the active regions (AR). Dice indices were not
computed for the AR because it is not a closed surface and does not represent a volumetric
region. The green bars, red bars, blue rectangles, and black I-bars denote the median, mean,
one standard deviation from the mean, and the overall range of the data set, respectively. As
can be seen in the figure, the wASM achieves mean dice indices of approximately 0.77. For
typical structures, a Dice index of 0.8 is considered good [8]. Here, we consistently achieve
Dice indices close to 0.8 for segmentation of a structure that is atypically small and lacks
any contrast in the image. Mean surface errors are approximately 0.15 mm for both the
WSG and the AR, which is about a half a voxel’s distance in the segmented CT. Maximum
surface errors are above 1 mm for the WSG but are all sub-millimetric for the AR.

Segmentations for all 5 experiments are shown color encoded with surface error in Figure 3.
It can be seen that the wASM results in mean surface errors under 0.15 mm for the majority
of the SG with average maximum errors of about 0.7 mm (<3 voxels). As can be seen in the
figure, errors in the AR above 0.5 mm are rare and highly localized. Shown in Figure 4 are
contours of a representative automatic segmentation overlaid with the CT (the volume on
which segmentation was performed) and the corresponding registered μCT. It can be seen
from the figure that the contours achieved by automatic segmentation of the CT are in
excellent agreement with contours manually delineated in the high resolution μCT,
especially in the AR. Localization errors that are apparent in the μCT are less than 2 voxels
width in the CT.

4 Conclusions
In this work, we have presented a weighted active shape based approach for identifying the
SG, which lacks any contrast in conventional CT. In this approach, we rely on high
resolution images of cadaveric specimens to serve two functions. First, they provide
information necessary to construct an SSM of the structure, permitting segmentation of the
structure in conventional imaging. Second, the high resolution images are used to validate
the results. This is performed by transferring the automatically segmented structures from
the conventional images to the corresponding high resolution images and comparing those
structures to manual segmentations.

This work has shown that it is possible to accurately identify the location of the SG in
conventional CT because the position of the SG varies predictably with respect to the
cochlea. The approach we present accurately locates the SG by attracting the exterior walls
of the models of intra-cochlear anatomy towards the edges of the cochlea. This approach
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achieves dice indices of approximately 0.77 and sub-millimetric maximum error distance in
the active region, which represents the region of interest for CI stimulation. These results
suggest that our segmentation approach is accurate enough to be used for position-
dependent, image-guided CI programming methods.

Testing of computer assisted CI programming approaches using the presented methods has
begun and has been completed on one patient thus far. The fully-automatically identified
positions of the electrode and tonotopically mapped SG for this patient are shown in Figure
1f. For that patient, the settings that were originally considered optimal by the audiologist
were modified using image-based information. Improvements in the patient’s hearing were
statistically significant using a binomial distribution statistic for the individual speech
perception metrics tested [9–10]. The patient’s monosyllabic word recognition scores (a
quantitative measure of hearing performance) jumped from 33% to 84%, and sentence
recognition performance in noise at +10 dB signal-to-noise ratio increased from 46% to
83%. Further, the patient reported significant improvement in hearing and overall sound
quality. While very preliminary, these results indicate that image-based programming,
enabled by the approach described herein, may significantly improve hearing restoration for
CI users.
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Fig. 1.
Shown in (a) and (d) are a slice of a μCT and a CT of a human cochlea. In (b) and (e), the
scala tympani (red), scala vestibuli (blue), and bundle of nerve cells of the SG (green) are
delineated in the same slice. These structures are shown similarly in 3D in (c). In (f), the
active region of the SG is colormapped with its tonotopy (Hz), and the positions of
implanted electrodes are shown (gray spheres).
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Fig. 2.
Segmentation error distributions of Dice similarity scores for the whole SG (WSG) and
mean and max symmetric surface error distributions for the WSG and in the active region
(AR)
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Fig. 3.
Automatic (top row) and manual (bottom row) segmentations of the active region of the SG
in the 5 test volumes (left-to-right) color encoded with error distance (mm)
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Fig. 4.
Delineations of the automatic (red/blue) and manual (green) segmentation of the SG in the
CT (a) and μCT (b) slice from Figure 1. The active region is shown in blue
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