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Abstract
Autoimmune thyroid diseases (AITD), including Graves’ disease (GD) and Hashimoto’s
thyroiditis (HT) are prevalent autoimmune diseases, affecting up to 5% of the general population.
Autoimmune thyroid diseases arise due to complex interactions between environmental and
genetic factors. Significant progress has been made in our understanding of the genetic and
environmental triggers contributing to AITD. However, the interactions between genes and
environment are yet to be defined. Among the major AITD susceptibility genes that have been
identified and characterized is the HLADR gene locus, as well as non-MHC genes including the
CTLA-4, CD40, PTPN22, thyroglobulin, and TSH receptor genes. The major environmental
triggers of AITD include iodine, medications, infection, smoking, and possibly stress. Recent data
on the genetic predisposition to AITD lead to novel putative mechanisms by which the genetic-
environmental interactions may lead to the development of thyroid autoimmunity.

INTRODUCTION
The two major autoimmune thyroid diseases (AITD) include Graves’ disease (GD) and
Hashimoto’s thyroiditis (HT), both of which are characterized pathologically by infiltration
of the thyroid by T and B cells, reactive to thyroid antigens, biochemically by the production
of thyroid autoantibodies, and clinically by abnormal thyroid functions (hyperthyroidism in
GD and hypothyroidism in HT) (reviewed in (1; 2)). Additional variants of AITD include
post-partum thyroiditis (reviewed in (3–5)), drug induced thyroiditis, such as interferon
induced thyroiditis (IIT) (6), thyroiditis associated with polyglandular autoimmune
syndromes (reviewed in (7; 8). While the exact etiology of thyroid autoimmunity is not
known, it is believed to develop when a combination of genetic susceptibility (9; 10) and
environmental encounters leads to breakdown of tolerance. While several major genes and
environmental factors contributing to the etiology of AITD have been identified, their
interactions are still not understood.

METHODOLOGICAL ADVANCES
Recent advances in genetic methods enabled significant progress in the identification of
complex disease genes. Complex disease genes can be identified by linkage analysis or by
association studies. Classically linkage studies were most powerful for screening the entire

Address for correspondence: Yaron Tomer, MD, Division of Endocrinology, University of Cincinnati, The Vontz Center for
Molecular Studies, 3125 Eden Avenue, Cincinnati, OH. 45267, Voice: (513) 558-4444; Fax: (513) 558-8581, Yaron.Tomer@UC.edu.

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of
the resulting proof before it is published in its final citable form. Please note that during the production process errors may be
discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

NIH Public Access
Author Manuscript
J Autoimmun. Author manuscript; available in PMC 2013 February 01.

Published in final edited form as:
J Autoimmun. 2009 ; 32(3-4): 231–239. doi:10.1016/j.jaut.2009.02.007.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



genome while association studies were mostly utilized for candidate gene analysis.
However, genome wide associations (GWAS) have become a reality and proved to be a
powerful tool for gene mapping.

Linkage analysis
The principle of linkage analysis is based on the premise that if two genes or polymorphisms
are close together on a chromosome they will co-segregate in families. The likelihood that a
recombination will occur between them during meiosis is inversely related to the distance
between them. Therefore, if a polymorphic marker is close to a disease susceptibility gene,
its alleles will co-segregate with the disease in families. The measure of the likelihood of
linkage between a disease and a genetic marker is the LOD (logarithm of odds) score (11).
The LOD score is the base-10 logarithm of the odds ratio in favor of linkage. According to
widely accepted guidelines, in complex diseases a LOD score of >1.9 is suggestive of
linkage, while a LOD score of >3.3 indicates significant linkage in studies using the
parametric approach. Linkage is confirmed if evidence for linkage is replicated in two
separate data sets (12).

Association analysis
Association analysis is highly sensitive and may detect genes contributing <5% of the total
genetic contribution to a disease. Association analyses are performed by comparing the
frequency of the allele studied (e.g. HLA-DR3) in a dataset of patients and in ethnically
matched controls. If the allele tested is associated with the disease it will appear significantly
more frequently in patients than in controls. The probability of having the disease in an
individual positive for the allele compared with an individual negative for the allele is
estimated by the relative risk (13). There are at least two possible explanations for the
existence of an association between an allele and a disease: 1) the associated allele itself is
the genetic variant causing an increased risk for the disease; 2) the associated allele itself is
not causing the disease but rather a gene in linkage disequilibrium with it (14).

Candidate gene analysis
Candidate genes are genes which are selected by virtue of their physiological functions, as
possible contributors to disease etiology. If a candidate gene causes a disease, then markers
inside or flanking this gene will be associated and linked with the disease. The candidate
gene approach enabled the identification of several AITD susceptibility genes (e.g. CTLA-4,
see below).

Whole genome screening
Whole genome screening is a powerful tool, as it enables scanning the entire human genome
for a disease gene without any prior assumptions on disease pathogenesis. Whole genome
screening by linkage is performed by testing a panel of markers which span the entire human
genome for linkage with a disease in a dataset of families in which the disease aggregates.
Since linkage spans large distances one can scan the entire human genome by linkage using
approximately 400–500 polymorphic markers at an average inter-marker distances of 10–20
Mb (15). If one or more markers in a certain locus show evidence for linkage with the
disease this locus may harbor susceptibility gene for the disease studied. Linked regions can
then be fine mapped and the genes identified (16).

Up until recently whole genome scanning was possible only using linkage because the
linkage intervals needed between markers are 10–20 Mb while for genome-wide screening
by association analysis one would need to employ approximately 500,000 markers at much
shorter distances (approximately < 50 Kb). The completion of the HapMap project (17) has
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made whole genome scanning by association studies feasible (18). The HapMap project
genotyped more than one million single nucleotide polymorphisms (SNPs) spanning the
entire human genome in four ethnically distinct human populations and tested these SNPs
for linkage disequilibrium (LD) (17). The HapMap analysis demonstrated that the human
genome is highly organized into discrete linkage disequilibrium blocks (LD blocks) which
are flanked by recombination hot spots, or areas at which recombinations are much more
likely to occur. Recombinations are much rarer at the LD blocks with all the markers in each
block in tight LD. This enabled the utilization of tag-SNPs (each SNP representing an entire
linkage disequilibrium block) to test the entire human genome for association with disease.
Moreover, microarray-based genotyping technology, enabled the typing of up to 500,000
SNPs in a single experiment. Thus, today it is possible to scan the entire human genome
using densely spaced SNPs.

In summary, recent advances have made it possible to efficiently identify complex disease
genes. As a result it became apparent that most complex diseases are influenced by
numerous genes which interact with each other and with environmental factors. Using both
the candidate gene approach and whole genome linkage studies, 6 AITD susceptibility genes
have been identified and confirmed, HLA-DR, CD40, CTLA-4, PTPN22, thyroglobulin and
TSH receptor.

THE HLA-DR GENE LOCUS
Genetic studies

The major histocompatibility complex (MHC) region, encoding the HLA glycoproteins,
consists of a complex of genes located on chromosome 6p21 (19). HLA class II genes were
the first genes to be tested in AITD. While initial studies analyzed different HLA-DR and
DQ alleles in AITD (10), more recent studied focused on the specific peptide binding pocket
sequences and 3-D structures that predispose to disease (20; 21). GD is associated with
HLA-DR3 in Caucasians (reviewed in (22)). The frequency of DR3 in Caucasian GD
patients was 40–50% and in the general population approximately 15–30%, resulting in an
odds ratio (OR) for people with HLA-DR3 of up to 4.0 (23). Among Caucasians, HLA-
DQA1*0501 was also shown to be associated with GD (24; 25), but it appears that the
primary susceptibility allele in GD is indeed HLA-DR3 (HLA-DRB1*03) (26).

Data on HLA alleles in HT have been less definitive than in GD. Earlier studies showed an
association of goitrous HT with HLA-DR5 (RR=3.1) (27) and of atrophic HT with DR3
(RR=5.1) in Caucasians (28). Later studies in Caucasians reported weak associations of HT
with HLA-DR3 (29; 30) and HLA-DR4 (31). Recently, we have shown that a specific amino
acid signature of HLA-DR is strongly associated with HT across HLA-DR alleles (see
below).

Mechanisms
Over the past 3 decades the mechanisms by which HLA class II proteins confer
susceptibility to autoimmunity have been dissected. T cells recognize and respond to an
antigen by interacting with a complex between an antigenic peptide and an HLA class II
molecule (mostly DR and DQ) (reviewed in (32)). The various HLA class II alleles have
different affinities for peptides. Thus, peptides formed from proteolysis of autoantigens (e.g.
thyroglobulin) are recognized by T cell receptors on cells which have escaped tolerance.
Thus, certain HLA-DR alleles may permit the autoantigenic peptide to fit into the antigen
binding groove inside the HLA molecule, and to be recognized by the T-cell receptor, while
others may not (33). This could determine if an autoimmune response to that antigen will
develop. The best studied disease for structural-functional correlations between HLA class II
pocket variants and peptide binding is type 1 diabetes (T1D) (34). It was found that the
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amino acid residue at position 57 of the DQβ chain plays a key role in the genetic
susceptibility to T1D (35). Lack of Asp at this position at both DR alleles is strongly
associated with T1D (36). Structural analysis of DQ molecules has shown that lack of Asp57
on the DQβ chain may predispose to T1D by causing significant alterations in the pocket
structure (37; 38). Crystal structure of the HLA-DQ molecule demonstrated that when Asp
is present at position 57 of the DQβ chain it forms a salt bridge with the arginine at DQα76
making pocket 9 (P9) electrostatically neutral. In contrast, lack of the negatively charged
Asp at DQβ57 makes pocket P9 positive, and enables insulin peptides to form a salt bridge
with Arg at DQα76 (37; 39). Thus, lack of Asp at DQβ57 will permit immunogenic islet
cell peptides (e.g. insulin peptides) to fit into the HLA-DQ peptide binding pocket and to be
recognized by the T-cell receptor (37; 39). In contrast, the presence of Asp at DQβ57 will
prevent insulin peptides from fitting in the pocket, and hence will prevent them from being
presented to T-cells (33).

Similar genetic-structural studies were preformed by us in AITD. We recently identified
arginine at position 74 of the HLA-DRβ1 chain (DRβ-Arg-74) as the critical DR amino acid
conferring susceptibility to GD (20). In contrast, the presence of glutamine at position 74 of
the DRβ1 chain was protective. These data were replicated in an independent dataset (40).
Position 74 of the DRβ chain is located in pocket 4 (P4) of the DR peptide binding cleft.
Structural modeling analysis demonstrated that the change at position 74, from the common
neutral amino acids (Ala or Gln) to a positively charged hydrophilic amino acid (Arg),
significantly modified the three dimensional structure of the P4 peptide-binding pocket (20).
This could alter the peptide binding properties of the pocket favoring peptides which can
induce GD (20; 41).

Similarly, we have identified a pocket HLA-DR amino acid signature that conferred strong
risk for HT resulting in an odds ratio of 3.7 (21). This pocket amino acid signature resulted
in a unique pocket structure that is likely to influence pathogenic peptide binding and
presentation to T-cells. Thus, both GD and HT are associated with specific DR pocket
sequence and structure, strongly suggesting that alterations in peptide binding to HLA-DR
play a major role in the etiology of both GD and HT, as has been shown in type 1 diabetes
(42).

THE CTLA-4 GENE
Genetic studies

The cytotoxic T lymphocyte-associated factor 4 (CTLA-4) gene is a major negative
regulator of T cell activation (43). CTLA-4 may play a role in autoimmunity as CTLA-4
activation has been shown to suppress several experimental autoimmune diseases including
murine lupus (44), collagen-induced arthritis (45), experimental autoimmune
glomerulonephritis (46), and diabetes in NOD mice (47). Thus, it was postulated that
CTLA-4 polymorphisms which reduce its expression and/or function might predispose to
autoimmunity.

DeGroot and colleagues were the first to show an association between CTLA-4 and
autoimmunity (48). Their study showed a significant association between a microsatellite in
the 3’UTR of CTLA-4 and GD. Since this original publication CTLA-4 was shown in
numerous studies to be linked and associated with both GD and HT (49–54). Several
CTLA-4 polymorphisms have been investigated, and the most consistent associations were
found with 3 variants, an AT-repeat microsatellite at the 3'untranslated region (3'UTR) of
the CTLA-4 gene [(AT)n] (48; 51); an A/G SNP at position 49 in the signal peptide
resulting in an alanine/threonine substitution (A/G49) (50; 55–58); and an A/G SNP located
downstream and outside of the 3’UTR of the CTLA-4 gene (designated CT60) (53). The
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association between AITD and CTLA-4 has been consistent across different ethnic groups
(48; 51; 55;59–63).

CTLA-4 was shown to confer susceptibility to the production of thyroid antibodies (TAb)
alone without clinical disease (64–66). Further analysis by our group showed that the
involvement of CTLA-4 in the genetic architecture of AITD is more complex than originally
thought. While the main contribution of CTLA-4 is to the propensity to develop TAb,
CTLA-4 may play a role in the susceptibility to high levels TAb and clinical AITD when
interacting with other loci (67). Moreover, both the G allele (previously reported to be
associated with AITD) and the A allele (reported to be protective) of the A/G49 SNP may
predispose to disease when interacting with different loci (67).

Mechanisms
It is still not known which CTLA-4 variant is the causative variant and by what mechanism
it confers susceptibility to autoimmunity. To identify the causative variant functional studies
are needed as all associated variants are in tight linkage disequilibrium. Mechanistically, a
polymorphism that reduced CTLA-4 expression/function would be expected to augment T-
cell activation, and potentially, lead to autoimmunity. The A/G49 SNP causing a Thr to Ala
substitution in the signal peptide, was reported to cause mis-processing of CTLA-4 in the
ER resulting in less efficient glycosylation and diminished surface expression of CTLA-4
protein (68). Kouki et al (69) have shown an association between the G allele of the A/G49
SNP and reduced inhibition of T cell proliferation, results which were later replicated by us
(54). However, this association could be due to a direct effect of the A/G49 SNP on CTLA-4
expression/function, or due to the effects of another variant in linkage disequilibrium with
the A/G49 SNP. Further studies demonstrated that when a T-cell line, devoid of endogenous
CTLA-4, was transiently transfected with a CTLA-4 construct harboring either the G or the
A allele of the A/G49 SNP there was no difference in CTLA-4 expression/function (70).
These data suggest that A/G49 is not the causative SNP, but rather is in linkage
disequilibrium with the causative variant. Functional analysis of the CT60 SNP in a small
number of patients suggested that the GG (disease susceptible) genotype was associated
with reduced mRNA expression of the soluble form of CTLA-4 (53). However, a recent
large study did not find an association between CT60 genotypes and soluble CTLA-4
mRNA expression levels (71). Another CTLA-4 variant that could affect CTLA-4
functionality is the 3’UTR (AT)n. Indeed, carriage of the longer repeats (associated with
disease) was associated with reduced CTLA-4 inhibitory function (72). Moreover, the long
repeats were associated with significantly shorter half life of CTLA-4 mRNA compared to
the short repeats (73). The region of CTLA-4 3’UTR in which the AT-repeat is located
contains three AUUUA motifs which may affect mRNA stability (74). This could provide
an attractive mechanism for the association between the short alleles of (AT)n and AITD, as
well as other autoimmune diseases.

THE CD40 GENE
Genetic studies

CD40 is expressed primarily on B-cells and other antigen presenting cells (APC’s (APC’s)
(75), and plays a fundamental role in B-cell activation inducing, upon ligation, B-cell
proliferation, immunoglobulin class switching, antibody secretion, and generation of
memory cells (76; 77). Using a combination of linkage and association studies we and others
have identified CD40 as a major susceptibility gene for GD (78–84). Sequencing the entire
CD40 gene led to the identification of a C/T polymorphism, at the 5’UTR of CD40 (79),
with the CC genotype of this SNP strongly associated with GD (79; 81–84). One study did
not find the association, possibly due to ethnic differences among populations (85).
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However, a meta-analysis showed a highly significant association between the CC genotype
and GD (83). Moreover, we have recently shown that the association of the CC genotype
was stronger in the subset of GD patients that had persistently high levels of thyroid
antibodies after treatment (86).

Mechanisms
How can the CC genotype predispose to GD? Functional studies demonstrated that the
CD40 Kozak SNP influences CD40 translational efficiency. The C-allele of the
polymorphism increases the translation of CD40 mRNA transcripts, by 20–30% compared
to the T-allele (87; 88). Therefore, it is possible that increased CD40 expression driven by
the C allele contributes to disease etiology by lowering the threshold of autoreative B-cells
for activation to thyroidal antigens (87). Another possibility is that the C-allele enhances
CD40 expression on thyrocytes (89; 90). CD40 signaling in thyrocytes can result in cytokine
secretion (e.g. IL-6 (89)) and activation of resident T-cells in the thyroid by bystander
mechanisms (86).

Since CD40 is a major APC and B-cell co-stimulatory molecule, the question arises whether
the CD40 Kozak SNP could play a role in other autoimmune conditions? Association studies
in Hashimoto’s thyroiditis (79) and type 1 diabetes (91), both cell mediated autoimmune
diseases with strong Th1 component, showed no association. However, a recent study has
shown that the C allele of the CD40 Kozak SNP was strongly associated with high IgE
levels in asthma (88).

THE PROTEIN TYROSINE PHOSPHATASE-22 (PTPN22) GENE
Genetic studies

The lymphoid tyrosine phosphatase (LYP), encoded by the protein tyrosine phosphatase-22
(PTPN22) gene, like CTLA-4, is a powerful inhibitor of T cell activation (92). A tryptophan/
arginine substitution at codon 620 (R620W) of PTPN22 was found to be associated with
AITD including both GD (93), and HT (94), as well as with other autoimmune diseases (95–
98). Unlike CTLA-4 which was associated with AITD across ethnic groups, the PTPN22
gene shows significant ethnic differences in associations. This is most probably due to the
absence of the susceptible variant in certain ethnic groups. As an example, the tryptophan
variant of the protein tyrosine phosphatase-22 (PTPN22) gene is very rare in the Japanese
and, therefore, PTPN22 does not seem to contribute to autoimmunity in the Japanese (99).

Mechanisms
Mechanistically, the disease associated tryptophan variant makes the protein an even
stronger inhibitor of T cells, as it is a gain-of-function variant (100). One possible
explanation for this surprising finding is that a lower T cell receptor signaling would lead to
a tendency for self-reactive T cells to escape thymic deletion and thus remain in the
periphery.

THYROGLOBULIN
Genetic studies

Thyroglobulin (Tg) is a 660 kDA homodimeric protein that serves as a precursor and
storehouse for thyroid hormones (101). Tg is one of the main targets of the immune
response in AITD and all AITD phenotypes are characterized by the development of Tg
antibodies. Mouse models have provided additional evidence for the importance of Tg in the
development of thyroid autoimmunity. The mouse model for Hashimoto’s thyroiditis,
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murine experimental autoimmune thyroiditis (EAT), can be induced, in genetically
susceptible mice, by immunization with thyroglobulin (102)).

Recently, Tg gene was established as a major AITD susceptibility gene (103–108). Linkage
studies mapped an AITD locus to the Tg gene region on chromosome 8q24 (15; 103; 109).
Further detailed sequencing analysis of the Tg gene identified three amino acid substitutions
that were significantly associated with AITD, A734S, V1027M, and W1999R (110).

Mechanisms
One attractive mechanism is by which amino acid variants in Tg could predispose to AITD
is by altering Tg peptide presentation by APC’s to T-cells within HLA class II molecules.
Such a mechanism would imply that there exist an interaction between Tg variants and
HLA-DR variants predisposing to AITD. Indeed, we have shown that the W1999R variant
had a statistical interaction with the Arg74 polymorphism of HLA-DR, resulting in a high
odds ratio of 15 for GD (111). This statistical interaction may imply a biological interaction
between Tg and HLA-DR. For example, the Tg peptide repertoire generated in individuals
with the R allele of W1999R (associated with AITD) could be pathogenic, while DRβ-
Arg74 could optimally present these pathogenic Tg peptides to T-cells.

TSH RECEPTOR GENE
Genetic studies

The hallmark of GD is the presence of stimulating thyrotropin (TSH) receptor antibodies
(1), and, therefore, the TSHR was an attractive candidate gene for GD. Prior to the
completion of the human genome project and the availability of detailed SNP maps three
missense SNPs of the TSHR have been examined for association with GD (112), D36H,
P52T, and D727E. However, studies of these SNPs gave inconsistent results with some
showing associations (113; 114), and others not (115–118). However, one group in Japan
consistently reported associations of the TSHR with GD in the Japanese (60; 63). More
recently it was found that non-coding SNPs of the TSHR are associated with GD (119; 120).
The most consistent association has been with an intron 1 SNP (121; 122).

Mechanisms
It is usually easier to postulate potential mechanisms for missense SNPs. The mechanisms
by which intronic SNPs may predispose to disease are much more challenging to study.
Therefore, it is still not know how the intron 1 SNP of the TSHR could predispose to GD.
Potential mechanisms include alterations in TSHR gene expression and/or splicing (123).
Indeed, several splice variants of the TSHR gene have been reported (123; 124).

THE ROLE OF ENVIRONMENTAL FACTORS
A recent twin study estimated that 79% of the liability to the development of GD is
attributable to genetic factors (125). Therefore, about 20% of the liability to develop GD is
due to non-genetic factors. Among the non-genetic factors postulated to precipitated AITD
are iodine (126; 127) (Table 1), medications such as amiodarone and interferon alpha (128)
(Table 2), infections (129), Smoking (Table 3), and stress (Table 4).

One of the most intriguing environmental triggers of autoimmune thyroid diseases is
infection. Indeed, there is evidence that infectious agents may trigger AITD (reviewed in
(130). For example studies have shown seasonality (131) and geographic variation (132) in
the incidence of GD. Moreover, Valtonen et al. found serological evidence for a recent
bacterial or viral infection in 36% of newly diagnosed GD patients and in only 10% of
controls (133). Several infectious agents have been implicated in the pathogenesis of AITD

Tomer and Huber Page 7

J Autoimmun. Author manuscript; available in PMC 2013 February 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



including Yersinia enterocolitica (134–137), Coxsackie B virus (138), retroviruses (139–
143), Helicobacter pylori (144; 145). However, by far the strongest association of AITD
with an infectious agent is with hepatitis C virus (HCV) (146). While some earlier studies
did not show a clear association between hepatitis C and thyroid autoimmunity (147), more
recent studies have shown a clear association (148–150). In two studies from France of
patients with hepatitis C infection who had not received IFN alpha therapy, the incidence of
thyroid antibodies and/or dysfunction was significantly higher in the patients than in the
controls (148; 151). Overall, in most studies examining the frequency of thyroid disorders in
hepatitis C patients approximately 10% of the patients had positive TAb’s prior to initiation
of interferon therapy (152–156). A recent very large studies that controlled for dietary iodine
and treatment demonstrated that both hypothyroidism and thyroid autoimmunity were
significantly more common in patients with hepatitis C compared to controls (150)(32).
Moreover, pooling of data from all studies on HCV infection and thyroid autoimmunity
demonstrated a significant increase in the risk of thyroiditis in HCV patients (157).

What are the mechanisms by which infectious agents can trigger AITD? Two main theories
have been proposed for the induction of autoimmunity by infectiousl agents (158): (1) the
molecular mimicry theory suggests that sequence similarities between viral proteins and self
proteins can induce a cross-over immune response to self antigens (159); (2) the bystander
activation theory proposes that viral infection of a certain tissue can induce local
inflammation (e.g. by cytokine release), resulting in activation of autoreactive T-cells that
were dormant or suppressed by peripheral regulatory mechanisms (160). While evidence for
molecular mimicry between Yersinia proteins and thyroid antigens exists (161), these data
have not been confirmed. Recent data favor the bystander activation as the predominant
mechanism by which viral agents trigger autoimmunity in autoimmune thyroiditis (162).
Recently, we have shown that the HCV virus can activate cytokine secretion by thyroid cells
(163). We examined whether the HCV receptor, CD81, was expressed and functional on
human thyroid cells. We found significant levels of CD81 mRNA and protein on human
thyroid cells in primary cultures. Moreover, incubation of human thyroid cells with HCV
envelope glycoprotein E2 resulted in E2 binding to thyroid cells and activation of IL-8
secretion (163). Hence, it is possible that HCV can trigger autoimmune thyroiditis by
infecting the thyroid resulting in release of pro-inflammatory mediators such as IL-8, and
induction of thyroid autoimmunity by bystander activation mechanisms. Indeed, two recent
studies have shown that HCV is present in the thyroid of infected individual (164; 165).
Moreover, it is possible that even if HCV does not infect thyroid cells viral proteins that are
shed for virions or that are part of non-infectious virions can also trigger an inflammatory
response resulting in thyroid autoimmunity by bystander mechanisms.

CONCLUSIONS
The AITD are complex diseases that are postulated to be caused by the combined effects of
multiple susceptibility genes and environmental triggers. Significant progress has been made
in the past decade in mapping the AITD susceptibility genes and understanding the
mechanisms by which they confer risk for disease. The AITD susceptibility genes identified
so far can be divided into two broad groups: (1) immune modulating genes and (2) thyroid
specific genes. The first group includes the HLA-DR, CD40, CTLA-4, and PTPN22 genes,
while the second group includes the Tg and TSHR genes. It is clear that additional genes
contribute to the genetic susceptibility to AITD, as well as to the different phenotypes of
AITD, disease severity, and, possibly, response to therapy. In addition, several
environmental factors have been associated with the etiology of AITD, notably, dietary
iodine, infections, smoking and certain medication. How the susceptibility genes and
environmental triggers interact to cause AITD is still not known.
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Intriguingly, all AITD susceptibility gene identified so far participate in the immunological
synapse and/or the signaling pathways activated by the immunological synapse. This finding
suggests that inherited abnormalities in the immunological synapse contribute to the
breakdown of tolerance in AITD. Possibly, this breakdown in tolerance may be triggered by
a bystander mechanism, whereby an insult to thyroid tissue (as a result of infection,
medications, or iodine) can trigger a local inflammatory reaction which then activates
resident T-cells. These T-cells could then cause an autoimmune reaction to the thyroid in
genetically susceptible individuals.
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Table 2

Selected studies on the association certain medications and thyroid autoimmunity.

Study
(Ref)

Medication/
Treatment

Associated
AITD

Number
of

Patients

Findings

Reviewed in
Tomer Y. et al.

2006 (6)

IFN-alpha GD/HT NA Clinical disease (GD, HT, or destructive thyroiditis) was
seen in 5–10% of those that received IFN-alpha for treatment
of hepatitis, and thyroid autoantibodies appeard in 10–40%.

Trip MD. et al.
1991 (173)

Amiodarone GD/HT 58 Euthyroid patients treated with amiodarone for arrhythmias
had an incidence of thyrotoxicosis of 12.1% and an incidence

of hypothyroidism of 6.9%.

Coles AJ. et al.
1999 (174)

Campath-1H (anti-CD52) GD 37 12/27 multiple sclerosis patients treated with campath-1H
developed Graves' disease compared the incidence of only 1–
2% in untreated multiple sclerosis patients and those treated

with IFN-beta 1 b.

Knysz et al. 2006
(175)

Antiretroviral GD 1 27 years old HIV patient was treated with Stavudine,
lamivudine, amprenavir, and ritonavir. Two years later she
had high T4 and low TSH, with thyroid enlargement and

eyelid retraction.

SklarC. et al. 2000
(176)

Irradiation for Hodgkin's
disease

GD/HT 1791 Of the 1791 Hodgkin's patients assessed, 34% had been
diagnosed with at least one thyroid abnormality.

Hypothyroidism was the most common disturbance with a
relative risk of 17.1. Hyperthyroidism was seen in 5% of

survivors giving an 8 fold greater incidence than reported in
the controls.
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