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Abstract

Forward genetics screens with N-ethyl-N-nitrosourea (ENU) provide a powerful way to illuminate gene function and
generate mouse models of human disease; however, the identification of causative mutations remains a limiting step.
Current strategies depend on conventional mapping, so the propagation of affected mice requires non-lethal screens;
accurate tracking of phenotypes through pedigrees is complex and uncertain; out-crossing can introduce unexpected
modifiers; and Sanger sequencing of candidate genes is inefficient. Here we show how these problems can be efficiently
overcome using whole-genome sequencing (WGS) to detect the ENU mutations and then identify regions that are identical
by descent (IBD) in multiple affected mice. In this strategy, we use a modification of the Lander-Green algorithm to isolate
causative recessive and dominant mutations, even at low coverage, on a pure strain background. Analysis of the IBD regions
also allows us to calculate the ENU mutation rate (1.54 mutations per Mb) and to model future strategies for genetic screens
in mice. The introduction of this approach will accelerate the discovery of causal variants, permit broader and more
informative lethal screens to be used, reduce animal costs, and herald a new era for ENU mutagenesis.
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Introduction

Forward genetic screens in mice carrying mutations introduced

by the alkylating agent ENU can provide important and entirely

novel insights into gene function [1,2,3,4]. This approach does

not require any prior assumption about mechanism, and by

inducing random point mutations ENU generates viable pheno-

types that mimic human disease. In the classic approach mice

treated with ENU are bred to generate pedigrees segregating

thousands of mutations, which are screened for phenotypes of

interest. However determining which of the many induced

mutations underlies the phenotype is a significant bottleneck in

the process, requiring additional generations of breeding and

outcrossing to another inbred laboratory strain in order to

generate a linkage map, followed by sequencing of candidate

genes or regions. This process is time consuming and costly. For

example conventional fine mapping to obtain a linkage region of

around 3 Mb (20–30 genes) requires at least 2 generations of

additional breeding and genotyping 100–200 markers in 30–60

F2 mice. The need to propagate the mice tends to require non-

lethal screens, which limits the range of assays and the scope to

detect phenotypes. Furthermore, outcrossing can introduce

unseen confounding variants affecting the trait, and tracking

the phenotype through additional generations is complicated and

can be unreliable [5].

Although whole genome and exome sequencing offer the

prospect of accelerating discovery, current strategies remain

dependent on conventional mapping [6,7,8,9]. In this study we

address the ENU bottleneck by showing how it is possible to use

WGS and identity by descent to isolate a causative mutation

rapidly and efficiently on a pure, single strain background, without

the need for outcrossing or additional breeding. The strategy will

allow the use of lethal and more informative screens. It will

accelerate the discovery of new variants, permit a greater focus on
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novel mutations, and make forward genetics more accessible by

reducing costs and broadening the screens.

Results

A Novel Strategy to Identify ENU Mutations
In a typical strategy for generating and screening ENU mutant

mice, C57BL/6J (B6) ENU-treated founders are bred with B6

females to generate G1 founders, establishing pedigrees in which

pairs of G2 mice produce G3 mice segregating recessive and

dominant mutations (Figure 1A). To assess the utility of WGS in

the analysis of such mice, we chose a pedigree identified as

ENU16CH17a where the recessive phenotype was peripheral B cell

lymphopenia (Figure 1B and Figure S1), and performed WGS on

three affected G3 mice from a single G2 pair to high coverage

(average 246 per individual).

The causative variant in ENU16CH17a will belong to a

haplotype that is shared by all the sequenced mice and inherited

from an ENU-treated ancestor. By constructing chromosomal

maps of the homozygous variants in all three animals we could

demonstrate clustering of mutations within haplotype blocks

inherited from ENU-treated founders (Figure 1C and Figure 1D).

This suggested that the identification of IBD regions in multiple

mice would be an elegant and efficient approach for mapping and

identifying causative mutations. We developed a method based on

the Lander-Green algorithm which uses genetic markers, knowl-

edge of the pedigree and recombination rates, to infer the flow of

alleles through the genealogy [10]. We modified the algorithm to

exploit the partial knowledge of the G1 founder genotypes. Our

implementation uses probabilistic variant calls to identify haplo-

types from the four founder mice (ENU1, ENU2, WT1 and WT2)

across the genome of each G3 individual (Figure 2A and Materials

and Methods). The rate of ENU induced mutation is low and must

be distinguished from both WGS artifacts and background

variation from the reference, so we developed a series of filters

to exclude non-ENU variants (Materials and Methods and Figure

S2).

The haplotypes assigned by our algorithm identify the IBD

regions (Figure 2B). IBD homozygous regions comprise 95.3 Mb

(3.6% of the genome), containing 137 variants, including only two

mutations in coding regions, both on chromosome 4 (Figure 1D).

One mutation at position 3,710,143 was an A to G mutation

inducing a missense change in the Src-kinase encoding gene Lyn

(Figure 1E). The mutation corresponds to a threonine to an alanine

substitution at amino acid residue 410 in exon 12 within the highly

conserved Src activation loop in the protein kinase domain

(Figure 1F). The phenotype seen in ENU16CH17a has been

described in mice carrying a threonine to lysine substitution at the

same codon in Lyn [11], indicating that the LynT410A mutation is

causative. The other mutation, at position 66,590,107, encoded a

missense mutation in a single transcript of Toll-like receptor 4

reported by Ensembl (Tlr4-004 ENSMUST00000107365), but

absent from the RefSeq dataset. Tlr4 deficient mice do not have

obvious defects in B cell development [12].

Dominant Mutations
The ENU16CH17a pedigree carries a recessive functional

mutation; however, to demonstrate the wider application of our

method for dominant traits, we examined shared IBD heterozy-

gous ENU mutations in the same G3 mice. The 3 ENU16CH17a

mice share one or more haplotypes from a common ENU founder

across regions comprising 40.8% of the genome (1083.8 Mb)

(Figure 2B), containing 26 heterozygous candidate mutations

shared by all 3 mice, comprising 25 missense and one splicing

mutation; there were no nonsense mutations. PolyPhen-2 [13]

predicted 9 as benign, leaving 17 heterozygous shared mutations

with possibly deleterious effects. Sanger sequencing confirmed the

presence of all 28 homozygous and heterozygous IBD variants

(Table S1 and Table S2).

The Frequency and Characteristics of ENU Mutations
The frequency of ENU mutations is dose related [14,15] and

may differ according to the mouse strain [16]. However, previous

estimates of the ENU mutation frequency, which have ranged

from 0.5 Mb{1 to 10 Mb{1, have been confounded by small

datasets and locus specific bias [17,18,19,20,21,22,23].

By observing the frequency of variants in the homozygous ENU

regions and subtracting the background rate observed in

homozygous WT regions, we have calculated the ENU mutation

rate in the ENU16CH17a pedigree to be 1.54 mutations Mb{1.

We excluded errors due to assignment of homozygous regions or

inadequate coverage by modeling the effect of expansion or

contraction of regions and of reduction in coverage (Figure 3A and

3B). The estimate of mutation frequency was also insensitive to

changes in the assumed mutation frequency used in the algorithm

to predict IBD regions - with assumed mutation frequencies in the

range 0.25 to 3.0 mutations Mb{1, the estimated ENU frequency

remained between 1.52 and 1.58 mutations Mb{1 (Figure S3A).

Within the homozygous ENU regions, we could confirm the

well-described transition:transversion ratio and A-T base prefer-

ence of ENU induced mutations [24,25]. We found a 1.50:1

transition: transversion ratio in ENU mutations compared to a

2.17:1 ratio in naturally occurring mouse SNPs (Figure 3C). We

confirmed the distinctive base preference signature of ENU

mutations, which is mainly due to error-prone repair of O2 and

O4 ethylthymidine leading to AT to TA transversions (28.5% of

our mutations), and AT to GC transitions (45.0% of our

mutations), respectively [26,27] (Figure 3D). We found 78.7% of

all homozygous mutations were at A:T sites, compared to the 58%

AT content of the mouse genome [28] and different to non-ENU

Author Summary

Damaging mutations in single genes are an important
source of information about the causes of disease,
including more complex genetic disease; but these single
gene disorders are typically rare in humans. An important
strategy for identifying new disease mechanisms is to
introduce multiple random mutations in mice and test the
mice for biological differences; these mice act as models of
human disease. However, discovering the disease-causing
mutation is time-consuming and complex, requiring
further generations of breeding. In this study we demon-
strate a method that overcomes these problems by
sequencing the entire genomes of multiple mice that
have inherited a disease-causing mutation from a common
ancestor. We use an algorithm that uses knowledge of all
the mutations carried by the sequenced mice to identify
the regions of the genome and mutations that are
common to all the mice. Using this method we can rapidly
link biological traits to genetic mutations. In contrast to
current approaches, our strategy does not require large
amounts of breeding, and it permits more accurate
measurement of a wider range of traits; consequently its
introduction will significantly reduce the number of mice
required in the future, increase the number of traits that
can be detected, and accelerate the discovery of new
pathways and gene functions relevant to human diseases.
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Figure 1. Whole-Genome Sequencing Identifies the IBD Homozygous Region and Causative ENU Mutation. (A) The structure of an ENU
pedigree: two ENU treated males paired with WT B6 females generate founder G1 mice for the ENU16CH17a pedigree, and G3 mice exhibiting the
phenotype are selected for WGS. Thus mice within the pedigree carry 4 possible haplotypes, ENU1, ENU2, WT1 and WT2. A yellow star illustrates the
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variants seen in homozygous WT regions, of which 39.5% were at

AT sites (Figure 3E).

Identification of IBD Regions and Mutations at Low
Coverage

For a high throughput ENU program, an analysis based on IBD

would ideally identify SNPs and IBD regions accurately even at

low coverage per individual. Therefore to model this we simulated

a lower coverage dataset by randomly selecting subsets of

ENU16CH17a reads and checked the consistency of variant calls

at different simulated levels of coverage compared to 246 per

mouse. The assignment of IBD regions remained highly consistent

with the complete dataset down to very low coverage levels

(Figure 4A and Figure S4). At 56 coverage per mouse, 93% of

homozygous and 91% of heterozygous IBD regions seen at 246
were assigned, and 83% of homozygous and 77% of heterozygous

variants in IBD regions overlapped with those found in IBD

regions at full coverage (Figure 4B). Within the validated set of

non-synonymous coding and splice site mutations, we identified all

the homozygous IBD variants (2/2), and 69% of heterozygous

IBD variants (18/26) at 56 (Figure 4B).

We compared our IBD approach to a simple method of

selecting all variants observed in all 3 affected mice. At lower

coverage levels the simple approach identified very large numbers

of homozygous shared variants compared to the IBD method; at

56 coverage there were 586 shared variants compared to 158 by

IBD (Figure 4C). This error is likely to be due to the miscalling of

heterozygous variants as homozygous, coupled with accumulation

of further heterozygous variants, since the overall number of

heterozygous shared variants at each simulated depth is greater

than that observed using IBD (Figure 4D). By only considering

variants in IBD genomic intervals, we distinguished homozygous

from heterozygous variation more accurately and reduced the

number of spurious shared variants, making isolation of causative

mutations feasible at low coverage.

To confirm the utility of our method at low coverage

experimentally, we Sanger sequenced shared variants from 3

affected mice in a second ENU pedigree, which had been

sequenced by WGS at 46 per mouse. We again identified the

causative recessive mutation, and found true-positive rates of

85.7% (24/28) for homozygous variants and 86% (48/56) for

heterozygous variants. Within the subset of coding variants, we

identified 100% (4/4) of the homozygous variants, including the

causative variant, and 96% (24/25) of the heterozygous variants

(Table S4). As expected, Sanger sequencing of variants from non-

IBD regions revealed lower true-positive rates, 57% (49/86) of

called variants were confirmed by Sanger sequencing, comprising

59% (10/17) of coding variants and 57% (39/69) of non-coding

variants (Table S5), demonstrating once again the greater

accuracy of variant calling in IBD regions compared to non-IBD

regions at 46 coverage per mouse.

Modeling the Efficient Generation of ENU Libraries
To explore how our computationally efficient and rapid route

from phenotypes to candidate genes could be applied to a large-

segregation of a causative variant. (B) Mice homozygous for the mutation exhibit B cell lymphopenia (here gating on blood lymphocytes). (C) Plots of
homozygous filtered variants show the haplotype blocks across the chromosomes of each sequenced mouse. (D) Shared homozygous variants seen
in all 3 sequenced mice cluster in an IBD region on Chromosome 4, containing exonic mutations in two genes, Lyn and Tlr4. (E) Confirmation of the
Lyn A to G transition by Sanger sequencing. (F) The mutation lies in exon 12 within the catalytic domain.
doi:10.1371/journal.pgen.1003219.g001

Figure 2. Identification of IBD Regions using a Modified Lander-Green Algorithm. (A) Graphical representation of the output of the
algorithm, showing the genotypes for the 3 mice, based on combinations of the 4 haplotypes ENU1, ENU2, WT1 and WT2 inherited from the founder
mice. WT1 and WT2 are genetically indistinguishable. Each mouse is represented by a vertical third of the plot for each chromosome, and color blocks
represent unphased haplotype combinations for each mouse as indicated in the figure. ENU/ENU indicates homozygous ENU regions and ENU/WT
indicates heterozygous regions for ENU 1 or ENU 2. (B) Graphical representation of the chromosomal IBD regions, showing shared heterozygous
(blue) and homozygous (red) IBD regions. Regions are only IBD if all mice share alleles from a particular ENU founder, ENU1 or ENU2. Non
homozygous IBD regions in which all mice carry at least one matching ENU allele are considered IBD heterozygous.
doi:10.1371/journal.pgen.1003219.g002
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scale ENU program, we proceeded to model the inheritance of

mutations within a typical ENU pedigree.

First we asked how frequently a hypothetical fully penetrant

ENU mutation causing a screened phenotype would be observed

among the G3 mice in the proposed breeding strategy. We

assumed that a G1 pair could give rise to 4 stable G2 pairs, each

generating 3 litters with a conservative estimate of 4 live mice per

litter. A single pedigree would then generate 48 G3s for screening

(Figure 1A). Using a probabilistic model incorporating all the

possible inheritance patterns (Materials and Methods), we

calculated that 51% of ENU mutations present in the founder

mice occur 3 times or more as homozygous within the set of G3

mice, and 62% occur twice or more. 99.6% of mutations would be

present at least once as a single allele in the 48 G3 mice, 98% at

least 6 times and 95% at least 9 times (Figure 5A).

Next, we asked whether, under the proposed strategy, the

number of non-causative candidate mutations would be sufficient-

ly small to efficiently exclude these mutations. The number of

candidate mutations IBD in affected G3 mice from a single

pedigree can be estimated as a function of the number of affected

Figure 3. Characterization of the ENU Mutations. (A) The effect of expanding or contracting the homozygous ENU regions on the estimate of
the ENU mutation frequency. (B) The effect of simulated depth of coverage on the estimated ENU mutation frequency. (C) Transition transversion
ratio in homozygous ENU variants compared to a large dataset of non-mutagen induced laboratory mouse variation from the Centre for Genome
Dynamics Mouse SNP Database. (D) The distribution of ENU mutations, showing reference base pairs and substitutions (ref-sub). (E) The proportion of
homozygous mutations that occur at AT sites in homozygous ENU and homozygous WT regions. In each graph, columns or points show mean values
across the 3 sequenced ENU16CH17a mice.
doi:10.1371/journal.pgen.1003219.g003
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G3s sequenced, the empirical ENU mutation frequency of 1.54

mutations Mb{1 (Figure 3B), the relatedness of the mice and the

proportion of mutations that affect protein sense. We found on

average 1.4% (9.3/647.3) homozygous mutations in each G3

mouse lie in exons or splice sites; 73% of this subset caused

missense or splice site mutations; we identified no homozygous

stop mutations in ENU16CH17a. Thus we derive that 1.05% of

mutations affect protein sense. Using these parameters we

calculate that sequencing 3 or 6 mice will reduce the number of

candidates to 1 homozygote or 2–3 heterozygote mutations,

respectively (Figure 5B and Materials and Methods). This model is

consistent with the empirical data from the ENU16CH17a

pedigree.

Discussion

The importance of this study is in showing how low coverage

WGS of multiple mice with a phenotype can identify causative

ENU mutations without the need for out-crossing, or knowledge of

dominant or recessive inheritance. This strategy simultaneously

generates linkage maps and identifies the shared mutations with a

high degree of confidence. The advantage of our linkage-based

approach is that ENU-induced mutations from multiple affected

mice can be used to track the IBD regions and then isolate the

causative mutation.

Linkage analysis using exome sequencing has been effectively

harnessed for the study of human pedigrees. Variations on the

Figure 4. The Effect of Reduced Coverage on the Assignment of Regions and Variants by IBD. (A) The proportion of ENU homozygous
and heterozygous IBD regions from the full 246coverage dataset identified at simulated lower depths of coverage per mouse. (B) The proportion of
homozygous and heterozygous IBD variants from the 246 coverage dataset identified at simulated lower depths of coverage per mouse. The
validated variants are the coding or splice variants confirmed by Sanger sequencing (Table S1). (C) The number of IBD homozygous SNPs at different
simulated coverage depths compared to the number of shared homozygous SNPs across all 3 mice. (D) The number of IBD heterozygous SNPs at
different simulated coverage depths compared to the number of shared heterozygous SNPs across all 3 mice.
doi:10.1371/journal.pgen.1003219.g004

Unlocking the Bottleneck in Forward Genetics

PLOS Genetics | www.plosgenetics.org 6 January 2013 | Volume 9 | Issue 1 | e1003219



Lander-Green method, developed for array data, incorporate

knowledge of the population allele frequencies of HapMap SNPs

[29,30,31]. Alternative approaches use other hidden Markov

models (HMM) to identify regions that are IBD and common to

autosomal recessive phenotypes [32,33]. Reducing the search space

from the whole genome to the exome significantly reduces the

number of informative variants [34], however this is typically several

orders of magnitude larger than the number of ENU-induced

exonic variants, e.g. 6000 to 8000 exonic HapMap variants per

individual [29,30] compared to 74 exonic variants in our ENU

pedigree. The low frequency of ENU coding variants does not

permit fine scale linkage analysis based only on exonic variants.

Exome sequencing also precludes the detection of regulatory

mutations [35], and the inefficiencies of capture have resulted in a

failure to find the causative mutant in one in five ENU pedigrees,

even for recessive traits [8,36]. The ability to detect IBD regions

using low coverage and the falling costs of next generation

sequencing make our WGS method increasingly cost effective.

Knowledge of the ENU mutation frequency allows us to model

an efficient sequencing strategy. Our data show that sequencing 3

affected G3 mice with a recessive trait or 6 mice with a dominant

trait would yield on average 1 or 2 candidate IBD mutations. The

Lander-Green algorithm on which our IBD analysis is based,

scales exponentially with the number of individuals in the

pedigree, but remains computationally feasible with a pedigree

of n individuals and f founders where 2n{f ƒ25 [31,37]. The

algorithm would accommodate further refinement to take into

account the known characteristics of ENU mutations (Figure 3D).

By generating haplotype data for many ENU pedigrees, our

approach will also eventually lead to a fine scale map of active

recombination sites in the mouse, which, unlike existing maps

based on recombinations that arose historically between outbred

strains of mice [38] or more recently between intercrossed inbred

strains [39], is unbiased by selection or strain differences. Such a

map could then be used to optimize the performance of our

Lander-Green based algorithm.

We believe that the adoption of our approach by large-scale

ENU programs will lead to a substantial increase in the

productivity of the programs, advancing our understanding of

gene-function and the mechanisms of genetic disease. Our

approach will reduce the burden in animal costs and allow post-

mortem screens, with increased sophistication and accuracy in a

broader range of tissues. With the rapidly falling costs of WGS we

can envisage a future in which all G3 ENU mice are sequenced to

a depth sufficient to identify and segregate all their mutations,

creating a rich dataset of allelic variation and corresponding

phenotypic information, including linkage data for non-coding

mutations with measurable effects. This could be achieved

accurately with 4–56 sequencing due to the increased power to

impute genotypes. This database could be mined for associations

across pedigrees, including the detection of subtle phenotypes.

Materials and Methods

ENU
ENU16CH17aENU treated B6 mice were generated and

screened at the Australian Phenomics Facility, The Australian

National University, Canberra [40]. Male founder mice for each

pedigree, 8–15 weeks old, were treated three times 1 week apart

with 90–100 mg/kg N-ethyl-N-nitrosourea (Sigma) prepared in

10% ethanol, citrate buffer (pH 5.0). After 8 weeks, the treated

mice were mated with B6 females. Individual G1 progeny were

intercrossed to generated G2 pairs. Phenotypic screening of G3

mice included flow cytometry of peripheral lymphoid cells

(Figure 1A). We obtained tail DNA from 3 affected G3 siblings

from the ENU16CH17a pedigree.

Whole-Genome Sequencing, Mapping, and Variant
Calling

We performed DNA sequencing on an Illumina HiSeq 2000

machine, using two lanes per mouse. 100 bp paired-end reads

were generated. We mapped reads to the mouse reference genome

Figure 5. Modeling the Frequency of Mutants and the Power to Assign Causation by WGS. (A) The frequency distribution for all mutations
within a pedigree at the G3 level, based on a model pedigree of 48 G3 arising from 4 G2 pairs (Materials and Methods). In the specific case of
mutations causing fully penetrant phenotypes, the histograms show the distribution of affected mice with recessive (2 allele) and dominant (1 allele)
traits. (B) The number of IBD candidate mutations, defined as missense, stop or splice-variants, as a function of the number of sequenced affected G3
mice, based on our model.
doi:10.1371/journal.pgen.1003219.g005

Unlocking the Bottleneck in Forward Genetics
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MGSCv37 using Stampy [41] with BWA settings. 94.5% of

genome was covered at least once, mean coverage across the

genome 24 fold per mouse. An in-house variant caller Platypus

was used, version 0.1.8 (www.well.ox.ac.uk/platypus A.J.R,

Mathieson I, G.L, McVean G, (2012)). We annotated the variants

using Annovar [42] with Ensembl (release 64) gene annotation.

Functional predictions were made using Polyphen-2 using

probabilistic classifications based on a model trained with the

HumVar dataset, tailored for detection of Mendelian disease

caused by mutations with large effects. Although the training

dataset consists of human disease causing mutations, the modeling

is based on sequence and structural features applicable across

species [13] and higher Polyphen-2 scoring has been shown to

correlate with damaging murine ENU mutations [36]. The

LynT410A mutation in ENU16CH17a was confirmed independent-

ly using exome sequencing [36].

Variant Filters and Union File
We developed a pipeline to filter the variant calls. As a first step

we eliminated variants previously observed in two or more other

ENU pedigrees using a variant union file (Figure S2), since these

could be assumed to be due to systematic error, for example in

repetitive regions with mismapping, or true non-ENU variation

from the reference mouse sequence. To create this union file of

shared, and thus non-ENU, variation, Platypus was used to call

variants from mice from 9 different ENU pedigrees simultaneous-

ly. Thus at each variant locus a genotype and genotype likelihood

was assigned for all mice. The nine pedigrees included 6 from the

Australian Phenomics Facility at the Australian National Univer-

sity, 2 from the MRC Harwell Centre for Mouse Genetics and one

from the Beutler Group at The Scripps Research Institute. The

Harwell pedigrees and one of the ANU mice were on a mixed

strain background. All other mice were on a straight B6

background (as was ENU16CH17a). We identified 7,624,313

unfiltered calls amongst these 9 pedigrees from 3 centers (Figure

S2A). In order to exclude ENU variation we removed variants

observed in only one pedigree. 83.6% (6,371,574/7,624,313) of

raw variant calls were shared by more than one pedigree (Figure

S2B). Within this dataset of shared variants there were 6,371,548

unique genomic positions, 81.7% were SNPs (5,203,298) and

18.3% (1,168,250) indels). transition:transversion ratio among

SNPs was 1.9% (3,394,771 transitions, 1,805,983 transversions,

2,544 have more than 2 alleles). To examine the proportion of this

shared variation attributable to B6 reference strain mice, we

excluded shared variants exclusively observed in mixed strain

mice. The resultant shared variants are observed in at least 2

pedigrees, including at least one fully B6 pedigree. Since all

pedigrees included from MRC Harwell are mixed strain, the

MRC Harwell variants fully overlap the other laboratories (Figure

S2C). The large majority (91.8%) of non-ENU variation in B6

mice is not laboratory specific, suggesting isolated genetic drift

within individual colonies accounts for little of the observed

variation. 24.1% of the shared dataset were present in dbSNP.

After filtering non-ENU variation from the ENU16CH17a calls,

we removed any additional known variants from dbSNP (version

128) and filtered out remaining calls that were clustered closely

together with a threshold of less than 1,000 bp. The variants were

then filtered for Phred based quality score assigned by the variant

caller v20, removal of calls that failed Platypus allele bias or

strand bias filters, removal of variants with a high local frequency

of bad reads, filters for homopolymers and repetitive sequence,

including di-nucleotide repeats of 20 bp or more. Indels were

removed as ENU overwhelmingly causes point mutations. Finally

loci with coverage in the upper or lower 1% of the coverage

distribution were excluded. All coverage distributions were

measured with BEDTools [43].

Lander-Green Based Algorithm
The Lander-Green algorithm [10] uses a combination of

genotype information from informative markers (here, the SNP

genotypes called from the next-generation sequencing data), and

knowledge of local recombination rates to determine the ancestral

haplotypes in specific genomic intervals, and the locations at which

recombinations and therefore transitions between inheritance state

vectors occur.

The pedigree used in this experiment (Figure 1A) can be

considered to originate with the G1 pair of common ancestors who

each carry a combination of the haplotypes inherited from the G0

mice, these being ENU1, ENU2, WT1 and WT2. Thus for the

purpose of the algorithm the pedigree consists of 5 non-originals –

that is 5 individual mice with parents in the pedigree.

The Lander-Green algorithm represents the ancestral haplo-

types of the 5 non-originals as a state vector with 10 binary co-

ordinates, representing the 5 individual mice, arising from 10

gametes. Within each inheritance vector a 0 coordinate indicates a

gamete carrying grand-paternal DNA at a locus, and 1 indicates

grand-maternal inheritance. These are arbitrarily phased. There

are 210 possible state vectors.

The standard HMM machinery is well documented [44]. A

HMM has two main components which are model-specific: these

are the state transition matrix, which specifies the probabilities of

transitions between any two model states, and the likelihood, which

is the probability of the observed data given a particular model state.

The Lander-Green algorithm uses a state transition matrix based on

the recombination rate, which encodes the probabilities of

transitions between any of the ancestral state vectors, based on

the number of recombinations required for the transition. In our

implementation we use a recombination map [39] to compute

average local recombination rates across the genome. We do not

store the whole transition matrix in memory, but compute matrix

elements on demand. This is straight-forward, as all matrix entries

can be expressed as powers of the recombination rate and one

minus the recombination rate. This vastly reduces the memory

requirements for the algorithm, which are now linear in the number

of state vectors rather than quadratic.

For each G3, a state vector determines which two ancestral

haplotypes that make up G1, make up the local genotype, e.g.

(ENU1, WT2). We compute a probability for the observed SNP

genotypes, given each ancestral state vector, in 100 kb windows

across each chromosome. This probability has two components: a

prior probability of observing a SNP in the given window, and

genotype likelihoods computed by the variant caller from the

sequence data. We assume fixed priors of observing a SNP in ENU

haplotypes (2Mb{1) and WT haplotypes (0:2Mb{1). The IBD

regions inferred by the algorithm were relatively insensitive to

changes in these priors (Figure S3B).

The likelihood for a particular state vector is the sum over all

possible combinations of the SNP genotypes (0/0, 1/0, 1/1) for

the 3 mice, of the product of the SNP priors and the relevant

genotype likelihoods for the 3 G3 mice. This incorporates the

dependent relationships between the mice. In the case of multiple

SNPs occurring in the same window, we assume that the SNPs are

independent, and the likelihood for all mice in the window is the

product of the likelihoods across all SNPs. Using the genotype

likelihoods from the caller allows us to accommodate errors in the

WGS data; a modification to the conventional Lander-Green

algorithm that has been used to infer IBD in array data. [45].
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Due to the paucity of polymorphic sites in the in-bred B6

mouse, there are many 100 kb windows which contain no SNPs. If

no SNPs were called in a window, the most likely explanation is

that no SNPs were present. In a small fraction of cases, a real SNP

will be missed due to low coverage or variant-calling errors. To

deal with windows that contain no SNPs, we supply a set of

likelihoods weighted towards 0/0. Specifically we assume a 1/10

probability that a heterozygous SNP was missed, and a 1/100

probability that a homozygous SNP was missed.

Finally, we use the forward backward algorithm [44] to

compute the posterior probability of each state vector at each

window. We select the state vector with the highest posterior in

each window to construct the sequence of most probable

inheritance states across each chromosome. This information is

shown in Figure 2A.

The program was coded in Python (http://www.python.org) and

Cython (http://cython.org). The code is freely downloadable from

http://www.well.ox.ac.uk/lgenu. Graphical plots of genotypes were

generated using matplotlib (http://matplotlib.sourceforge.net).

Within our three generation pedigree, frequent recombinations,

particularly from state A to state B and back to state A within a

small genomic interval are likely to be artifactual. Therefore we

performed a smoothing step on the output inheritance states, such

that recombinations from state A to state B and back to state A

within 1 Mb, within an allele, are corrected to state A.

In reporting the results we define IBD heterozygous throughout

to refer to regions or variant sets in which all sequenced individuals

share at least one allele from the same ENU founder but are not

IBD homozygous.

Frequency and Characteristics of ENU Mutations
Our dataset includes on average 647 mutations per mouse in

homozygous regions spanning over 1,000 Mb across 3 mice (mean

405 Mb, 15.3% of the genome, per mouse). Sanger sequencing of

the candidate mutations confirms the reliability of our filtered call

set (Table S1). By observing the frequency of these mutations and

subtracting the low background frequency from homozygous WT

regions, we estimated the ENU mutation frequency, and used the

homozygous ENU region variants to examine the base preference of

ENU mutations. Comparison of the transition transversion ratio

was made with all the variants in the Centre for Genome Dynamics

Mouse SNP Database (http://cgd.jax.org/cgdsnpdb) on 8.5.12.

This database includes over 66 million SNPs from 136 inbred

laboratory mouse strains predominantly imputed from the mouse

diversity array [46], and is representative of the characteristics of

naturally occurring (non-ENU) SNPs in an inbred mouse.

Simulating Lower Coverage Depths in Our Empirical
Dataset

We generated random subsets of reads from the ENU16CH17a

bam file using a script that utilizes pysam, a SAMtools [47]

interface for Python. For details see http://code.google.com/p/

pysam/. We called and filtered variants on the down-sampled bam

files using the same pipeline described above. Comparisons of IBD

regions and variant calls between the lower coverage datasets and

the full (246) coverage data were made using BEDTools [43] to

measure intersections. The intersections of IBD regions were

analyzed by a per base pair comparison.

Comparison with Non–IBD Approach to Detect Shared
Variation

To examine whether an IBD method performs better than a

simple per SNP approach to detect shared variation in the 3 mice

attributable to ENU we generated a comparison set of shared

variants at each simulated coverage depth by selecting variants

that were observed in all 3 mice. In exactly the same way as with

the IBD variants we included SNPs in which there was at least one

homozygous or heterozygous mouse and the remaining 0, 1 or 2

mice had no genotype information (denoted :=: in the vcf file) or a

reference (0=0) genotype call with at least one variant call and less

than 5 supporting reference reads.

Calculating the Proportion of Mutations Affecting Protein
Sense

To examine the distribution between missense and splice

mutations we looked at the larger dataset of heterozygous

mutations. Across our three mice, 86% (21.7/25) of potentially

damaging mutations were missense mutations, 6% (1.3/25) were

nonsense mutations and 8% (2/25) were in splice sites. A large

database (http://mutagenetix.utsouthwestern.edu/ on 8.5.12) of

over 5,000 incidental ENU mutations with no observed deleterious

effects, identified in the course of next generation sequencing

(Applied Biosystems SOLiD), reports 85.9% missense, 4.4%

nonsense and 9.7% splicing mutations, and agrees broadly with

our findings.

Modeling Expected Numbers of ENU Mutations in G3
Mice

To model the segregation of mutations within a pedigree, we

calculated the probability of a mutation being inherited by a G3

under the three possible situations where the G2 parents carry 0, 1

or 2 copies of the mutation (in 25%, 50% and 25% cases

respectively; individual G2 mice are not homozygous for any ENU

mutation). We denote the chance of inheriting the mutation at G3

under each of these situations with a given zygosity (homozygous

or heterozygous) at G3 as P0, P1, and P2. Clearly some of these

probabilities will be 0.

Conditional on the number of mutations carried by the G2

parents, the number n of G3 offspring inheriting the mutation with

the required zygosity can be modeled using a binomial distribu-

tion. For a given G2 parent pair, we denote this distribution by

f (n). Assuming that each G2 pair produces 3 litters of 4 live mice,

this distribution is given by

f (n)~0:25
12

n

 !
Pn

0(1{P0)12{nz

0:5
12

n

 !
Pn

1(1{P1)12{nz0:25
12

n

 !
Pn

2(1{P2)12{n

ð1Þ

Here
12

n

� �
or 12 choose n denotes the binomial co-efficient

indexed by 12 and n. To estimate the probability of M G3

carrying the mutation across the 48 G3 from 4 G2 pairs, we can

convolute across all combinations of mice that together transmit

precisely M mutations with the required zygosity from G2 pairs,

such that

Prob(m~M)~
X

izjzkzl~M

f (i)f (j)f (k)f (l) ð2Þ

We considered two situations: one of a recessive mutation, in

which a G3 has two alleles from parents that are heterozygous for

the mutant; and the situation of a dominant mutation, where we

considered that homozygotes may also have the phenotype and
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may be indistinguishable from heterozygotes. In this way it is

possible to calculate the probability of any recessive or dominant

mutation carried by a founder occurring M times in the G3 mice.

The results are presented in Figure 5A.

Modeling Numbers of Shared IBD SNPs in Multiple
Sequenced Mice

We modeled the proportion of the genome expected to be IBD

in q sequenced mice without accounting for linkage to the

causative mutation. We calculated the probability of M G3

carrying a shared ancestral haplotype at any locus as described

above in equation 2 Prob(m~M), for each M between q and 48

(the modeled number of G3 mice), and calculated a probability of

picking q mice sharing such a locus by chance from a pool of M
mice sharing the locus and 48{M individuals not carrying the

locus. Since each mouse can only be picked once this corresponds

to a hypergeometric distribution. We then summed over the

product of this and the Prob(m~M) for each M between q and

48 to get the overall probability, R, of any unlinked locus being

observed in all the affected sequenced mice.

R~
P48

M~q

Prob(m~M)

M

q

� �
48{M

q{q

� �
48

q

� �

~
P48

M~q

Prob(m~M)

M

q

� �
48

q

� �
ð3Þ

R is the proportion of the genome expected to be IBD for a

specified number q of sequenced mice. We used our knowledge of

the ENU mutation rate (1.54 mutations Mb{1), and the fraction

of variation affecting protein sense (1.05% missense, nonsense or

splicing), to estimate the number of homozygous or heterozygous

candidate mutations shared by q affected sequenced mice.

Numberof shared candidates~R � 1:54 � 1:05

We add one mutation to model the causative mutation which is

always present. In phenotypically affected mice a region from the

ENU founder persists around the causative mutation due to

linkage, and this adds another fraction ( 1
c
)( 1

m
)k of the genome,

where c is the fractional size of the chromosome, m is the

number of meioses per G3 mouse, and k is the number of G3

mice. This approximates to a further 0.7 mutations or 7 � 10{3

candidate coding mutations. Since this is negligible we simply

approximate to 1 additional mutation. The results are presented

in Figure 5B.

Sanger Sequencing
We amplified the 28 candidate mutations with two rounds of

PCR from genomic DNA using internal and external fully nested

primers (Table S3) and then amplified with Big Dye (Applied

Biosystems Ltd) before sequencing on an Applied Biosystems

3720xl machine. All nested sequencing reactions were run in

duplicate to check for PCR error. We carried out Sanger

sequencing to validate shared variants from the 3 mice sequenced

at low coverage from a second pedigree using primers shown in

Table S4 and Table S5.

Statistical Methods
Analysis of means was performed using the Graphpad Prism 5

package. All other analyses were written in custom scripts and

described in the Materials and Methods.
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Supporting Information

Figure S1 Splenic B Cell Populations in ENU16CH17a. (A)

B220 and CD93 within the CD45z CD19z B cell population. (B)

Immature B cells gated on CD45z CD19z CD93z, indicating

the T1 (IgMhi CD23{), T2 (IgMhi CD23z) and T3 (IgMlo

CD23{) populations. (C) Mature B Cells gated on CD45z

CD19z CD93{. Follicular (IgMlo CD21hi ) and marginal zones

(IgMhi CD21hi ). (D) Follicular B cells gated on CD45z CD19z

CD93{ IgMlo CD21hi showing IgM vs IgD, expression of IgM
falls and IgD increases with maturity of follicular B cells.

(EPS)

Figure S2 Variant Union File—Distribution of Variations by

Laboratory. (A) All variants called over 9 ENU pedigrees from 3

centers. (B) All variants observed in more than one pedigree. (C)

All variants seen in more than one pedigree including at least one

pedigree on a straight B6 background. Each shape in the Euler

diagrams represents the pedigrees from a single centre.

(EPS)

Figure S3 Effect of Modeled ENU Mutation Frequency Input to

Lander-Green Algorithm on Output Measures. (A) Effect of input

ENU mutation frequency on the estimated ENU mutation

frequency from the IBD regions. We ran the Lander-Green

algorithm using a range of assumed ENU mutation frequencies as

inputs, and estimated the mutation frequency from the data

generated as described in Materials and Methods. (B) Effect of

input ENU mutation frequency on the assigned IBD homozygous

and heterozygous regions. All regions are compared to those

generated using an input rate of 2:0Mb{1. Loss of regions is %

loss compared to the regions at 2:0Mb{1. Gain is % of regions

assigned using each input that were inconsistent with those seen at

2:0Mb{1 input.

(EPS)

Figure S4 IBD Regions Assigned at each Simulated Coverage

Level. Plots of IBD regions from the assigned inheritance states for

each mouse, shown at different simulated coverage levels.

Coverage level is the mean depth per mouse.

(TIF)

Table S1 Candidate Variants. The total shared homozygous or

heterozygous regions contained 2,951 mutations from the filtered

call set (2,191 were present in all 3 mice), including the 2 non-

synonymous homozygous mutations, and 30 heterozygote mis-

sense, nonsense or putative splice site mutations; 28 candidate

homozygous or heterozygous variants were present in all 3 mice.

(PDF)

Table S2 Variants in IBD Regions with Inconsistent Genotypes.

4 protein sense changing variants within the IBD regions were

rejected as causative because they were absent in one or more

affected animal, despite good individual depth of coverage
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(threshold w5 good quality reads at the locus for the inconsistently

genotyped animal).

(PDF)

Table S3 Forward and Reverse Primers used to Validate

Candidate ENU16CH17a Variants.

(PDF)

Table S4 IBD Variants in the Second Pedigree Sequenced at

Low Coverage (46 per individual) used to examine the false

discovery rate at low coverage. The variants in this low coverage

pedigree were a randomly selected subset of the filtered shared

IBD variants and included both coding and non-coding mutations.

Sanger sequencing results: True Positive (TP), False Positive (FP)

Failed Sequencing (Unknown - assumed FP).

(PDF)

Table S5 Non-IBD Variants in the Second Pedigree Low

Coverage. Non-IBD variants selected randomly from the low

coverage pedigree (46 coverage per mouse), showing SNP

genotype from variant caller for each mouse. Sanger sequencing

results: True Positive (TP), False Positive (FP) Failed Sequencing

(Unknown - assumed FP).

(PDF)
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