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Abstract

Electron multiplication charge-coupled devices (EMCCD) are widely used for photon counting experiments and
measurements of low intensity light sources, and are extensively employed in biological fluorescence imaging applications.
These devices have a complex statistical behaviour that is often not fully considered in the analysis of EMCCD data. Robust
and optimal analysis of EMCCD images requires an understanding of their noise properties, in particular to exploit fully the
advantages of Bayesian and maximum-likelihood analysis techniques, whose value is increasingly recognised in biological
imaging for obtaining robust quantitative measurements from challenging data. To improve our own EMCCD analysis and
as an effort to aid that of the wider bioimaging community, we present, explain and discuss a detailed physical model for
EMCCD noise properties, giving a likelihood function for image counts in each pixel for a given incident intensity, and we
explain how to measure the parameters for this model from various calibration images.

Citation: Hirsch M, Wareham RJ, Martin-Fernandez ML, Hobson MP, Rolfe DJ (2013) A Stochastic Model for Electron Multiplication Charge-Coupled Devices –
From Theory to Practice. PLoS ONE 8(1): e53671. doi:10.1371/journal.pone.0053671

Editor: Chin-Tu Chen, The University of Chicago, United States of America

Received July 6, 2012; Accepted December 3, 2012; Published January 31, 2013

Copyright: � 2013 Hirsch et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: The authors gratefully acknowledge the support of the Biotechnology and Biological Sciences Research Council (http://www.bbsrc.ac.uk/home/home.
aspx) through grant BB/G006911/1. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: Michael.Hirsch@stfc.ac.uk

Introduction

Electron multiplication (EM) charge-coupled devices (CCD) are

used to take images under low-light conditions and for photon-

counting experiments. They are applied in a wide range of

scientific fields, such as single molecule microscopy, astronomy,

spectroscopy and biomedical imaging. Imaging under low-light

conditions presents the problem that the signal can be low

compared to the readout noise. EMCCDs overcome this problem

by amplifying the signal in an electron-multiplication register. This

reduces the effective readout noise to less than one electron. This

comes at the price, however, of introducing an additional source of

noise.

Having been pioneered in fields such as astronomy, the

importance of both Bayesian and maximum-likelihood methods

for obtaining robust and accurate quantitative results from analysis

of image data is increasingly being recognised in other fields, in

particular bioimaging [1–5]. Understanding the significance and

accuracy of results depends crucially on a detailed characterisation

of the noise properties of the imaging system and Bayesian

methods allow optimal exploitation of this knowledge to draw

objective conclusions from observations. Therefore, in order to

enable robust quantitative analysis of EMCCD image data, we

need to understand the noise properties of the imaging process. A

convenient form for this noise model is a likelihood function, the

probability of measuring a particular image value in a pixel given

the value of the incident intensity for that pixel.

Rather than giving an explicit model for the noise, measure-

ment errors can also be estimated numerically, for instance via

bootstrapping [6], although this process can be computationally

expensive and is still more limited than a full Bayesian approach in

that there are little to no opportunities for making use of prior

knowledge and belief.

There have been extensive investigations of the noise behaviour

of EMCCD cameras, for instance [7–11]. These works provide

a wide knowledge-base of the noise behaviour of EMCCDs. [12]

measured the excess noise of the electron-multiplication register.

[7] used the knowledge of the likelihood to estimate the ratio of

single photons that can be counted using the cut-off method. [13]

also considered EMCCD noise characteristics to assess their

performance in the photon-counting regime. Attempts to provide

a model for the likelihood function have been made [14],

However, this model is not appropriate for an EMCCD. Also

[10] and [7] used probability density functions (PDF) to model

parts of the EMCCD without taking full advantage of the result. A

recently [15] published work used a detailed noise model

likelihood for an EMCCD, exploiting it for maximum-likelihood

scintillation detection.

Recently further papers have appeared which use or advocate

the use of Bayesian approaches to analyse data but many still

assume simple noise models, commonly a normal or Poisson

distribution (e.g. [2–4,16]) either for computational efficiency or

possibly due to lack of awareness of a better model or how to make

use of one. In an effort to advance our own data analysis

capabilities in the field of single molecule imaging in live cells, we

developed and tested a detailed noise model likelihood function for

EMCCDs. This work was performed independently of [15] and

resulted in the same final model. We will show that empirical

properties of the EMCCD noise, such as the excess noise factor

can be derived from this model. In contrast to [15] however, in

this paper we present and explain this model in detail, test it and
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explain how to calibrate it, so that the wider biological imaging

community can make better use of advanced quantitative data

analysis techniques for EMCCD images.

We will first give a short overview of the sources of noise and

some systematic contributions. Next we motivate and derive the

model for the probability distribution and finally we will suggest

methods for estimating the parameters upon which the model

depends.

Results

Sources of Noise and Bias Subtraction
In order to understand the different sources of noise that affect

low-light measurements, we consider the path of the signal

through the instrument, see Fig. 1. For more details, see for

instance [17]. The first source of noise results from emission of

photons from a light source. The detector component of the

EMCCD consists of a number of bins (pixels). The bins are

combined to form a detector array, which has an exposed and

a covered part plus a readout register. When a photon hits the

exposed part of the detector array there is a chance that it creates

a photoelectron. This stochastic process is the second source of

noise. The number of electrons expected per photon is the

quantum efficiency of the detector. The third source of noise stems

from spurious charge, which consists of two components. The

read-out process shifts the electrons through the system of bins by

means of changing electrode voltages. During the shift process

there is a chance that unwanted electrons are created, which is

known as clock induced charge (CIC). The CIC occurs in the

detector array and readout register as well as in the EM register.

[13] discusses a model for the CIC that includes the EM register.

We consider the CIC in the detector array only, since this yields

sufficiently accurate results. The CIC depends on the vertical clock

speed at which the rows of the detector array are shifted towards

the readout register. The detector array is also affected by

thermally induced dark current, which is usually reduced by the

cooling of the detector. While the dark current is time-dependent,

the CIC only depends on the number of readout processes.

However, for a particular exposure duration and EMCCD

configuration, from the point of view of a noise model, the

spurious charges coming from CIC and dark current can be

considered to be one source of noise. We assume that the charge

transfer efficiency, the fraction of electrons actually transferred

from one bin to another, [7] is 100%. In the EM register, the

electrons are shifted using a higher clock voltage than in the

detector array and readout register to create more electrons

through impact ionisation, which is also a stochastic process and

the fourth source of noise. Finally, the electronics that amplifies the

signal and converts it into discrete image values creates read-out

noise. The sole purpose of the EM register is to increase the signal

well above the readout noise, so that the effective read-out noise is

less than one photon. Figure 2 shows a histogram of a dark image

showing the readout noise (variance of the peak at 80 image

counts) and the amplified spurious charge (tail).

The A/D converter introduces another source of noise – the

quantisation noise – due to the transformation of a continuous

value into a discrete value. However, since the A/D factor is

moderate, the quantisation can be ignored. The EMCCD models

used in this paper have a A/D factor of 10–13 electrons per image

value at maximum pre-amplification gain. The pre-amplifier is

a part of the readout electronics. That means, for an EM gain

factor of 250 we expect 19 to 25 image counts per electron that

enters the EM register. Under such circumstances, the quantisa-

tion noise is a small fraction of an electron.

Beside the noise that is created during read-out, there are also

some systematic contributions from the detector, which we will

briefly consider. To that end we have taken dark images, i.e.

images taken with the detector array covered, but with the usual

exposure time, which therefore only show spurious charge and

noise. Dark images are usually not homogeneous, Fig. 3 left. We

calculated the row and column mean values. The row means are

not purely statistical but have a gradient in intensity. The columns

show systematic effects in the form of lines. The particular pattern

of these effects changes from detector to detector and is also

dependent on the detector settings. Depending on the EM gain

setting, the details of these variations across the image may be

insignificant. However, the measurement and subtraction of the

constant bias offset (added electronically to avoid negative values)

to these images is necessary to understanding the noise, and can be

achieved easily by the process below which also removes these

systematic contributions.

To remove systematic contributions, we determine these

contributions from dark images. The contributions to the value

(dij ) of the pixel in row i and column j come from noise including

spurious charge (nij ) and components that are constant over the

whole image (bias offset, b), a row (ri) or a column (cj ), respectively:

dij~nijzbzrizcj : ð1Þ

The mean values for a row, a column and the total image are

given by:

�ddi:~�nni:zbzriz�cc ð2Þ

�dd:j~�nn:jzbz�rrzcj ð3Þ

�dd~�nnzbz�rrz�cc ð4Þ

The dot in the index is a place holder to indicate whether the

mean was taken over rows or columns. To remove the systematic

contributions from an image composed of the signal and dark

image, iij~sijzdij , we subtract the column and row means of the

dark images for each pixel and add the mean of the total dark

image:

icij~iij{�ddi:{�dd:jz�dd ð5Þ

~sijznijz�nn{�nni:{�nn:j ð6Þ

The transformed image contains only signal and noise

components. If the noise is uncorrelated and isotropic, we can

assume that �nn~�nn:j~�nni: and we get

icij~sijznij{�nn: ð7Þ

Spurious events are rare. If we assume that the mean noise value

is dominated by Gaussian read-out noise with mean 0, then we get

�nn~0 and icij~sijznij . Alternatively, all calculations could also be

Stochastic Model for EMCCD
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done using the median instead of the mean. The amplified

spurious charge will act as outliers. It will pull the mean to slightly

higher values. The median is less affected by such effects.

However, the practical difference is negligible.

Both components of the corrected image contain noise. The

signal contains the Poisson noise of the light source, the noise from

the creation of photoelectrons and the EM noise for the

photoelectrons. The ‘‘noise’’ term contains the Poisson noise of

the spurious charge modified by the EM noise and the read-out

noise. The emission of spurious charge is itself a stochastic process

that has an expected value and a variance.

The Detector Model
Key to the application of Bayesian or maximum-likelihood

methods for robust quantitative analysis of CCD images is the

likelihood of measuring a particular number of electrons in a CCD

pixel for a given input signal. If the expected number of incident

photons hitting a pixel is i and the measured number of image

counts in the pixel is nic, this probability density function is

P(nic; i,detectorproperties). This likelihood function is the noise

model for our problem. Given this function and a parametrised

model (or models) for the variation of i across the CCD,

i(x,y,modelparameters), objective determination of model pa-

rameters with confidence limits is possible, as is robust model

selection and choosing between alternative possible models to

Figure 1. Schematic of the sources of noise during the photon measurement.
doi:10.1371/journal.pone.0053671.g001

Figure 2. Histogram of the experimentally observed image counts from a dark image. The data was taken with an EM gain of 300.
doi:10.1371/journal.pone.0053671.g002
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explain the data. Increasingly challenging imaging problems, e.g.

understanding noisy, crowded images of single molecules in cell

membranes, demand such an approach to open up new avenues of

research.

We want to know the probability of obtaining nic image counts

in a pixel if light of a certain intensity hits the detector. To achieve

that we combine the five sources of noise step-by-step. The result is

a model that is a combination of a Poisson distribution, a gamma

distribution and a normal distribution. We will refer to the model

as the PGN model.

The Poisson contribution. The photons incident on a de-

tector pixel follow a Poisson process [18] with the mean intensity i.
We will denote the parameters of the model with bold lower case

letters (for a reference of notation see table 1). The probability that

nph photons hit the detector pixel is therefore given by a Poisson

distribution P(l) with mean i:

p(nph; i)~P(nph; l~i): ð8Þ

Each photon that hits the detector may cause the emission of

a photoelectron. The probability of this event is the quantum

efficiency, q, which depends on the detector material and the

wavelength of the light. The probability of obtaining npe
photoelectrons from nph photons is given by the binomial

distribution B(npe; nph,q). The probability of getting npe photo-

electrons from a light source is hence given by a combination of

mutually exclusive events of joint probabilities of the Poisson

distribution and the binomial distribution. This is again Poisson

distribution where the mean is the product of intensity and

quantum efficiency:

p(npe; i,q)~
X?

nph~0

P(nph; i)B(npe; nph,q)~P(npe; iq): ð9Þ

The emission of thermal and clock induced charge is also

governed by a Poisson distribution with the emission rate, c. This
contribution can be further decomposed into its dark current and

CIC components, c~t _ccdarkzcCIC , where t is the exposure time.

An electron that enters the EM register is either a photoelectron or

spurious charge. Therefore we can describe the number of input

electrons, nie, of the EM register as the convolution of the two

Poisson distribution for the photoelectrons and spurious charge,

respectively:

Figure 3. Removal of systematic contributions. Colour coded, experimentally observed image counts from a dark image. The strip on the far
right shows the colour code assignment, where black corresponds to the lowest observed image value and white corresponds to the highest
observed image value. From left to right: the original, uncorrected dark image; the image of systematic contributions and the dark image after
contributions have been subtracted.
doi:10.1371/journal.pone.0053671.g003

Table 1. Table of mathematical symbols.

model parameters

I light intensity in photons

q quantum efficiency of the detector in electrons per photon

c spurious charge (dark current and clock induced charge) in electrons

g gain of the electron multiply (EM) register (dimensionless)

r readout noise in electrons

f A/D factor in electrons per image value

H generic parameter for the CCD specifications

quantities of the signal flow

nph number of photons

npe number of photoelectrons

nie number of input electrons of the EM register

noe number of output electrons of the EM register

nic number of image counts (pixel value of the digital image)

probability distributions and models

B(n, p) Binomial distribution of n trials with probability p

Fx(k, l) non-central chi-square distribution

with k degrees of freedom and non-centrality parameter l

c(k, h) gamma distribution with shape parameter k and scale parameter h

G(k, h) augmented gamma distribution, see eqn. (20)

N(m, s) normal distribution with mean m and standard deviation s

P(l) Poisson distribution with mean or rate l

T(n, g) Tubbs’s model for n input electrons and gain g, see [11]

l parameter of the Poisson distribution, exclusively

The probability density function of a distribution is denoted with the symbol of
the distribution followed in brackets by the variable and the parameters
separated by a semicolon, e.g. c(x; k,h) for the gamma distribution.
doi:10.1371/journal.pone.0053671.t001
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p(nie; i,q,c)~
Xnie
m~0

P(m; iq)P(nie{m; c)~P(nie; iqzc): ð10Þ

The expected number of input electrons is the parameter of the

Poisson distribution: E½nie�~l~iqzc: Note that lw0 always

holds, since cw0, even though it might be very small. Hence we

don’t need to consider the case where l~0.
The EM register model. There are two similar ways to

describe an EM register with gain g. [10] suggests the gamma

distribution for the probability to get noe output electrons:

p(noe; nie,g)~c(noe; nie,g)~noe
nie{1 e{noe=g

C(nie)gnie
: ð11Þ

The other possibility was suggested by R. Tubbs [11]. His

approach initially looks at two models, one of which is a cascade of

Poisson processes and the other a cascade of Bernoulli trials. This

goes along with our understanding of the impact ionisation during

the charge transfer in the EM register. However, Tubbs finds that

the difference between the models is minor and concludes that

discretisation of the signal dominates the signal to noise

performance rather than the internal properties of the individual

gain stages. He derives the following approximation for the

probability distribution, T(noe; nie,g), for the number of output

electrons, noe, given the number of input electrons and depending

on the gain factor, g:

T(noe; nie,g)~

(noe{niez1)nie{1

(nie{1)!(g{1z 1
nie

)nie
exp {

noe{niez1

g{1z 1
nie

� �
if noe§niew0

0 otherwise

8><
>:

ð12Þ

This approximation is valid for large gains and large numbers of

input electrons.

We have analysed Tubbs’s model. If we define

j~noe{niez1 and h~g{1z
1

nie
, ð13Þ

then we see that eqn. (12) is a gamma distribution for j with shape

parameter nie and scale parameter h,

c(j; nie,h)~jnie{1 e{j=h

C(nie)h
nie

: ð14Þ

Note that the scale parameter lies between the gain and gain

minus one, h[(g{1,g�. The variable j is the number of electrons

created in the EM register plus one.

Using the standard result for the gamma distribution we obtain

for both models the same expectation value for noe,

E½noe�~nieg: ð15Þ

For the Tubbs models it follows from

E½noe�~E½j�znie{1~nie(g{1z1=nie)znie{1~nieg: ð16Þ

Both models fulfil our expectation that g is the gain. Similarly

the variance is

s2noe~nieg
2, ð17Þ

in both cases. While the parameter transformation g?h is

obviously not very significant, the transformation noe?j does

seem to have a higher impact. However a simple rearrangement

shows that noe~j g
h. That means for large gains both models are

from a practical point of view identical. Moreover, both models

are already approximations of convolutions of the individual EM

stages.

EM register simulations. To decide whether to use the

Tubbs approach or the gamma distribution as a model for the EM

register, we simulated the EM register, which is composed of some

hundred gain stages, by modelling an individual stage with either

a Poisson distribution with parameter l or a binomial distribution

with probability p (see materials and methods). The choice of

l~p~0:01 yielded the same overall gain of just above 200 for

both models. This is a recommended value for EMCCDs in

intensity measurement experiments, since it reduces the effective

readout noise to less than one photon. We used this gain value to

calculate the probability density with Tubbs’s function and the

gamma distribution. Fig. 4 shows the results for one, two and sixty

input electrons. We calculated the gain parameter for Tubbs’s

model and the gamma distribution as the mean of the samples of

the Poisson based simulation divided by the number of input

electrons. The parameters for the normal distribution are the

sample mean and the sample standard deviation of the same

simulation. We see a high similarity between the Poisson and

Binomial simulations, which is due to the low probability for an

individual electron to be released. Both, the Tubbs model and the

gamma distribution fit the simulation very well. From a practical

point of view the distributions are undistinguishable for high gain

values. The normal distribution fits the data very poorly for low

numbers of input electrons. The fit improves for more input

electrons. However, the higher the signal the less appropriate it

becomes to use an EMCCD. The normal distribution is therefore

not an appropriate model for the EM register.

For low gain settings, there is a clear difference between the

Tubbs model and the gamma distribution as Fig. 5 shows. For 15

input electrons both models fit the simulation reasonably well. The

Tubbs model is slightly sharper than the simulation whereas the

gamma distribution is slightly broader, though in both cases the

difference is small. For 2 input electrons the Tubbs model seems to

fit the simulation better than the gamma distribution. Since

EMCCDs are not operated in low gain modes, this difference has

no practical consequence. Note again that both simulations are

very similar.

Following the theoretical considerations and the results of the

simulations, we decided to use the gamma distribution as the

model for the EM register, given that it is slightly simpler.

The combined Poisson-Gamma distribution. The prob-

ability that noe electrons leave the EM register if light with a mean

intensity of i photons hits the detector is

Stochastic Model for EMCCD
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p(noe; i,q,c,g)~
Xnoe
nie~1

P(nie; iqzc)c(noe; nie,g) ð18Þ

~ P(iqzc)0c(g)ð Þ(noe): ð19Þ

A composition of the Poisson distribution and the gamma

distribution as a model for EMCCDs has also been given by [10],

although quantum efficiency and spurious charge were not

integrated into the model. Since we want to formulate the

probability density for the whole process we have to take into

account the possibility that no electron enters the EM register.

Neither the gamma distribution nor Tubbs’s model allows this

possibility. We need therefore to expand the model for the EM

register such that

p(noe; nie,g)~G(noe; nie,g)~

c(noe; nie,g) noe§niew0

1 noe~nie~0

0 otherwise :

8><
>: ð20Þ

This means that we assume that the EM register does not

produce any electrons if the input is zero and that all spurious

charge is created before the EM register, which is not the case in

reality. [13] considers this point, while others (e.g. [15]) make the

same assumption that we do here. We obtain with l~iqzc (i.e.

l~E½nie�) the composition.

p(noe; i,q,c,g)~(P(iqzc)0G(g))(noe) ð21Þ

Figure 4. Simulation of the EM register composed of 536 stages with the Tubbs model, gamma distribution and normal
distributions fitted. The parameters for the distributions were calculated from the Poisson distribution (50,000 samples). Gain is estimated as
sample mean divided by the number of input electrons, the parameters for the normal distribution are sample mean and sample standard deviation.
(A) 1 input electron, (B) 2 input electrons, (C) 60 input electrons. The probability to create a new electron for each existing electron per multiplication
stage is 1%. That yielded overall gains between 206 and 208. Both simulations, the Tubbs model and the gamma distribution are very similar in all
cases. For a high number of input electrons, the similarity of the normal distribution to the simulated data is also high. However, EMCCDs are used to
measure low intensities or single photons.
doi:10.1371/journal.pone.0053671.g004
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~

Pnoe
m~1 P(m; l)c(noe;m,g) noew0

e{l noe~0

0 noev0

8>>><
>>>:

ð22Þ

We assume noe§nie, i.e. that at least as many electrons are

leaving the EM register as were entering the EM register.

Therefore the sum in eqn. (22) runs to m~noe.

The additional e{l term is insignificant if the number of

photons is large, say if lw10, but it affects the distribution for

small l as illustrated in Fig. 6. The sampling was done as for Figs. 4

and 5, except that the number of input electrons, nie, was sampled

from (10).

However, eqn. (22) is rather unwieldy. It also appears to be

easier to consider the series

S(noe; l,g)~
X?
m~1

P(m; l)c(noe;m,g): ð23Þ

rather than the finite sum of eqn. (22). For high gain, the difference

between the equations is negligible. Numerical estimates yielded

X?
noe~1

X?
m~noez1

P(m; l)c(noe;m,g)v3|10{5 ð24Þ

for any l and gw100, whereas the expression is largest for small l.
A rearrangement of terms in eqn. (23), recalling that

C(mz1)~m!, and the substitution m.mz1 leads to

S(noe; l,g)~

le{l

g
exp {

noe

g

� �X?
m~0

noel

g

� �m
1

C(mz1)C(mz2)
:

ð25Þ

The sum of this series is known to be.

S(noe; l,g)~
le{l

g
exp {

noe

g

� �
0
~FF1 ; 2;

noel

g

� �
, ð26Þ

where 0
~FF1 is the regularised hypergeometric function. We use an

identity to transform the hypergeometric function into a modified

Bessel function of the first kind:

0
~FF1(; b; z)~z(1{b)=2Ib{1(2

ffiffiffi
z

p
) ð27Þ

Further rearrangement leads to

S(noe; l,g)~

ffiffiffiffiffiffiffiffiffi
l

noeg

s
exp {

noe

g
{l

� �
I1 2

ffiffiffiffiffiffiffiffiffiffi
noe

g
l

r� �
ð28Þ

We can write the last expression as

S(noe; l,g)~
2

g
Fx(2l; 4,2noe=g), ð29Þ

where Fx is the non-central x
2 distribution for 2l with 4 degrees of

freedom and the noncentrality parameter 2noe=g.
The eqn. (22) can therefore be written as (again l~iqzc):

p(noe; i,q,c,g)~ffiffiffiffiffiffiffi
l

noeg

q
exp { noe

g
{l

� �
I1 2

ffiffiffiffiffiffiffiffiffi
noe
g
l

q� �
noew0

e{l noe~0

0 noev0

8>>>><
>>>>:

ð30Þ

Figure 5. Difference of the Tubbs model and the gamma distribution for low gain settings. The EM register models are fitted to simulated
data (A) 2 input electrons, (B) 15 input electrons. The probability to create a new electron per existing electron in a multiplication bin is 0.5%. That
yielded an overall gain of 14.48. Sample number 250,000. For two input electrons the Tubbs model fits the data slightly better than the gamma
distribution. However, EMCCDs are usually operated with much higher EM gain values.
doi:10.1371/journal.pone.0053671.g005
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We get the following results for the expected values of noe and

n2oe

E½noe�~gl ð31Þ

E½noe2�~g2l(2zl) ð32Þ

Hence the variance is given by

s2noe~2g2l ð33Þ

The model thus explains the excess noise factor of the EMCCD

which has been measured as
ffiffiffi
2

p
(e.g. [12]):

snoe~
ffiffiffi
2

p
gsnie ð34Þ

This factor is also cited by [7] and [19] who refer to [12] and

EMCCD manufacturer’s documentation [20,21].

Including the readout noise. The last component of the

model is the readout noise which is modelled by a normal

distribution with standard deviation r, N(fnic; noe,r). The readout

register converts the analogue signal into discrete image values.

The analogue-to-digital proportionality factor, f (A/D factor,

sometimes referred to as amplifier sensitivity), is the number of

electrons per image value. In other words, we have

f~E½noe�=E½nic�. Therefore the probability of measuring image

value nic in a pixel for a given set of EMCCD specifications

H~(q,c,g,r,f) and l~iqzc can be written as:

p(nic; i,H)~((P(l)0G(g)) �N(r))(fnic) ð35Þ

~P(0; l)N(fnic; 0,r)z
2

g

X?
m~1

Fx(2l; 4,2m=g)N(fnic;m,r) ð36Þ

If we apply the approximation given in [13] we obtain

p(nic; i,H)~

P(0; l)N(fnic; 0,r)z
2
g
Fx(2l; 4,2fnic=g) nicw0

P(0; l)N(fnic; 0,r) nicƒ0

(
ð37Þ

~

1ffiffiffiffi
2p

p
s
exp {l{

(fnic)
2

2s2

� �
z 2

g
Fx(2l; 4,2fnic=g) nicw0

1ffiffiffiffi
2p

p
s
exp {l{

(fnic)
2

2s2

� �
nicƒ0

8>>><
>>>:

ð38Þ

This is the PGN noise model likelihood of the EMCCD in its

general form. These equations appear in a similar form in [19] and

[15] using eqn. (28). The case distinction is necessary since the

second summand is undetermined for nicƒ0. However such

values are likely to appear in low-light imaging.

Figure 6. Sampling of the distribution of output electrons of an EM register for 5 photons. The simulation shows the effect of low light
intensities in the model. A large number of bins is chosen to emphasise the spike at 0 output electrons. The spike is the result of the assumption that
zero input electrons will always yield zero output electrons. Other parameters: 90% quantum efficiency and 0.02 electrons spurious charge per pixel.
Sample number 100,000.
doi:10.1371/journal.pone.0053671.g006
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Estimation of the Parameters
To use the model, we need to estimate the quantum efficiency,

q, the spurious charge, c, the EM gain, g, the readout noise, r, and
the A/D factor, f.

The analogue-to-digital proportionality factor. To esti-

mate the A/D factor, or sensitivity, f, we apply the mean-variance

test [22] to a series of image stacks, each stack taken with a different

constant intensity of source light. To make sure that the

probability of the image counts, nic, is dominated by the Poisson

component, the EM gain is set to the lowest value or turned off

(depending on the make of the EMCCD). Hence we have

approximately p(nic; i,H)&p(nic; i,q,f)~P(fnic; iq). The probabil-
ity for nic is therefore a scaled Poisson distribution with mean

�nnic~�nnoe=f and variance s2nic~noe=f
2. We can therefore estimate

f̂f~�nnic=s
2
nic
: ð39Þ

In practice, the A/D factor is estimated as the inverse of the

gradient of the least-squares straight line fit to the mean-variance

data, combining results from multiple intensities. Fig. 7 shows two

example plots for such an estimation. The data points form a chain

of overlapping ‘‘blobs’’ where each blob represents an individual

data set with a particular light intensity. The data was taken with

different readout rates. The difference of the readout rates is small,

which is in agreement with the manufacturer’s specification.

EM gain. For large gain factors, the readout noise becomes

negligible compared to the EM noise. The variance of the output

electrons of the EM register is according to eqn. (34) given by

s2noe~2g2l. Considering the expectation for noe, E½noe�~lg and

the relations of expected value and variance between output

electrons and image counts, E½noe�~fE½nic� and s2noe~f2s2nic , we

can estimate the gain g by

ĝg~f
s2nic
2�nnic

: ð40Þ

Hence, we can acquire ĝg through a mean-variance test of stacks

of white light images with different intensities, fitting a straight line

and using the gradient. For a single intensity dataset we can

estimate l with

l̂l~2
�nn2ic
s2nic

~f
�nnic
ĝg
: ð41Þ

[23] (supplement) suggest to estimate the gain by manually

fitting eqn. (36) to stacks of white-light images. This approach was

also adopted by [19]. Fig. 8 shows an example plot for such an

estimation. The plot of the data is club-shaped. The plot shows the

data taken with three different gain settings in three different

colours. The gradient of the linear model fitted incrases with

increasing gain-setting.

Spurious charge and readout noise. We estimate the

spurious charge and the readout noise from dark images. The

probability distribution of a dark image for parameters

H~(c,g,r,f) is given by

p(nic;H)~((P(c)0G(g)) �N(r))(fnic) ð42Þ

An example histogram for high gain is shown in Fig. 2. The

peak around 80 image counts marks the bias offset and its width is

determined by the readout noise. Nonetheless the peak is not

a pure Gaussian since it also contains spurious charge. We have

seen in Fig. 4A that, for one input electron, a small number of

output electrons is most likely. The fat tail is caused by the

amplified spurious charge. The time-dependent thermally induced

component of the spurious charge is very low. In a test exposure

over 3 hours and with a 280uC detector temperature, we

measured 0.0023 electrons per pixel per second. This means that

the spurious charge is mainly clock induced.

We use the parameters estimated from light images to estimate

the remaining two parameters. We take a series of dark images and

create a histogram (nicDj ,fj) with N bins, where nicDj is the mean

count of bin j and fj is the frequency of occurrence. We estimate

the readout noise and spurious charge from the maximum of the

log-likelihood.

Figure 7. Mean-variance plot for the A/D factor estimation. Each
dot represents mean and variance of the intensity of an individual pixel
for 60 frames across a single data set. The values of 9 data sets are
shown which appear as ‘‘blobs’’ in the image. Each data set was taken
with a different but constant light intensity. The data shown in red was
taken with 3 MHz readout rate and the data shown in black was taken
with 10 MHz.
doi:10.1371/journal.pone.0053671.g007

Figure 8. Mean-variance plot for the EM gain estimation. Mean
and variance were calculated from 60 values per pixel. Shown are data
sets taken with an EM gain setting of 150 (blue), 200 (green) and 250
(red). The black lines indicate the fitted linear model. Each data set
contains 932970 points; 7500 randomly sampled data points are shown.
doi:10.1371/journal.pone.0053671.g008
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l(H)~
XN
j~1

fj log (p(nicDj ,H)) : ð43Þ

The probability p(nicDj ,H) is the model for the dark image eqn.

(42) with H~(c,g,r,f). The parameters g and f are the fixed

estimates we obtained earlier. That means we estimate.

(ĉc,̂rr)~ argmax
(c,r)

l(c,g~ĝg,r,f~f̂f): ð44Þ

Fig. 9 shows the results yielded by a distribution sampler (see

Materials and Methods) for eqn. (44). The data was taken with

10 MHz and 3 MHz readout rate. The manufacturer gives the

readout noise as 53 electrons and 32 electrons respectively.

Quantum efficiency. It is difficult to measure the quantum

efficiency. In particular it is difficult to know how many photons

actually hit the detector. We therefore take the quantum efficiency

from the manufacturer’s specification.

Validation
To see if the model is a good description of a real EMCCD, we

compared the model with the intensity density of a white light

images with a short exposure time and a dim light source. The

data sets were taken through an Optosplit III image splitter (Cairn

Research) as we use it for single molecule imaging [24]. This

Optosplit divides the image into three spectrally distinct but

spatially identical channels. We took image series of 100 frames

with 3 different light intensities. The intensity density for each data

set and each channel is shown in figure 10 (continuous lines). We

estimated the gain according to eqn. (40) using all data sets. The

expected number of input electrons was estimated according to

eqn. (41) for each channel and each data set separately. The input

electrons are photo electrons and spurious charge. The result is

shown in figure 10. The output is given in image counts with an

A/D factor of 12.7 electrons per image count (taken from the

manufacturer’s performance sheet). The density functions of the

model closely resemble the densities calculated from the image

data.

Panel (D) of Fig. 10 shows the comparison of the density of

image intensities, the model density and the density of a combined

gamma-Gaussian distribution. The shape parameter of the gamma

distribution is half the number of input electrons of the EM

register and the scale parameter is twice the EM gain. The normal

distribution is parametrised with the estimate for the readout noise

in all cases. For higher numbers of input electrons the model and

the gamma distribution become more similar so that the gamma

distribution can be used as a simplification. It is important to

remark that simply applying the gamma distribution from the start

does not tell us anything about the meaning of the parameters. We

would also lose the understanding about the assumptions and

approximations that have been made and therefore the limitations

of the model.

Discussion

We have introduced a stochastic model for EMCCDs. This

model does not just give expected value and error as descriptive

parameters, but provides a full probability distribution. The model

agrees with that in [15] and theoretically confirms the excess noise

factor of
ffiffiffi
2

p
that was found empirically by other researchers [12].

Understanding noise model properties in detail allows acceptable

approximations to be made where necessary for individual

problems.

The parameters of the model can change for different settings of

readout rate, pre-amplification gain, EM gain, CCD temperature

and vertical clock speed. The model parameters may also be

different for other modes of operation, such as binning or frame

transfer mode Therefore we recommend to estimate the model

parameters for each set of settings. We recommend the following

procedure:

1. Bias offset correction. For each experiment a number (50–100) of

dark images is taken with the same settings as the images that

Figure 9. Maximum likelihood estimation for spurious charge (electrons/pixel) and readout noise (electrons). Shown are the samples
of the likelihood function (see Material and Methods) of readout noise and spurious charge for a set of dark images. The images for (A) and (B) were
taken with 3 MHz and 10 MHz readout rates respectively. The manufacturer gives ca. 53 electrons readout noise for the settings used for (A) and ca.
32 electrons readout noise for the settings used for (B).
doi:10.1371/journal.pone.0053671.g009
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are to be corrected. The bias is removed according to eqn. (5).

The row, column and total means can hereby taken over

a range of images.

2. Sensitivity estimation. A number of white light images series

should be taken, each with EM gain minimal or if possible with

EM gain off, using a constant light source. We put water

between the light source and the CCD to make the light more

homogeneous. Each series needs to contain enough images to

calculate the intensity variance on a pixel by pixel basis. The

image counts should be different for each series, either by

changing the intensity of the light source or by changing the

exposure time between each series. The series should cover

a wide range of image counts, but pixel saturation must be

avoided. For each pixel of each series, the mean, �nnic, and

variance, s2nic , of image counts should be determined and

a straight line fitted to the data from all pixels and image series

to give the sensitivity using s2nic~�nnic=f̂f. Sensitivity estimation

need only ever be performed once for a particular EMCCD

and combination of settings.

3. EM gain estimation. This can be performed in a similar fashion to

the sensitivity, by fitting a straight line to the pixel mean-

variance data from a series of constant-intensity image stacks

each of different intensity, except that the EM gain should be

set to the value for which the gain needs to be measured, i.e.

the value of EM gain used in experiments. From eqn. (40), the

gradient of the mean-variance fit will give the EM gain. The

EM gain estimation need only be performed for each

individual EMCCD and settings occasionally, but should be

periodically repeated because it is known to change as an

EMCCD ages, at a rate depending on how the EMCCD is

used [21,25,26]. According to a manual of Hamamatsu [21]

the ageing effect is most prominent at the beginning of the

EMCCD usage. We did not explore the ageing behaviour.

4. Spurious charge and readout noise estimation. This can be performed

from dark images according to eqn. (44). The same dark

images used for the bias correction may be used. The

maximum likelihood estimation is applied to a histogram of

the intensities of the bias corrected dark images.

The most suitable setting for the EM gain depends on the

experiment type. For low-light intensity measurements the gain

needs to be high enough to overcome the readout noise. A signal

of 10 electrons would disappear in a readout noise of 50 electrons.

Figure 10. Comparison of the density of stacks of white light images with the model density. Each panel shows intensity density of a data
set of 100 frames and 3 optical channels (continuous lines). The data sets were taken with different intensities; (A) low intensity, (B) medium intensity
and (C) high intensity. The model densities are drawn with dashed lines. The common gain estimate is 175.9. The difference in intensities for different
channels of the same data set is caused by the splitter optics. Panel (D) shows the comparison of the density of the image counts with the density of
the CCD model and the density of a convolution of a gamma distribution with a normal distribution. The shape parameter of the gamma distribution
is half the number of input electrons of the EM register, while the scale parameter is twice the estimated EM gain. The estimated number of average
input electrons is 8.7. For higher light intensities, the densities become more similar.
doi:10.1371/journal.pone.0053671.g010
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However, if the signal is multiplied by a factor of 200, the signal to

readout noise ratio would be 40:1. EMCCD manufacturers often

limit the EM gain to around a factor of 1000 and some have

implemented an additional setting to unlock EM gains beyond

factor 300. This is done to protect the EM register from ageing.

For photon count experiments however, [7] argue that the EM

gain should be as high as possible. The reason for this lies in the

shape of the distribution of output electrons for one input electron,

see Fig. 4A. The mode of the distribution is at one output electron.

That means even for a gain of 200, the likelihood to get less than

50 output electrons from one input electron is very high. The

situation immediately changes for two input electrons, where the

mode of the probability density is much higher. Consequently,

photon counting experiments, where the aim is to detect single

photons need to be treated differently from intensity measure-

ments, where the number of photons in a pixel is estimated.

Although we have considered a wide range of influences on the

detected image counts, not all of the factors need to be considered

all the time. Thanks to the EM register the readout noise is very

low compared to other sources of noise. In some cases it can be

ignored, which simplifies eqn. (36) to a form of eqn. (30) that uses

the relationship noe~fnic. The dark current is very low if the

detector is cooled. For short exposure times, it might even be

ignored. We took a series of dark images with a 3 hour exposure

time and estimated a dark current of 0.0023 electrons per pixel

and second or 8.23 electrons per pixel and hour. Since the clock

induced charge is a time constant offset, the dark current can be

more precisely estimated by fitting a linear model to dark image

data collected with different exposure times.

The CIC causes rare single pixel events. Individual events can

have moderately high image counts. It is one advantage of the

model presented here that it appropriately takes such events into

account. This can for instance affect feature detection methods

that compare the probability that there is a feature at a particular

location to the probability that there is only background and noise.

Conventional CCDs have a lower readout noise than

EMCCDs. That means EMCCDs lose their advantage over

conventional CCDs if the expected number of photons is high, see

e.g. [27]. At relatively high temperatures the contribution of the

dark current increases significantly. Since the number of photo-

electrons is low, the dark current would considerably contribute to

the image. Therefore, EMCCDs normally are operated at low

temperatures. We made the assumption that no spurious charge –

neither clock induced charge nor dark current – is created in the

EM register. As far as this assumption is valid, the model would be

unaffected by higher temperature, since it only would affect the

number of input electrons. However, in reality spurious charge

also is created in the EM register [13]. For the specification range

that we considered, our assumption is justified.

The temperature of the detector chip also affects the EM gain.

We did not measure the temperature dependency of the EM gain.

Technical notes of the chip manufacturer e2v [28] and CCD

manufactures suggest that the EM gain smoothly increases with

decreasing temperature. The chance to create an extra electron in

an EM register bin is very small. This is true for any temperature

and causes a high similarity for the underlying bin models, the

binomial distribution and the Poisson distribution. Taking into

account the smooth dependency, we do not expect the temper-

ature to change the principal way of functioning of the EM

register, but only to affect the values of the parameters. We would

therefore expect our model for the EM register to be valid for any

temperature. However anyone using the model should confirm

this when determining parameters for their detector setup, taking

extra care if operating outside the manufacturer’s recommended

regime.

The distribution of image counts that result from a constant

light source of low intensity is not normal, as the examples in

figures 10 and 4 show. Under such circumstances the descriptive

parameters mean and standard deviation have questionable value

and to give intensity measurements as mean plus-minus standard

deviation can be misleading. The remarks about the gain setting

for photon counting experiments emphasize this. Even though the

expected number of image values per photon lies well above the

readout noise, many photons will yield much fewer image counts

and be concealed by the noise.

Materials and Methods

The images were taken with an Andor iXon+ EMCCD with

a CCD97 detector chip from e2v [28] using 10MHz readout rate,

30ms exposure time and 0:5ms vertical clock speed at {80
0
C

sensor temperature. Simulations were done using R. Matlab was

used to aid the derivation of the equations. The parameter

estimation was implemented in C++. The optimisation of the

maximum likelihood was done using MultiNest [29].

We simulated the EM register with s~536 stages (the number

of stages of the CCD97 chip) with two models. In the first model

we assumed that the number of electrons released in one stage by

each incoming electron is governed by a Poisson distribution,

P(k; l), where k is the number of created electrons and l the

emission rate or expected number of electrons created by a single

incoming electron. For n incoming electrons we have to calculate

the convolution of n Poisson distributions with the same emission

rate, which is simply a Poisson distribution where the emission rate

is multiplied by the number of electrons, i.e. we model each stage

with P(k; nl). The second model assumes that each incoming

electron can release one electron by impact ionisation, thus that

the number of emitted electrons in a single stage is governed by

a binomial distribution, B(k; n,p) where k is the number of new

electrons, n the number of incoming electrons and p the

probability of impact ionisation. The probability density function

for the simulation of the EM register can be expressed as

p(noe; nie,s,q)~
Xnoe

m~nie

p(m; nie,s{1,q)D(noe{m;m,q) ð45Þ

p(m; l,0,q)~
1 m~l

0 m=l

�
ð46Þ

where D is either the binomial distribution, D(k; n,p)~B(k; n,p),
or the Poisson distribution D(k; n,l)~P(k; nl).

Acknowledgments

We are grateful to Christopher Tynan for critically reading the manuscript.

Author Contributions

Conceived and designed the experiments: M. Hirsch RW M. Hobson DR.

Performed the experiments: M. Hirsch. Analyzed the data: M. Hirsch RW.

Contributed reagents/materials/analysis tools: M. Hirsch RW MM-F DR.

Wrote the paper: M. Hirsch DR.

Stochastic Model for EMCCD

PLOS ONE | www.plosone.org 12 January 2013 | Volume 8 | Issue 1 | e53671



References

1. Ober RJ, Ram S, Ward ES (2004) Localization Accuracy in Single-Molecule

Microscopy. Biophys J 86: 1185–1200.
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