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Abstract
Nucelosides such as adenosine (Ado) influence nearly every aspect of physiology and
pathophysiology. Extracellular nucleotides liberated at local sites of inflammation are metabolized
through regulated phosphohydrolysis by a series of ecto-nucleotidases including ectonucleoside
triphosphate diphosphohydrolase-1 (CD39) and ecto-5′-nucleotidase (CD73), found on the surface
of a variety of cell types. Once generated, Ado is made available to bind and activate one of four
G-protein-coupled Ado receptors. Recent in vitro and in vivo studies implicate Ado in a broad
array of tissue protective mechanisms that provide new insight into adenosine actions. Studies in
cultured cells and murine tissues have indicated that Ado receptors couple to novel post-
translational protein modifications, including Cullin deneddylation, as a new anti-inflammatory
mechanism. Studies in Ado receptor-null mice have been revealing and indicate a particularly
important role for the Ado A2B receptor in animal models of intestinal inflammation. Here, we
review contributions of Ado to cell and tissue stress responses, with a particular emphasis on the
gastrointestinal mucosa.
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I. Introduction
Circulating or locally released nucleotides are rapidly metabolized by ecto-enzymes
localized to the cell surface. Ecto-5′-nucleotidase (CD73) is a glycosyl phosphatidylinositol
(GPI)-linked, membrane-bound glycoprotein which hydrolyzes extracellular nucleoside
monophosphates into bioactive nucleoside intermediates[1]. Surface-bound CD73
metabolizes adenosine 5′-monophosphate (AMP) to adenosine, which when released can
activate one of four types of G-protein coupled, seven transmembrane spanning adenosine
receptors (AdoR) or can be internalized through dipyridamole-sensitive carriers[2].
Adenosine receptors are expressed on a wide variety of cells, and many cell types have been
shown to express more than one isoform of the receptor. Likewise, activation of surface
AdoR has been shown to regulate diverse physiologic endpoints. In the recent years, our
understanding of nucleotide metabolic pathways has benefited from the development of
genetically manipulated animals, particularly mice genetically deficient in the various
adenosine receptors. Here, we review relevant studies addressing physiologic influences of
Ado within the gastrointestinal mucosa utilizing a variety of model systems.
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II. Functional Mucosal Responses Mediated by Adenosine
The gastrointestinal tract is lined by functionally differentiated epithelial cells. Primary
physiologic functions of the epithelium include barrier function, absorption and mucosal
hydration. Mucosal hydration is accomplished through a coordinated series of ion transport
events. As part of a tissue adaptive response, a number of purine nucleotide metabolites,
including adenosine, have been implicated to influence epithelial electrogenic chloride
secretion, the transport event responsible for mucosal hydration. This aspect of epithelial
function has been studied in detail utilizing models of intact epithelial cell layers coupled
with electrophysiologic strategies. Studies by Madara et al. examining biological properties
of soluble mediators derived from activated inflammatory cells (e.g. neutrophils and
eosinophils) identified a small, protease-resistant fraction originally termed neutrophil-
derived secretagogue (NDS)[3, 4]. When incubated with epithelia, NDS potently activated
electrogenic chloride secretion and associated fluid transport in cultured intestinal epithelial
cells. Subsequent biochemical analysis of NDS identified this molecule to be 5-AMP[4].
With no known AMP receptor, studies turned toward defining potential 5′-AMP metabolic
pathways. These studies revealed the expression of CD73 as a critical control point for the
metabolism of 5′-AMP to Ado[5]. CD73 was shown to be expressed at a very high level on
the apical aspect on intestinal epithelial cells. The only known function of CD73 is the
phosphohydrolysis of AMP to Ado. From such observations, biochemical and
pharmacologic studies demonstrated the expression of the Ado A2B receptor (A2BAR)
isoform of adenosine receptors on cultured and primary intestinal epithelial cells and in
human tissue as the primary determinant for mucosal hydration[6]. A mechanism of such
fluid transport mediated by Ado is shown in Figure 1.

A number of studies have also implicated adenosine receptors in the control of tissue barrier
function. For example, A2BAR, which couples via G proteins Gs and possibly Gq[7, 8], has
been demonstrated to be critical for the restitution of epithelial and endothelial monolayers
following transmigration. Successful transmigration of leukocytes across endothelial and
epithelial cells is accomplished by temporary PMN self-deformation with localized
widening of the inter-junctional spaces[9, 10], a process with the potential to disturb
endothelial and epithelial barrier function. Original studies by Lennon et al. revealed that the
prominent signaling pathway for closing inter-endothelial gaps during transmigration
involved adenosine-stimulated “resealing” of the barrier[11]. Subsequently, it was shown
that protein kinase A signaling through the A2BAR recruits the vasodilator-stimulated
phosphoprotein (VASP), a protein originally identified in platelets implicated in actin-
binding and cross-linking functions[12]. This work demonstrated that VASP is
phosphorylated via a PKA-dependent process in conditions that enhance barrier recovery
following epithelial [13] and endothelial [14] disruption. Confocal microscopy studies
revealed that VASP localizes with ZO-1 at epithelial tight junctions and at cell-cell borders
and that phosphorylated VASP appears at the junction during epithelial and endothelial
restitution. Subsequent transfection studies utilizing epithelial cells expressing truncated
forms of VASP abnormal in oligomerization or actin-binding activity revealed a functional
diminution of barrier recovery [13, 14] (see Figure 2).

III. Mucosal Sources of Adenosine
In ongoing inflammation, a number of cell types actively release adenine nucleotides,
primarily in the form of ADP and ATP [15-17]. Inflammatory cells can be a rich source of
nucleotides, and given the association of neutrophils with adenine-nucleotide/nucleoside
signaling in the inflammatory milieu[4, 11], it was hypothesized that PMNs could represent
a potential source of extracellular ATP [18, 19]. Initial studies utilizing luminometric ATP
detection assays from supernatant fractions revealed that PMNs release ATP in an
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activation-dependent manner. Pharmacological strategies identified a mechanism involving
connexin 43 (Cx43) hemichannels as the membrane pore for ATP release. Cx43 molecules
assemble as hexameric “connexons” that form junctional complexes between different cell
types[20] and various leukocytes have been shown to express Cx43[21]. More recent studies
implicated Cx43 connexons as intercellular signaling channels via the release of ATP [20,
22]. PMNs from induced Cx43-/- mice, whereby activated PMNs release less than 15% of
ATP relative to littermate controls and Cx43 heterozygote PMNs were intermediate in their
capacity for ATP release. This study implicated Cx43 in activated PMN ATP release,
therein contributing to the innate metabolic control of the inflammatory milieu [18].
Subsequent studies by others revealed that human neutrophils release ATP predominantly
from the leading edge of their cell surface as a mechanism to amplify chemotactic signals
and direct cell orientation by feedback through P2Y2 nucleotide receptors [23, 24].

Activated platelets are also known to release nucleotides at high concentration [25]. In this
context, Weissmuller et. al. highlighted the interaction between PMN and platelets in
regulating intestinal inflammation and fluid transport via nucleotide release [26]. Mucosal
diseases are often characterized by a mixed inflammatory infiltrate that includes PMNs and
platelets. These studies showed that platelets migrate across intestinal epithelial cells in a
PMN-dependent manner. Furthermore, platelet-PMN co-migration was observed in
intestinal tissue derived from human patients with inflammatory bowel disease (IBD). The
translocated platelets were found to release large quantities of ATP, which was metabolized
to adenosine via a 2-step enzymatic reaction involving CD73 and CD39-like molecules
expressed on intestinal epithelial cells (IEC). Subsequent studies revealed a mechanism
involving Ado-mediated activation of electrogenic chloride secretion, with concomitant
water movement into the intestinal lumen[4]. Together, these studies demonstrated that ecto-
NTDases are expressed on IEC and interact with platelet-derived nucleotides through a
mechanism involving platelets that “piggy back” across mucosal barriers while attached to
the surface of PMN [26] (Figure 1).

IV. Mechanisms of Adenosine Action
It is long appreciated that G protein-coupled receptors, particularly those which elevate
intracellular cAMP (i.e A2AAR and A2BAR), can serve as sensors of inflammation and
promote tissue protective responses[27]. Less is known about post-receptor events and
molecular mechanisms of action [28]. It is recently appreciated that Ado receptor signaling
is linked to a post-translational modification termed neddylation, the reversible conjugation
of the ubiquitin-like NEDD8 (Neural precursor cell expressed, developmentally down-
regulated 8) [29] moiety to proteins [30]. Neddylation and deneddylation responses are
highly conserved and exist in a wide variety of cell types [31] and species [32-35].
Activation of the Nedd8-precursor through cleavage a carboxy-terminal glycine residue by
UCH-L3 (also called SENP8) enables conjugation to the E1 UBA3-APPBP1 heterodimer,
also known as Nedd8-Activating-Enzyme (NAE) [36-39]. Subsequently NEDD8 is
conjugated to its specific E2 Ubc12 (ubiquitin conjugating enzyme) [40] and afterwards
linked to the E3 complex [41, 42] (Figure 3). Neddylation plays an essential role in the post-
translational modification of Cullin-RING-ligases [43] involved in the ubiquitin pathway.
Cullins function as scaffolding proteins and are essential for the assembly of the ubiquitin
E3 ligase complex conjugating ubiquitin to target proteins and thus marking them for
proteasomal degradation, including IκB, which leads to translocation of the NFκB p50/p65
heterodimer to the nucleus [44, 45]. Of note, the ubiquitin E3 ligase complex integrating
Cullin-2 is central to the regulation of hypoxia-inducible factor[31], a molecule which has
gained significant attention as a protective factor in various models of mucosal
inflammation[46].
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Ado potently inhibits the neddylation of Cullin-1 in endothelial and epithelial cells [47].
Insights into potential roles for Cullin-deneddylation in inflammation were provided by
Neish et al. who demonstrated that commensal bacteria-associated attenuation of NFκB is
Cullin-de-neddylation-dependent in epithelial cells [48]. Furthermore, Kumar et al.
demonstrated that commensal bacteria influence the neddylation status of Cullin-1 (Cul-1)
through generation of reactive oxygen species (ROS)[49]. Initially it was demonstrated that
epithelial cells elicit increases in ROS when co-cultured with commensal bacteria. This
resulted in a transient and reversible deneddylation of Cul-1 and subsequent decrease of
NFκB pathway end products. Interestingly, they were able to show that different commensal
bacterial strains differ in the amount of ROS they generate. Since an altered microbiota is a
prevalent observation in patients with IBD[50] differing amounts of ROS in individual
locations within the intestine may altering the inflammatory response in IBD [51].

One particularly intriguing mechanism suggests that Ado inhibits NF-κB through actions on
proteasomal degradation of IκB proteins [47]. These findings were based on studies
addressing adenosine signaling mechanisms which revealed that adenosine and adenosine
analogs display a dose-dependent deneddylation of Cul-1 with rank order of specificity
A2BAR >A1AR>>A2AAR = A3AR [47]. Current understanding indicates that
deneddylation reactions on Cullin targets via CSN-associated proteolysis is increasingly
implicated as a central point for Cullin-mediated E3 ubiquitylation [43]. Notably, other
pathways for deneddylation have been reported. For example, signaling elicited by
adrenomedullin, which is induced in LPS-associated inflammation[52], deneddylated Cul-1
with beneficial influences in a murine model of IBD [53]. Furthermore, the identification of
the Nedd8-specific protease SENP8 has provided new insight into this emerging field.
SENP8 appears to contain isopeptidase activity capable of directly deneddylating Cullin
targets [54, 55]. Moreover, recent studies indicate that SENP8 is central for inflammatory
responses at the vascular interface [56]. Pharmacological targeting of the neddylation
pathway, more specifically the NAE, using MLN4924[57], a structural homolog of 5′-AMP,
significantly abrogated NF-κB responses and reduced secretion of LPS-elicited and TNF-α-
elicited pro-inflammatory cytokines in human endothelial cells[56] as well as in human and
murine macrophage cells lines [58]. Likewise, MLN4924 abrogated pro-inflammatory
responses to LPS in vivo [56]. These studies identify SENP8 as a proximal regulator of
Cullin neddylation and provide an important role for SENP8 in fine-tuning of the
inflammatory response (see Figure 3).

IV. The role of individual Ado receptors (ARs) in GI inflammation in vivo
The rather broad expression pattern of individual AdoR in the GI tract have engendered
significant interest as therapeutic targets in GI inflammation. A number of studies have
addressed the contribution of individual ARs (A1AR, A2AAR, A2BAR, or A3AR) to
gastrointestinal inflammation in murine models. Specifically, the availability of AdoR-null
mice and selective agonists and antagonists have revealed important insight into the
potential contributions of Ado to GI inflammation.

While less is known about A1AR in GI disease models, the A2A and A2BAR receptors
have been studied in some detail [59-61]. The A2AAR is critical for A2AAR signaling in T
cell-mediated regulation of colitis. Moreover, treatment with a specific A2AAR agonist
attenuated the production of pro-inflammatory cytokines and attenuation of colitis [62]. In
addition, recent studies have performed a “head-on” comparisons between A2AAR-/- and
A2BAR-/- in murine colitis models [63]. Previous studies had revealed that neither
A2AAR-/- nor A2BAR-/- animals manifest outward immunological defects when housed in
specific pathogen-free conditions[64]. Herein, A2AAR-/- or A2BAR-/- mice were subjected
to DSS protocols and compared their responses to littermate wild-type controls. Initial
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studies using 3.5% DSS showed that A2BAR-/- mice became profoundly ill within 3 days of
induction, associated with high mortality which required lowering the DSS concentration to
2.5%. A2AAR-/- animals remained healthy at 2.5% DSS with no significant differences
observed in weight loss curves between A2AAR-/- mice and littermate controls. Notably,
A2AAR-/- mice showed increased susceptibility to higher concentrations of DSS. Indeed,
when DSS concentrations were increased from 2.5% to 4.5%, A2AAR-/- showed
significantly increased weight loss on days 2 – 6 and increased colon contraction compared
to wild-type controls. Thus, it would appear that both A2AAR-/- and A2BAR-/- mice have
increased susceptibility to DSS colitis, but that this phenotype is likely more severe in
A2AAR-/-[63]. Likewise, enteral administration of the selective A2BAR inhibitor PSB1115
resulted in a similar increase in severity of DSS colitis.[63] Together, these studies indicate
a central regulatory role for the A2BAR in modulating the acute inflammatory phase of DSS
colitis [63]. These studies are consistent with other studies that found a more severe
phenotype of A2BAR-/- mice during intestinal ischemia-reperfusion injury[65] and implicate
the A2BAR agonist BAY 60-6583 in the treatment of this condition[65]. Moreover, other
studies from our laboratory have shown attenuation of mucosal inflammation during acute
lung injury[61] or during intestinal hypoxia exposure[60, 64] mediated by the A2BAR.
Similarly, A2BAR signaling is protective during renal[66] or myocardial ischemia[67, 68].
This is also consistent with several studies from other investigators, indicating A2BAR
signaling in protection from vascular inflammation[69, 70], inflammation during organ
transplantation[71] or attenuation of pulmonary inflammation during hypoxia[47].

By contrast, some studies have suggested a pathological role of A2BAR signaling in murine
colitis [72, 73] and in Clostridium difficile intoxication[74]. Exposure of mice to DSS
induced colitis have revealed that A2BAR-/- are protected and mucosal inflammation is
attenuated. Such observations would be consistent with previous studies in cultured
epithelial indicating more a pathological role for A2BAR signaling, including the
observations that TNF strongly induces A2BAR expression [75]and the findings that
A2BAR signaling enhances IL-6 and other pro-inflammatory cytokines [76-78].

Why the results from this study[73] might be different from our own [63, 65] is not readily
apparent. In contrast to the study by Kolachala et al.,[73] several previous studies support an
anti-inflammatory and tissue protective role of A2BAR signaling in different organ systems.
As outlined above, gene-targeted mice for the A2BAR show enhanced vascular
inflammation when exposed to endotoxin[70] or during acute vascular injury.[69] Similarly,
gene-targeted deletion of the A2BAR is associated with enhanced vascular leak and
inflammation during hypoxia.[60, 64, 79] Potential explanations why the studies of
Kolachala et al.[72, 73] found a detrimental role of A2BAR signaling during murine colitis
could include details in the colitis protocol, differences in murine strains with genetic
deletion of the A2BAR or differences of the animal facilities resulting in microbial flora that
influence disease outcome. In this regard, it is well documented differences in the microflora
can fundamentally change the course of disease in various mouse models of colitis[80]. It is
important to note that in some of their studies, A2BAR-/- mice showed a strongly a pro-
inflammatory phenotype[73]. For example, A2BAR-/- mice showed increased susceptibility
to systemic Salmonella infection, where >90% of A2BAR-/- mice died within 10 days
compared with 20% of wild-type mice following orally administered S typhimurium.
Consistent with the mortality data, A2BAR-/- mice also showed signs of weight loss earlier
than WT mice[73]. In this regard, it is also possible that the lack of A2BAR signaling in
A2BAR-/- could fundamentally influence innate immune cell function. For example, it has
been shown that A2BAR contributes significantly to the differentiation of dendritic cells
(DC)[81]. Ado-differentiated DC resulted in a pro-angiogenic, pro-inflamamtory and
impaired allostimulatory phenotype. Thus, at the present time, it remains unclear exactly
how the A2BAR functions in complex mucosal inflammatory models. Likely, additional
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comparisons between the individual mouse strains may be necessary to rectify some of these
discrepancies.

Finally, studies in A3AR-/- mice have proven quite interesting and potentially revealed a
specific role for A3AR in the resolution of GI inflammation. For example, Butler et al. and
Ren et al. have recently shown that AA3R-/- show overall decreased pathology in acute DSS
colitis[82], but these animals failed to resolve inflammation-associated with chronic
inflammation in this model[82]. Likewise, the adenosine A3 receptor agonist, N6-(3-
iodobenzyl)-adenosine-5′-N-methyluronamide, has proven to be protective in at least two
murine models of colitis.[83] In humans, A3AR expression negatively correlates with acute
inflammatory score, Crohn’s Disease Activity Index (CDAI) and disease chronicity[84],
strongly implicating a need for more studies with this receptor subtype.

Conclusions
The gastrointestinal mucosa represents a unique environment for which to study nucleotide
metabolism. The dynamic nature of multiple cell types in a highly proliferative area
provides unique opportunities to define novel molecular mechanisms. Studies in animal
models of IBD have revealed key seminal observations to the contribution of Ado receptors
in mucosal immunology. More recent work has identified new molecular mechanisms of
Ado receptor activation, particularly those related to post-translational modificaton of key
effector molecules. Such findings provide a promising template for both drug discovery as
well as novel endogenous adaptive pathways that reveal windows into the relevance of
metabolism to disease processes.
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Figure 1. Coordinated activation of mucosal hydration during inflammation
During active inflammation, PMN transmigration (in conjunction with platelets, see text)
migrate across the apical side of intestinal epithelial cells. PMN and platelet-derived ATP is
metabolized to adenosine by a two-step enzymatic reaction involving ecto-apyrase (CD39
and CD39-like enzymes) and ecto-nucleotidase (CD73). Adenosine binding to epithelial
adenosine A2B receptors results in activation of electrogenic Cl secretion and the
paracellular movement of water. Such platelet/PMN - epithelial crosstalk pathway may
serve as a defensive response by which mucosal surfaces are flushed from bacteria and
bacterial products under inflammatory conditions.
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Figure 2. Model of adenosine-mediated epithelial restitution following PMN migration
Adenosine-mediated signaling increases levels of cAMP in epithelial cells and results in the
activation of protein kinase A (PKA), and subsequent phosphorylation of VASP. In this
model, phospho-VASP interactions with actin and tight junction proteins contribute to
diminishing paracellular permeability through relaxation of actin cytoskeletal tension. Such
a mechanism contributes to the resealing of epithelial monolayers following PMN
transmigration.
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Figure 3. Molecular mechanism of anti-inflammation by adenosine
The canonical NFκB pathway is activated through the phosphorylation of IκB. This
phosphorylation allows for its recognition by the neddylated Skp-Cullin-F-Box (SCF)
complex, polyubiquitination and subsequent proteasomal degradation. Neddylation of Cul-1
is achieved through a multienzyme process, conjugating a NEDD8 moiety to the target
protein (see text). Adenosine receptor activation, as well as the neddylation inhibitor
MLN4924, inhibit Cullin neddylation or promote deneddylation of Cullin-proteins, thereby
inhibiting the overall function of the SCF complex.
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