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In plants, iron (Fe) uptake and homeostasis are critical for survival, and these processes are tightly regulated at the transcriptional
and posttranscriptional levels. Circadian clocks are endogenous oscillating mechanisms that allow an organism to anticipate
environmental changes to coordinate biological processes both with one another and with the environmental day/night cycle.
The plant circadian clock controls many physiological processes through rhythmic expression of transcripts. In this study,
we examined the expression of three Fe homeostasis genes (IRON REGULATED TRANSPORTER1 [IRT1], BASIC HELIX
LOOP HELIX39, and FERRITIN1) in Arabidopsis (Arabidopsis thaliana) using promoter:LUCIFERASE transgenic lines. Each of
these promoters showed circadian regulation of transcription. The circadian clock monitors a number of clock outputs and
uses these outputs as inputs to modulate clock function. We show that this is also true for Fe status. Fe deficiency results in a
lengthened circadian period. We interrogated mutants impaired in the Fe homeostasis response, including irt1-1, which
lacks the major high-affinity Fe transporter, and fit-2, which lacks Fe deficiency-induced TRANSCRIPTION FACTOR1, a
basic helix-loop-helix transcription factor necessary for induction of the Fe deficiency response. Both mutants exhibit
symptoms of Fe deficiency, including lengthened circadian period. To determine which components are involved in this
cross talk between the circadian and Fe homeostasis networks, we tested clock- or Fe homeostasis-related mutants. Mutants
defective in specific clock gene components were resistant to the change in period length under different Fe conditions
observed in the wild type, suggesting that these mutants are impaired in cross talk between Fe homeostasis and the
circadian clock.

The rotation of the earth on its axis means that life
has evolved on a world characterized by dramatic,
recurrent, and rhythmic environmental change. Con-
siderable evidence has accumulated in support of the
hypothesis that the ability to measure and use time to
coordinate biology with the environment in antici-
pation of coming change confers a fitness advantage
(Ouyang et al., 1998; Resco et al., 2009; Yerushalmi and
Green, 2009). Thus, circadian rhythms have been de-
scribed in organisms from all domains of life, including
bacteria (Mackey et al., 2011) and archaea (Whitehead
et al., 2009; Edgar et al., 2012), as well as eucarya, in-
cluding plants and animals (Lowrey and Takahashi,
2011; McClung, 2011; Zhang et al., 2011).

Circadian rhythms, the subset of rhythms with a
period of approximately 24 h, are generated by an
endogenous circadian clock. The fitness advantage

conferred by the circadian clock emerges from its
regulation of many aspects of biology, including basic
metabolism, hormone signaling, and responses to bi-
otic and abiotic stress (Doherty and Kay, 2010; Wang
et al., 2011; Sahar and Sassone-Corsi, 2012). In plants,
the circadian clock is emerging as a key player in the
coordination of metabolism and growth (Dodd et al.,
2005; Nozue et al., 2007; Gutiérrez et al., 2008; Michael
et al., 2008a; Fukushima et al., 2009; Graf et al., 2010;
Kerwin et al., 2011; Kunihiro et al., 2011; Nozue et al.,
2011). One major mechanism by which the clock
coordinates so many pathways and processes is via
pervasive control of gene expression at the levels of
transcription, transcript processing, and transcript
abundance (Covington et al., 2008; Doherty and Kay,
2010; Filichkin et al., 2010; Sanchez et al., 2010). It
is becoming increasingly clear that in plants, clock
function not only regulates many aspects of cellular
metabolism and physiology (Harmer, 2009; McClung
and Gutiérrez, 2010; Pruneda-Paz and Kay, 2010;
McClung, 2011), including solute transport (Haydon
et al., 2011), but is, in turn, modulated by the cellular
metabolic state. Plant clock function has been shown to
respond to the uptake and homeostasis of Suc (Bläsing
et al., 2005; Knight et al., 2008; Dalchau et al., 2011) and
other nutrients, including magnesium (Mg; Hermans
et al., 2010), copper (Cu; Andrés-Colás et al., 2010;
Peñarrubia et al., 2010), and nitrogen (N; Gutiérrez
et al., 2008). Similarly, clock function is highly re-
sponsive to metabolic state, including redox status, in
cyanobacteria (Ivleva et al., 2005; Rust et al., 2011) and
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mammals (Rutter et al., 2002; Asher and Schibler, 2011;
Bass, 2012).

The Arabidopsis (Arabidopsis thaliana) circadian
clock is a complex network of interlocked feedback
loops. Central to the clock is a feedback loop con-
sisting of two Myb transcription factors, CIRCADIAN
CLOCK ASSOCIATED1 (CCA1) and LATE ELON-
GATED HYPOCOTYL (LHY), with a transcriptional
repressor, TIMING OF CAB EXPRESSION1 (TOC1), of
the PSEUDO-RESPONSE REGULATOR (PRR) family
(McClung, 2011; Nagel and Kay, 2012). Much of the
regulation of clock components is transcriptional, but
this is augmented with considerable posttranscrip-
tional (Staiger and Green, 2011) and posttranslational
(McClung, 2011; Nagel and Kay, 2012) regulation.
Many clock components, including CCA1, LHY, and
TOC1, are differentially phosphorylated throughout
the circadian cycle, and this posttranslational modifi-
cation alters protein activity and, in some cases, pro-
tein stability (Kusakina and Dodd, 2012). In particular,
an F-box protein, ZEITLUPE (ZTL), targets TOC1 and
a second PRR protein, PRR5, for ubiquitylation and
subsequent proteasomal degradation (Más et al., 2003;
Kiba et al., 2007; Fujiwara et al., 2008).

Plants carry out oxygenic photosynthesis and aero-
bic respiration, both of which require iron (Fe) and
generate toxic reactive oxygen species (ROS). The cir-
cadian clock regulates photosynthetic activity at the
cellular, organismal, and ecosystem levels (Hennessey
and Field, 1991; Salomé et al., 2002; Resco de Dios
et al., 2012). Not surprisingly, the production of ROS
varies throughout the circadian day, and the circadian
clock is emerging as a key regulator of cellular ROS-
responsive pathways (Edgar et al., 2012; Lai et al.,
2012). Principal sources of ROS include the electron
transport chains associated with both photosynthesis
and respiration. Fe-containing proteins are key com-
ponents of these electron transport chains, because Fe
can exist in multiple redox states, serving as either
electron acceptor or donor. The redox-active nature of
Fe allows it to generate ROS via the Fenton reaction, in
which Fe(II) reacts with hydrogen peroxide to yield
hydroxyl free radicals (Halliwell and Gutteridge,
1992). Thus, Fe is a necessary micronutrient, yet its
levels must be tightly controlled to prevent the accu-
mulation of damaging levels of ROS.

Fe homeostasis is imposed at multiple levels. First,
Fe acquisition is typically limiting because Fe is only
sparingly soluble at neutral pH in aerobic conditions
(Palmer and Guerinot, 2009). Dicots and some monocots,
although not the grasses, apply a tripartite response
to assimilate Fe, and each of these three responses is
induced in response to Fe limitation. These plants
acidify the soil by proton extrusion to increase Fe
solubility, reduce Fe from the ferric [Fe(III)] to the
ferrous [Fe(II)] form, and then take up ferrous Fe via
high-affinity Fe(II) transporters. In Arabidopsis, H+-
ATPases of the AHA (for Arabidopsis H+ ATPase)
family are likely responsible for the proton extrusion
(Santi and Schmidt, 2009), the ferric chelate reductase

FERRIC REDUCTION OXYGENASE2 (FRO2) redu-
ces Fe(III) to Fe(II) (Robinson et al., 1999), and the
high-affinity Fe(II) transporter IRON-REGULATED
TRANSPORTER1 (IRT1) takes up Fe into the root
epidermis (Eide et al., 1996; Henriques et al., 2002;
Varotto et al., 2002; Vert et al., 2002). mRNAs for
several AHA genes, FRO2, and IRT1 accumulate only
under Fe limitation (Palmer and Guerinot, 2009). Sec-
ond, within the plant, Fe is sequestered in the vacuole
(Kim et al., 2006) or stored in ferritin nanocages (Palmer
and Guerinot, 2009). FERRITIN (FER) gene expression
is induced by Fe sufficiency (Gaymard et al., 1996; Petit
et al., 2001).

In plants, the diurnal rhythm in photosynthetic ac-
tivity confers a rhythm in the generation of ROS (Lai
et al., 2012). Because photosynthetic activity is under
circadian control and because the circadian clock is
emerging as a central player in the control of levels of
ROS (Edgar et al., 2012; Lai et al., 2012), we wished to
determine whether the circadian clock might regulate
the expression of Fe homeostasis genes. Such a link
was suggested by the identification of TIME FOR
COFFEE (TIC), which encodes a nuclear circadian
clock component (Ding et al., 2007), as a regulator of Fe
overload-responsive genes, including FER1 (Duc et al.,
2009). We examined the transcription and mRNA ac-
cumulation of three key Fe homeostasis genes, IRT1,
the basic helix-loop-helix transcription factor gene basic
Helix-Loop-Helix39 (bHLH39; Vorwieger et al., 2007;
Wang et al., 2007, 2013), and FER1. IRT1 and bHLH39
are critical elements of the Fe acquisition mechanism
and are both induced by Fe deficiency, whereas FER1
encodes a key Fe storage protein and is induced by Fe
sufficiency. We observed that the circadian clock reg-
ulates the transcription and mRNA accumulation of
each of these three Fe homeostasis genes. In addition,
we showed that mutants known to affect clock func-
tion also affected the circadian period length of ex-
pression of these Fe homeostasis genes. Finally, we
also showed that the Fe status of the plants affected
circadian period length, indicating that the Fe ho-
meostasis network is not only an output of the circa-
dian clock but that Fe status is a nutritional input that
modulates the pace of the clock.

RESULTS

The Plant Circadian Clock Regulates the Expression
of Fe Homeostasis Genes

Wewished to determine whether key elements of the
Fe homeostasis network were under the control of the
circadian clock. Although mRNA abundance of IRT1
and FRO2 had earlier been shown to cycle in plants
growing in light/dark (LD) cycles (Vert et al., 2003),
this cycling had not been shown to persist in contin-
uous conditions and so had not been established to be
under circadian clock control. The transcript abun-
dance of FER1 has been shown to cycle in both LD
and continuous light (LL; Duc et al., 2009). We first
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interrogated the DIURNAL database (Mockler et al.,
2007) and confirmed that steady-state mRNA abun-
dance for three representative Fe homeostasis genes,
IRT1, bHLH39, and FER1, oscillated in LD or warm/
cold environmental cycles (Supplemental Fig. S1A).
We generated transgenic Arabidopsis lines in the
Columbia-0 (Col-0) background carrying gene fusions
in which the promoters of IRT1, bHLH39, or FER1were
used to drive the expression of the firefly LUCIFER-
ASE (LUC) gene. Expression of each promoter:LUC
(Pro:LUC) fusion transgene recapitulated the spatial
patterns previously described on the basis of transcript
accumulation (Supplemental Fig. S2). Expression of
ProIRT1:LUC was detected only in roots of Fe-deficient
but not in Fe-replete roots or in shoots regardless of Fe
status (Eide et al., 1996). Expression of ProbHLH39:
LUC was detected in both shoots and roots (Vorwieger
et al., 2007; Wang et al., 2007). Expression of ProFER1:
LUC was detected primarily in shoots but weakly in
roots (Gaymard et al., 1996). Expression of ProIRT1:
LUC and of ProbHLH39:LUC was greater at Zeitgeber

time (ZT)48 than at ZT36 (where ZT0 is dawn),
whereas expression of ProFER1:LUC showed the op-
posite pattern (Supplemental Fig. S2), consistent with
the temporal expression patterns shown in Supplemental
Figure S1A. We measured LUC activity in seedlings
growing in LD cycles and observed robust daily cycling
of promoter activity (Supplemental Fig. S1B). To test
whether the transcription of these three genes was in-
dependent of environmental cycles and, hence, under
circadian control, we measured LUC activity in seedlings
entrained in LD and released into continuous conditions
(LL and constant temperature). Transcription of each Pro:
LUC fusion cycled in LL with periods that were statisti-
cally indistinguishable from those of ProCCA1:LUC and
ProTOC1:LUC (Fig. 1, A–C) and, hence, was clock regu-
lated. We confirmed circadian oscillation of the abun-
dance for each of the IRT1, bHLH39, and FER1 transcripts
in LL by quantitative reverse transcription (qRT)-PCR
(Fig. 1D).

To confirm that the circadian clock regulates the
expression of IRT1, we asked whether the period of

Figure 1. Circadian regulation of Fe homeostasis gene expression. A and B, Seedlings growing on minimal medium were
entrained to photocycles (LD 12/12 h) for 6 d before release in LL. Average traces (mean 6 SE, n = 24) are shown for luciferase
activity of ProIRT1:LUC (A) and ProbHLH39:LUC and ProFER1:LUC (B) expression, normalized to the average activity over the
duration of the experiment. C, Period versus relative amplitude error (RAE) for Fe homeostasis (IRT1, bHLH39, and FER1) and
clock (CCA1 and TOC1) gene expression. RAE is a measure of the strength of the oscillation, with RAE = 0 corresponding to a
perfect sine wave and RAE = 1 defining the lower limit of statistically significant rhythmicity. D, Transcript levels (from two
independent experiments) of IRT1, bHLH39, and FER1 were estimated by qRT-PCR and normalized to tubulin expression.
White and gray bars indicate subjective day and night, respectively.
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IRT1 expression was lengthened in mutant back-
grounds in which the circadian period is lengthened.
Indeed, the period of IRT1 expression lengthened to
the same extent as that of the known clock gene, CCA1,
in two mutant backgrounds, ztl-4 and prr7 prr9, known
to alter period length (Fig. 2; Somers et al., 2000; Farré
et al., 2005; Salomé and McClung, 2005), consistent
with the clock regulation of IRT1 expression. There-
fore, we conclude that the circadian clock regulates the
expression of multiple genes involved in the Fe defi-
ciency response (IRT1 and bHLH39) and in Fe storage
(FER1).

Fe Nutrition Status Regulates the Expression
of Fe Homeostasis Gene Transcription

The expression of many Fe homeostasis genes re-
sponds to Fe nutrition status. For example, genes as-
sociated with Fe acquisition (e.g. IRT1 and bHLH39)
are commonly induced during Fe starvation (Vert
et al., 2002; Colangelo and Guerinot, 2004; Long et al.,
2010), whereas genes associated with Fe storage (e.g.

FER1) are induced during Fe sufficiency (Gaymard
et al., 1996; Petit et al., 2001). We observed that ex-
pression of ProIRT1:LUC was greatly increased during
conditions of Fe limitation induced by addition of the
Fe chelator, ferrozine (300 mM; Fig. 3, A–C) and was
robust in seedlings grown on minimal medium with
no Fe supplementation (Fig. 3, A, B, and D). We also
detected low-level cycling expression of ProIRT1:LUC
during growth in conditions of Fe excess (50 mM Fe;
Fig. 3, A, B, and E). Interestingly, although a popula-
tion of seedlings exhibited daily peaks of expression in
Fe-replete conditions, individual seedlings did not
express ProIRT1:LUC every day. Rather, an individual
seedling expressed ProIRT1:LUC every 2 or 3 d (Fig.
3E). We interpret this to mean that expression on a
single day allows sufficient IRT1 activity to take up
enough Fe to support growth for more than 1 d, and
only when Fe is again limiting is IRT1 expression
renewed. Because IRT1 expression is gated by the
circadian clock, expression always peaks at the same
circadian phase, so the population average, which
aggregates expression patterns of multiple seedlings,
shows daily expression (Fig. 3, A, B, and E).

Figure 2. Period length of IRT1 promoter activity is lengthened in long-period clock mutants. A and B, Seedlings of the in-
dicated genotypes growing on minimal medium were entrained to photocycles (LD 12/12 h) for 6 d before release in LL.
Average traces (mean 6 SE, n = 12–24) are shown, normalized to the average activity over the duration of the experiment, of
ProIRT1:LUC (A) and ProCCA1:LUC (B) expression. White and gray bars indicate subjective day and night, respectively. C,
Period versus relative amplitude error (RAE) of ProIRT1:LUC and ProCCA1:LUC expression. RAE is a measure of the strength of
the oscillation, with RAE = 0 corresponding to a perfect sine wave and RAE = 1 defining the lower limit of statistically significant
rhythmicity. Error bars represent SE. Different letters indicate significant differences (P , 0.0001) as determined by ANOVA.
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Fe Nutrition Status Feeds Back to Regulate the Plant
Circadian Clock

There is considerable interplay between the clock
and the uptake and homeostasis of nutrients, including
Mg, Cu, and N (Gutiérrez et al., 2008; Andrés-Colás
et al., 2010; Hermans et al., 2010; Peñarrubia et al.,
2010). The period of multiple clock (CCA1 and TOC1)
and clock-controlled (CHLOROPHYLL a/b BINDING

PROTEIN2 [CAB2] and CATALASE3 [CAT3]) genes
lengthens in response to Fe limitation induced by ei-
ther chelation of Fe in the growth medium with fer-
rozine (300 mM) or by the inclusion of excess zinc (Zn;
50 mM), which induces Fe deficiency through compe-
tition for the high-affinity Fe uptake system (Fig. 4;
Supplemental Fig. S3; Shanmugam et al., 2011). The
effect of Zn is confirmed to be through competition for
Fe uptake, because the period lengthening in response

Figure 3. IRT1 promoter activity under different Fe conditions. A and B, Seedlings growing on minimal medium were entrained to
photocycles (LD 12/12 h) for 6 d, transferred to three different Fe conditions (300 mM ferrozine, minimal medium, and 50 mM Fe), and
released in LL. Absolute (A) and relative (B) traces, normalized to the average activity over the duration of the experiment, of ProIRT1:
LUC expression are shown. Data are presented as means6 SE (n = 24). C to E, Traces of three individual ProIRT1:LUC seedlings and
their average values under the indicated Fe conditions. White and gray bars indicate subjective day and night, respectively.
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to excess Zn is blocked by the provision of excess Fe.
Furthermore, the period of these clock and clock-
controlled genes shortens relative to the period in
minimal medium in the presence of excess (50 mM) Fe.
Thus, we conclude that the circadian clock responds to
Fe status.

Mutants defective in Fe uptake exhibit Fe deficiency
symptoms when grown in minimal medium without
Fe supplementation. For example, mutants defective in
IRT1, which encodes the high-affinity Fe(II) trans-
porter, are chlorotic and die prior to seed set, but the
chlorosis and lethality are rescued by Fe supplemen-
tation (Vert et al., 2002). Consistent with these mutants
being Fe deficient on minimal medium, ProIRT1:LUC
expression was greatly elevated in the irt1-1 mutant
(Fig. 5A). FIT encodes an essential bHLH transcription
factor necessary for IRT1 induction (Colangelo and
Guerinot, 2004; Jakoby et al., 2004; Yuan et al., 2005;
Bauer et al., 2007). Accordingly, IRT1 expression was
low in the fit-2 mutant, even though these mutant
seedlings are Fe deficient (Fig. 5A). Consistent with
irt1-1 and fit-2 mutants being Fe deficient, the period
length of both IRT1 and CCA1 expression was
lengthened in both irt1-1 and fit-2 mutants (Figs. 5,
B–D, and 6A). Similarly, frd1-1 seedlings, which are
defective in FRO2 ferric chelate reductase activity and
Fe deficient on minimal medium (Robinson et al.,
1999), also showed a lengthened period on minimal
medium relative to Fe-supplemented medium (Fig. 6A;
Supplemental Figs. S4 and S5). The period lengthening

in each of the Fe homeostasis mutant backgrounds was
seen in minimal medium and exacerbated by the ad-
dition of the Fe chelator, ferrozine (Supplemental Fig.
S4). In each genotype, the long-period phenotype was
rescued by the addition of Fe (50 mM) to the medium,
confirming that the period lengthening was in re-
sponse to Fe limitation. Thus, Fe deficiency resulting
from either Fe limitation in the medium or from a
genetically imposed impairment of Fe accumulation
from the environment resulted in a lengthened circa-
dian period.

We also examined the effects of perturbation of Fe
homeostasis via the loss of leaf ferritin in the fer1 fer3
fer4 triple mutant (Ravet et al., 2009). The period of
ProCCA1:LUC expression was lengthened in the tri-
ple mutant relative to the wild type both in seed-
lings grown on minimal medium and in Fe-deficient
(ferrozine-treated) seedlings (Fig. 6A; Supplemental
Figs. S4 and S5). We also note that the period in Fe-
replete seedlings was shortened in the triple fer1 fer3
fer4 mutant (Fig. 6A; Supplemental Figs. S4 and S5).
The mutant lacks ferritin in the shoot and, as a con-
sequence, mutant plants have higher levels of ROS
(Ravet et al., 2009). ROS has been shown to alter the
expression of the evening-expressed FLAVIN-BINDING,
KELCH REPEAT, F BOX1 (FKF1) clock-controlled
gene, although not the midday-expressed CAB2 gene
(Lai et al., 2012), and we speculate that the period
shortening seen in fer1 fer3 fer4 in Fe-supplemented
conditions may result from a feedback of elevated ROS
on clock function. However, the mechanistic details
and target(s) of this feedback remain mysterious.

To determine which circadian clock components are
required for the period-lengthening response to Fe de-
ficiency, we examined a number of single and double
mutants with defective clocks (Fig. 6B; Supplemental
Fig. S6). The long-period ztl-4 mutant (Michael et al.,
2003) did not respond to Fe status and exhibited sta-
tistically indistinguishable, albeit long, periods in min-
imal, Fe-deficient (+ferrozine) and Fe-sufficient (+Fe)
media. In contrast, the long-period prr7 prr9 double
mutant (Farré et al., 2005; Salomé and McClung, 2005)
responded to Fe deficiency with lengthened period.
Similarly, the prr5-1mutant, which exhibits only a slight
shortening of circadian period length, responded to
Fe deficiency with a lengthened period. The short-
period cca1 lhy double mutant did not respond to
Fe status and exhibited statistically indistinguishable,
albeit short, periods in minimal, Fe-deficient (+fer-
rozine) and Fe-sufficient (+Fe) media. This loss of
sensitivity to Fe in circadian period was seen both in
the Wassilewskija (Ws) background with the cca1-11
lhy-21 double mutant (Hall et al., 2003; data not
shown) and in the Col-0 background, in which the
cca1-1 allele, originally isolated in the Ws back-
ground (Green and Tobin, 1999), had been intro-
gressed into the lhy-20 mutant in Col-0 through five
generations of backcrossing. These data implicate
CCA1, LHY, and ZTL as circadian clock targets of the
Fe deficiency signal.

Figure 4. Fe status specifically changes the period length of clock gene
promoter activity. Seedlings (n = 24) were grown on minimal medium
and entrained to photocycles (LD 12/12 h) for 6 d, transferred to dif-
ferent metal ion conditions (300 mM ferrozine, minimal medium, 50
mM Fe, 50 mM Zn, or 50 mM Zn plus 50 mM Fe), and released in LL.
Period data of ProCCA1:LUC, ProTOC1:LUC, ProCAB2:LUC, and
ProCAT3:LUC are presented as means 6 SE. Different letters indicate
significant differences (P , 0.004) as determined by ANOVA (com-
parisons are of the effect of growth conditions on period length as
measured within each transgene, and not among different genes; thus,
periods measured on different growth media with CCA1 are compared
with one another and periods measured on different growth media
with TOC1 are compared with one another, but periods measured with
CCA1 are not compared with those measured with TOC1).
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DISCUSSION

The circadian clock exerts pervasive control of gene
expression (Michael et al., 2008b) and thereby regu-
lates many aspects of physiology and metabolism,
including photosynthetic carbon assimilation (Hennessey
and Field, 1991; Dodd et al., 2004), utilization of stored
photosynthate (Graf and Smith, 2011; Stitt and Zeeman,
2012), and growth (Nozue et al., 2007; Nusinow et al.,
2011; Yazdanbakhsh et al., 2011). Circadian regulation
of growth suggests that there should be concomitant
oscillations in water and solute fluxes (Haydon et al.,
2011). Data have accumulated supporting circadian
oscillations in fluxes of several molecules, including
carbon into sugar and from starch (Dodd et al., 2004;
Stitt and Zeeman, 2012), inorganic macronutrients (e.g.
N, sulfur, K+; Gutiérrez et al., 2008; Haydon et al.,
2011) and micronutrients (e.g. Mg and Cu; Andrés-
Colás et al., 2010; Hermans et al., 2010; Peñarrubia
et al., 2010), and the key signaling molecule Ca2+

(Dodd et al., 2006; Xu et al., 2007; Haydon et al., 2011).
Moreover, some of these cycling solutes have been
shown to serve as feedback regulators of clock function.

For example, levels of sugars (Bläsing et al., 2005; James
et al., 2008; Dalchau et al., 2011), Cu (Andrés-Colás
et al., 2010; Peñarrubia et al., 2010), Mg (Hermans et al.,
2010), and N (Gutiérrez et al., 2008) each affect clock
function.

We have uncovered a reciprocal relationship be-
tween the micronutrient Fe and the circadian clock.
The circadian clock regulates the transcription and
transcript accumulation of the IRT1 gene encoding the
high-affinity Fe(II) transporter responsible for Fe up-
take from the soil (Eide et al., 1996; Henriques et al.,
2002; Varotto et al., 2002; Vert et al., 2002) as well as of
a gene, bHLH39, encoding a key transcription factor in
the Fe deficiency response (Wang et al., 2013). In ad-
dition, we describe circadian regulation of FER1,
which encodes a key Fe storage protein, ferritin
(Gaymard et al., 1996). This establishes broad circa-
dian control of the Fe homeostasis gene network.
Moreover, we show that Fe status feeds back to reg-
ulate clock function, because circadian period length-
ens during Fe deficiency. Such feedback regulation in
which the clock regulates Fe homeostasis while Fe status
feeds back to modulate clock function has also been

Figure 5. Circadian period is lengthened in Fe deficiency mutants. A to C, Seedlings of the indicated genotypes growing on
minimal medium were entrained to photocycles (LD 12/12 h) for 6 d before release in LL. Absolute (A) and relative (B) traces,
normalized to the average activity over the duration of the experiment, of ProIRT1:LUC expression (n = 24) and relative traces of
ProCCA1:LUC expression (C; n = 12) are presented as means 6 SE. White and gray bars indicate subjective day and night,
respectively. D, Period versus relative amplitude error (RAE) of ProIRT1:LUC and ProCCA1:LUC. RAE is a measure of the
strength of the oscillation, with RAE = 0 corresponding to a perfect sine wave and RAE = 1 defining the lower limit of statistically
significant rhythmicity. Different letters indicate significant differences in period length (P , 0.025) as determined by ANOVA.
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observed in Drosophila melanogaster (Mandilaras and
Missirlis, 2012). Down-regulation of clock-neuron
expression of an Fe storage ferritin gene or of an Fe-
carrying transferrin gene disrupted circadian rhyth-
micity in D. melanogaster (Mandilaras and Missirlis,
2012). In mice, there is a reciprocal regulation of the
biosynthesis of heme, the important Fe-binding por-
phyrin, and the circadian clock, although Fe status has
not been directly implicated (Kaasik and Lee, 2004).
Heme levels in mice cycle with circadian period
(Kaasik and Lee, 2004), and heme binding to the or-
phan nuclear receptor Rev-erba, a critical negative
component of the mammalian circadian clock, regu-
lates its interaction with a nuclear receptor corepressor
complex, thereby affecting broad patterns of gene ex-
pression (Yin et al., 2007). However, this interaction of
the clock with heme in mice is distinct from the in-
teraction of the clock with Fe homeostasis in fruit flies.
Although the expression of heme biosynthetic and
degradative genes is under robust circadian control in
D. melanogaster heads (Ceriani et al., 2002), down-
regulation of multiple D. melanogaster heme biosyn-
thetic genes did not disrupt circadian rhythmicity
(Mandilaras and Missirlis, 2012).

In plants, CCA1 is emerging as a critical hub in the
circadian network that is the target for nutrient sta-
tus input to the circadian clock. For example, the
amplitude of CCA1 and LHY transcript cycling in-
creased in response to the addition of Cu and de-
creased in response to Cu chelation (Andrés-Colás
et al., 2010). Mg chelation increased CCA1, LHY, and
PRR9 expression (Hermans et al., 2010). Systems
analysis established CCA1 as a critical hub in the N-
responsive gene network, and N metabolites were
shown to shift circadian phase as monitored by CCA1
transcription (Gutiérrez et al., 2008). In this study, we

have shown that the period lengthening in response to
Fe deficiency was abolished in the cca1 lhy double
mutant, establishing a requirement for either CCA1 or
LHY, or both, in the response of the clock to Fe status.
A second clock mutant, ztl-4, also was defective in
lengthening period in response to Fe deficiency, which
implicates ZTL in the clock response to Fe deficiency.
ZTL is not believed to directly regulate either CCA1 or
LHY, which may suggest a second route of Fe signal-
ing to the clock, independent of these two key tran-
scription factors. ZTL is an F-box protein that regulates
the proteasomal degradation of two important clock
proteins, TOC1 and PRR5 (Más et al., 2003; Kiba et al.,
2007; Fujiwara et al., 2008), both of which are regula-
tors of CCA1 and LHY expression (Nakamichi et al.,
2010; Gendron et al., 2012; Huang et al., 2012; Pokhilko
et al., 2012). Thus, it is possible that the expression of
CCA1 and LHY is the ultimate target of Fe status sig-
naling via ZTL.

MATERIALS AND METHODS

Plant Mutant Genotypes

The following Arabidopsis (Arabidopsis thaliana) mutant genotypes were
used: fer1 fer3 fer4 (Ravet et al., 2009), fit-2 (Colangelo and Guerinot, 2004),
frd1-1 (Yi and Guerinot, 1996), irt1-1 (Vert et al., 2002), prr7-3 prr9-1 (Salomé
and McClung, 2005), prr5-1, and ztl-4 (Michael et al., 2003) in the Col-0
background; cca1-1 lhy-20, in which the cca1-1 allele was originally isolated in
the Ws background (Green and Tobin, 1999), was introgressed into a lhy-20
mutant in the Col-0 background (Michael et al., 2003) through five sequential
backcrosses; and cca1-11 lhy-21 (Hall et al., 2003) in the Ws background.

Generation of Constructs and Transgenic Plants

Firefly luciferase was driven from Arabidopsis clock and clock-controlled
gene promoters, including ProCCA1:LUC and ProLHY:LUC (Salomé and

Figure 6. The response in circadian period to Fe status is altered by mutations affecting Fe homeostasis or circadian clock
function. Seedlings (n = 12) growing on minimal medium were entrained to photocycles (LD 12/12 h) for 6 d, transferred to
different Fe conditions (300 mM ferrozine, minimal medium, and 50 mM Fe), and released in LL. The period of ProCCA1:LUC in
Fe homeostasis (A) or clock-related mutants (B) is shown. Data are presented as means6 SE. Different letters indicate significant
differences (P , 0.013) as determined by ANOVA (comparisons are of the effect of growth conditions on period length as
measured within each mutant, and not among different mutants; thus, periods measured on different growth media with irt1-
1 are compared with one another and periods measured on different growth media with fit-2 are compared with one another,
but periods measured with irt1-1 are not compared with those measured with fit-2).
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McClung, 2005), ProTOC1:LUC (Michael and McClung, 2002), ProCAB2:LUC
(Millar et al., 1992), and ProCAT3:LUC (Michael and McClung, 2002). Pro-
moters of IRT1 (21,086 to 263, where the A of the ATG start codon = +1), of
bHLH39 (2755 to 21), and of FER1 (21,394 to 25) were amplified from Col-0
genomic DNA using gene-specific primers (Supplemental Table S1). The am-
plified products were cloned into pCR8/GW/TOPO (Invitrogen) and sub-
cloned into pZPVLUC+ (Schultz et al., 2001). The resulting binary vectors were
introduced into Agrobacterium tumefaciens strain AGL1 by electroporation, and
ProbHLH39:LUC and ProFER1:LUC were transformed into Col-0 (Bechtold
et al., 1993). ProIRT1:LUC was initially transformed into Col-gl1 and moved
into the Col-0 wild-type background by genetic crossing. With the exception of
fer1 fer3 fer4, Pro:LUC transgenes were introduced into the mutants via genetic
crossing and selection of F2 plants with the appropriate morphological and/or
circadian phenotype in LL after LD entrainment. fer1 fer3 fer4 plants were
transformed by infiltration via A. tumefaciens (Bechtold et al., 1993).

Bioluminescence Assay

Rhythm assays were performed as described (Salomé and McClung, 2005)
except that seeds were sterilized, stratified in the dark at 4°C for 3 d, and sown
on minimal medium consisting of 2 mM Ca(NO3)2, 0.75 mM K2SO4, 0.65 mM

MgSO4, 0.1 mM KH2PO4, 10 mM H3BO3, 0.1 mM MnSO4, 0.05 mM CuSO4, 0.05 mM

ZnSO4, 0.005 mM (NH3)6Mo7O24, 0.5 g of MES, and 0.5% Suc (w/v), adjusted to
pH 6.0 and solidified with 0.7% type M agar (Marschner et al., 1982; Yi and
Guerinot, 1996). Seedlings were entrained for 6 d in photocycles (LD 12/12 h)
before transfer to LL for LUC activity measurement using a Packard Top-
Count Luminometer. Fe deficiency was imposed by the addition of the Fe
chelator ferrozine [3-(2-pyridyl)-5,6-diphenyl-1,2,4-triazine sulfonate (HACH
Chemical)] to the minimal medium at 300 mM (Yi and Guerinot, 1996). Fe re-
pletion was imposed through the addition of 50 mM Fe(III)-EDTA to the
minimal medium (Yi and Guerinot, 1996). Rhythms were analyzed by fast
Fourier transform nonlinear least-squares (Plautz et al., 1997). Whole-seedling
LUC imaging was performed using an ORCA II ER CCD camera (C4742-98
ERG; Hamamatsu Photonics; http://www.hamamatsu.com), with data col-
lected at the time of peak expression for each transgene (Fig. 1, A and B) with
60-min exposure times. Images were analyzed with MetaMorph software
(Molecular Devices; http://www.moleculardevices.com/Products/Software/
Meta-Imaging-Series.html).

Expression Analysis by qRT-PCR

Seedlings were entrained for 10 d in photocycles (LD 12/12 h) and trans-
ferred to LL. Samples were collected every 4 h for the following 3 d. RNA was
extracted using the Qiagen RNeasy Plant Mini Kit. First-strand complemen-
tary DNA synthesis used 2 mg of total RNA with the SuperScript III first-
strand synthesis system (Invitrogen). The complementary DNA was diluted
10 times with water, and 1 mL was used for PCR amplification using a SYBR
Premix Ex Taq II (Takara) with gene-specific primers (Supplemental Table S1).
mRNA abundances were calculated using the comparative cycle threshold
method, with TUB3 (At5g62700) as the normalization control.

Arabidopsis Genome Initiative locus identifiers for the genes mentioned
in this study are as follows: bHLH39 (At3g56980), CAB2 (At1g29920), CAT3
(At1g20620), CCA1 (At2g46830), CCR2 (At2g21660), CHE (At5g08330), FER1
(At5g01600), FER3 (At3g56090), FER4 (At2g40300), FIT (At2g28160), FRD1/
FRO2 (At1g01580), GI (At1g22770), IRT1 (At4g19690), LHY (At1g01060), PRR5
(At5g24470), PRR7 (At5g02810), PRR9 (At2g46790), TIC (At3g22380), TOC1
(At5g61380), and ZTL (At5g57360).
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The following materials are available in the online version of this article.

Supplemental Figure S1. Diurnal and circadian regulation of Fe homeo-
stasis gene expression.

Supplemental Figure S2. Temporal and spatial expression of Fe homeo-
stasis gene expression.

Supplemental Figure S3. Fe status specifically changes period length of
clock gene promoter activity.

Supplemental Figure S4. Circadian period is lengthened in Fe homeostasis
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Supplemental Figure S5. Circadian period is lengthened in Fe homeostasis
mutants.

Supplemental Figure S6. The response in circadian period to Fe status is
altered by mutations affecting Fe homeostasis or circadian clock function.
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