Phospholipid Flippases Lem3p-Dnf1p and Lem3p-Dnf2p Are Involved in the Sorting of the Tryptophan Permease Tat2p in Yeast*

Received for publication, September 26, 2012, and in revised form, December 6, 2012 Published, JBC Papers in Press, December 18, 2012, DOI 10.1074/jbc.M112.416263

Takeru Hachiro, Takaharu Yamamoto, Kenji Nakano, and Kazuma Tanaka¹

From the Division of Molecular Interaction, Institute for Genetic Medicine, Hokkaido University Graduate School of Life Science, N15 W7, Kita-ku, Sapporo 060-0815, Japan

Background: Lem3p-Dnf1p and Lem3p-Dnf2p are phospholipid flippases that generate phospholipid asymmetry in yeast. **Results:** The tryptophan permease Tat2p is missorted from the *trans*-Golgi network to the vacuole in the *lem3* Δ mutant. **Conclusion:** Phospholipid asymmetry supports plasma membrane transport of Tat2p by inhibiting its improper ubiquitination at the *trans*-Golgi network.

Significance: Phospholipid asymmetry may be involved in proper sorting of membrane proteins.

The type 4 P-type ATPases are flippases that generate phospholipid asymmetry in membranes. In budding yeast, heteromeric flippases, including Lem3p-Dnf1p and Lem3p-Dnf2p, translocate phospholipids to the cytoplasmic leaflet of membranes. Here, we report that Lem3p-Dnf1/2p are involved in transport of the tryptophan permease Tat2p to the plasma membrane. The $lem3\Delta$ mutant exhibited a tryptophan requirement due to the mislocalization of Tat2p to intracellular membranes. Tat2p was relocalized to the plasma membrane when trans-Golgi network (TGN)-to-endosome transport was inhibited. Inhibition of ubiquitination by mutations in ubiquitination machinery also rerouted Tat2p to the plasma membrane. Lem3p-Dnf1/2p are localized to endosomal/TGN membranes in addition to the plasma membrane. Endocytosis mutants, in which Lem3p-Dnf1/2p are sequestered to the plasma membrane, also exhibited the ubiquitination-dependent missorting of Tat2p. These results suggest that Tat2p is ubiquitinated at the TGN and missorted to the vacuolar pathway in the lem3 Δ mutant. The NH₂-terminal cytoplasmic region of Tat2p containing ubiquitination acceptor lysines interacted with liposomes containing acidic phospholipids, including phosphatidylserine. This interaction was abrogated by alanine substitution mutations in the basic amino acids downstream of the ubiquitination sites. Interestingly, a mutant Tat2p containing these substitutions was missorted in a ubiquitination-dependent manner. We propose the following model based on these results; Tat2p is not ubiquitinated when the NH₂-terminal region is bound to membrane phospholipids, but if it dissociates from the membrane due to a low level of phosphatidylserine caused by perturbation of phospholipid asymmetry in the $lem 3\Delta$ mutant, Tat2p is ubiquitinated and then transported from the TGN to the vacuole.

Five P4-ATPases, i.e. Drs2p, Dnf1p, Dnf2p, Dnf3p, and Neo1p, are identified in the budding yeast Saccharomyces cerevisiae, and these proteins, except Neo1p, require Cdc50 family proteins as noncatalytic subunits for their localization, function, and flippase activity (6-10). Drs2p, Dnf1p and Dnf2p, and Dnf3p are complexed with Cdc50p, Lem3p, and Crf1p, respectively. Drs2p is localized to endosomes, the trans-Golgi network (TGN), and post-Golgi secretory vesicles (11-13), whereas Dnf1p and Dnf2p are localized to the plasma membrane and early endosome/TGN membranes (13-15). Dnf1p and Dnf2p seem to be directly regulated by two serine/threonine kinases Fpk1p and Fpk2p (15). Functional studies revealed that flippases are involved in various vesicle transport pathways (5), and flippases in these functions are implicated in vesicle formation by inducing local membrane curvature (16, 17). Flippases also regulate functions of membrane proteins by changing transbilayer phospholipid composition; changes in PE and PS content in the cytoplasmic leaflet of the plasma membrane regulate Cdc42p localization in polarized cell growth (18, 19). However, other functions of flippases need to be investigated.

Phospholipid asymmetry of bilayer membranes is generally observed in the plasma membrane of eukaryotic organisms. In this phospholipid asymmetry, phosphatidylcholine $(PC)^2$ is predominantly distributed in the outer leaflet facing extracellular space (exoplasmic leaflet), whereas phosphatidylethanolamine (PE) and phosphatidylserine (PS) are distributed in the inner leaflet facing the cytoplasm (cytoplasmic leaflet). The type 4 subfamily of P-type ATPase (P4-ATPase) seems to play an essential role to generate, maintain, and regulate phospholipid asymmetry by working as a "flippase," which translocates aminophospholipids from the exoplasmic leaflet to the cytoplasmic one in an energy-dependent manner (1–5).

² The abbreviations used are: PC, phosphatidylcholine; PE, phosphatidylethanolamine; PS, phosphatidylserine; P4-ATPase, type 4 P-type ATPase; TGN, *trans*-Golgi network; mRFP, monomeric red fluorescent protein 1; Tat2pNT, NH₂-terminal cytoplasmic region (residues 1–85) of Tat2p; DOPC, dioleoylphosphatidylcholine; DOPE, dioleoylphosphatidylethanolamine; DOPS, dioleoylphosphatidylserine; PA, phosphatidic acid; NBD, 7-nitrobenz-2-oxa-1,3-diazol-4-yl; PM, plasma membrane; IM, internal membrane; PI, phosphatidylinositol.

^{*} This work was supported by Japan Society for the Promotion of Science KAKENHI Grants 21570192 and 21370085.

¹ To whom correspondence should be addressed. Tel.: 81-11-706-5165; Fax: 81-11-706-7821; E-mail: k-tanaka@igm.hokudai.ac.jp.

Tat2p is a high affinity tryptophan permease, which is the main machinery for tryptophan uptake in budding yeast. Similar to other permeases, localization of this permease is precisely regulated responding to extracellular tryptophan concentration; at low tryptophan, Tat2p is transported to the plasma membrane, but it is transported from the TGN to the vacuole at high tryptophan (20). Localization of yeast permeases is regulated by ubiquitination. In particular, monoubiquitination and lysine 63-linked polyubiquitin chain direct target permeases to the vacuole from the plasma membrane or from the sorting compartment without going through the plasma membrane (21). In the case of Tat2p, five lysine residues in the NH₂-terminal cytoplasmic domain are identified as ubiquitin acceptor sites, which are recognized by ubiquitin ligase complexes Rsp5p-Bul1p and Rsp5p-Bul2p (20, 22).

Several reports have shown that changes in membrane lipid environment cause tryptophan requirement, which is probably due to mislocalization of Tat2p to the vacuole. Tat2p was inappropriately ubiquitinated in the $erg6\Delta$ mutant, which has a defect in the last step of ergosterol biosynthesis, and resulted in the missorting of Tat2p to the vacuole (20). The $cho1\Delta$ mutant, which is defective in phosphatidylserine synthesis, exhibited impaired tryptophan uptake (23). Fluidization of membrane lipids by increased unsaturation of fatty acids also caused tryptophan requirement (24). However, little is known about how Tat2p is missorted to the vacuole by changes in the lipid microenvironment.

Here, we show that Tat2p is also missorted to the vacuole by ubiquitination at the TGN in the *lem3* Δ mutant. Our results suggest that the destination of Tat2p is regulated by the interaction of its NH₂-terminal region with phospholipids, including phosphatidylserine in the cytoplasmic leaflet of membranes.

EXPERIMENTAL PROCEDURES

Media and Genetic Methods-Cells were cultivated in YPbased rich medium, yeast extract/peptone/dextrose/adenine (YPDA) medium (1% Bacto-yeast extract (Difco), 2% Bactopeptone (Difco), 2% glucose, and 0.01% adenine) supplemented with YPDA/tryptophan (YPDAW) or without 200 µg/ml tryptophan. Strains carrying plasmids were selected in synthetic medium (SD) containing the required nutritional supplements (25). Synthetic complete medium (SC) was SD medium containing all required nutritional supplements. When indicated, 0.5% casamino acids were added to SD medium with (SDA) or without (SDA-U) 20 µg/ml uracil. Tryptophan was supplemented to SDA medium at a concentration of 200 µg/ml (SDA200W) or 30 μ g/ml (SDA30W), or it was not supplemented (SDA-W). Standard genetic manipulations of yeast were performed as described previously (26). Escherichia coli strains DH5 α and XL1-Blue were used for construction and amplification of plasmids. The lithium acetate method was used for introduction of plasmids into yeast cells (27, 28).

Strains and Plasmids—Yeast strains used in this study are listed in Table 1. The *vps27*∆ and *TAT2–3HA* strains were constructed by transforming a BY4743 background strain (29) with the 3.6-kb EcoRI-SalI fragment from pKU65 and PmaCI-digested pKU51 (gifts from A. Nakano, Riken, Saitama, Japan),

respectively. Other strains carrying complete gene deletions, GFP-tagged *DNF1* and *DNF2*, and monomeric red fluorescence protein 1 (mRFP)-tagged *SEC7* were constructed in the BY4743 background by PCR-based procedures as described (30, 31). All strains constructed by the PCR-based procedure were verified by colony-PCR amplification to confirm that the replacement had occurred at the expected locus. To construct the $TAT2^{3K>R}$ mutant, $tat2\Delta$::*KanMX4* was transformed with the 2.9-kb PstI-EcoRI fragment of $TAT2^{3K>R}$ from pKT2008, and the transformants were screened for tryptophan prototrophy on a YPDA plate. The transformant that lost the *KanMX4* marker was further selected. The *rsp5-1* mutant was constructed by two successive backcrosses to a BY4743 background strain.

The plasmids used in this study are listed in Table 2. Schemes detailing the construction of plasmids and DNA sequences of nucleotide primers are available on request. Site-directed mutations were introduced into the $\rm NH_2$ -terminal region of Tat2p by the overlap extension PCR method using pKT1747 as a template (32). The PCR-amplified region in each construct was sequenced to verify that only the desired mutations were introduced.

Sucrose Gradient Fractionation-Fractionation of subcellular organelles based on sedimentation through a sucrose step gradient was performed as described previously (33) with a slight modification. In brief, $50 A_{600}$ units of early log phase cells were harvested and washed with ice-cold 10 mM NaN3. The cells were collected by centrifugation and resuspended in 0.5 ml of STE10 buffer (10% sucrose (w/w), 10 mM Tris-HCl, pH 7.5, and 10 mM EDTA) with protease inhibitors (1 μ g/ml aprotinin, 1 μ g/ml leupeptin, and 1 mM PMSF), followed by agitation with glass beads. After addition of 1 ml of STE10 buffer with protease inhibitors, unlysed cells and debris were removed by centrifugation (500 \times g for 3 min). 0.2 ml of the total cell lysate was subjected to centrifugation on a three-step sucrose gradient (0.2 ml of 55%, 0.5 ml of 45%, and 0.4 ml of 30% sucrose (w/w) in 10 mm Tris-HCl, pH 7.5, and 10 mm EDTA) at 55,000 rpm in a TLS55 rotor (Beckman, Brea, CA) for 2.5 h. Fractions (0.2 ml) were collected manually from the top and analyzed by immunoblotting, which was performed as described previously (34). For membrane proteins, SDS-PAGE samples were heated at 37 °C for 30 min before loading. Protein bands were visualized by chemiluminescence using ECL or ECL Advance (GE Healthcare). Where indicated, only the results of plasma membranerich fractions were shown.

Microscopy—GFP-tagged Dnf1p and Dnf2p were observed in living cells, which were grown to early log phase, collected, and resuspended in SC medium. Cells were mounted on microslide glass and immediately observed. Co-localization of Dnf1p-GFP or Dnf2p-GFP with Sec7-mRFP was examined in fixed cells. Fixation was performed by addition of a commercial 37% formaldehyde stock (Wako Pure Chemicals, Osaka, Japan) to a final concentration of 3.7% in the medium, followed by a 10-min incubation at 30 °C. After fixation, cells were washed twice with phosphate-buffered saline and examined.

Cells were observed using a Nikon ECLIPSE E800 microscope (Nikon Instec, Tokyo, Japan) equipped with an HB-10103AF super high pressure mercury lamp and a 1.4 NA

TABLE 1

Yeast strains used in this study

Strain ^a	Relevant genotype	Derivation/source
BY4743	MATa/ α LYS2/lvs2 Δ 0 ura3 Δ 0/ura3 Δ 0 his3 Δ 1/his3 Δ 1 TRP1/TRP1 leu2 Δ 0/leu2 Δ 0 met15 Δ 0/MET15	29
KKT33	MATa lys $2\Delta 0$ ura $3\Delta 0$ his $3\Delta 1$ TRP1 leu $2\Delta 0$ met $15\Delta 0$ DNF1-GFP::HIS3MX6	15
KKT61	MATa LYS2 ura $3\Delta 0$ his $3\Delta 1$ TRP1 leu $2\Delta 0$ MET15	15
KKT102	MATa LYS2 ura $3\Delta 0$ his $3\Delta 1$ TRP1 leu $2\Delta 0$ MET15 lem 3Δ ::KanMX6	15
KKT144	MAT $lpha$ lys $2\Delta0$ ura $3\Delta0$ his $3\Delta1$ TRP1 leu $2\Delta0$ met $15\Delta0$ vrp 1Δ ::LEU2	This study
KKT268	MATa LYS2 ura $3\Delta 0$ his $3\Delta 1$ TRP1 leu $2\Delta 0$ MET15 fpk 1Δ ::HphMX4 fpk 2Δ ::KanMX6	15
KKT290	$MAT \alpha$ lys2 $\Delta 0$ ura3 $\Delta 0$ his3 $\Delta 1$ TRP1 leu2 $\Delta 0$ met15 $\Delta 0$ end3 Δ ::Hph $MX4$	This study
KKT334	MATa LYS2 ura $3\Delta 0$ his $3\Delta 1$ TRP1 leu $2\Delta 0$ MET15 DNF2-GFP::HIS3MX6	15
KKT369	MATa LYS2 ura $3\Delta 0$ his $3\Delta 1$ trp 1Δ -63 leu $2\Delta 0$ MET15	This study
KKT372	MATa LYS2 ura $3\Delta 0$ his $3\Delta 1$ trp 1Δ -63 leu $2\Delta 0$ MET15 lem 3Δ ::KanMX6	This study
KKT381	$MATa/\alpha LYS2/LYS2$ $ura3\Delta0/ura3\Delta0$ $his3\Delta1/his3\Delta1$ $trp1\Delta$ -63/ $trp1\Delta$ -63 $leu2\Delta0/leu2\Delta0$ $MET15/MET15$	This study
KK1402	$MA1a LYS2 ura3\Delta0 his3\Delta1 trp1\Delta-63 leu2\Delta0 ME115 tat2\Delta::KanMX4$	This study
KK1403	MA $I \alpha LYS2$ ura3A0 his3A1 trp1A-63 leuZA0 ME I is an $II \Delta$::HphMA4	This study
KK 1 404 VVT 405	MA13LIS2 $uras200$ $ms3a1$ $trp1a-63$ $teu200$ $ME113$ $anp2a::KanMA4$	This study
KK 1405 VVT406	MATa LIS2 urasa0 nissa1 irp1a-63 i $u2\Delta0$ METIS anj Δ ::HpMMA4 anj Δ ::KanMA4 MATa lug $\Delta0$ urg $\Delta0$ lug $\Delta1$ lug $\Delta1$ lug $\Delta1$ lug $\Delta10$ METIS dug $\Delta20$ METIS dug $\Delta20$:KanMA4	This study
KK1400 KKT407	$MAT(a \ by SZAO \ ura SAO \ mis SAT \ urp 1A - 05 \ ura ZAO \ me T 15 \ urs ZA:: Kunivi A4 MAT(a \ by SZAO \ ura SAO \ his SAT \ trans 1A \ or SAO \ me T 15 \ urs AO \ how HA \ how $	This study
KK1407 KKT419	MAT(t) y SZAO (MASAO MASAO MIJA-05) EUZAO (MLTIS (MOTA1165)MAO MAT(t) y SZAO (MISAO MISAO MIJA-05) EUZAO (MLTIS (MOTA1165)MAO MAT(t) y SZAO (MISAO MISAO MIJA-05) EUZAO (MLTIS (MOTA1165)MAO MAT(t) y SZAO (MISAO MISAO MIJA-05) EUZAO (MLTIS (MOTA1165)MAO MAT(t) y SZAO (MISAO MISAO MIJA-05) EUZAO (MLTIS (MOTA1165)MAO MAT(t) y SZAO (MISAO MISAO MIJA-05) EUZAO (MLTIS (MOTA1165)MAO MAT(t) y SZAO (MISAO MISAO MIJA-05) EUZAO (MLTIS (MOTA1165)MAO MAT(t) y SZAO (MISAO MISAO MIJAO NI Y TAO NI Y Y TAO NI Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	This study
KK1410	$tat2\Delta:KanMX4/tat2\Delta::KanMX4$	This study
KKT419	MATa LYS2 ura $3\Delta 0$ his $3\Delta 1$ trp 1Δ -63 leu $2\Delta 0$ met $15\Delta 0$ gga 1Δ :: HIS $3MX6$ gga 2Δ ::Kan $MX4$	This study
KKT420	MATα LYS2 ura3 Δ 0 his3 Δ 1 trp1 Δ -63 leu2 Δ 0 met15 Δ 0 lem3 Δ ::KanMX6 gga1 Δ ::HIS3MX6 gga2 Δ ::KanMX4	This study
KKT421	MATa LYS2 ura $3\Delta 0$ his $3\Delta 1$ trp 1Δ -63 leu $2\Delta 0$ MET15 pep 12Δ ::KanMX4	This study
KKT422	MATα LYS2 ura3 $\Delta 0$ his3 $\Delta 1$ trp1 Δ -63 leu2 $\Delta 0$ MET15 lem3 Δ ::HIS3MX6 pep12 Δ ::KanMX4	This study
KKT423	MATa LYS2 ura $3\Delta 0$ his $3\Delta 1$ trp 1Δ -63 leu $2\Delta 0$ MET 15 vps 27Δ ::HIS3	This study
KKT424	MATa LYS2 ura $3\Delta 0$ his $3\Delta 1$ trp 1Δ -63 leu $2\Delta 0$ MET15 lem 3Δ ::KanMX6 vps 27Δ ::HIS3	This study
KKT425	MATa LYS2 ura $3\Delta 0$ his $3\Delta 1$ trp 1Δ -63 leu $2\Delta 0$ MET 15 bul 1Δ ::HIS3MX6 bul 2Δ ::KanMX6	This study
KKT426	$MAT_{a}LYS2$ $ura3\Delta0$ $his3\Delta1$ $trp1\Delta$ - $c3$ $leu2\Delta0$ $MET15$ $lem3\Delta::KanMX6$ $bul1\Delta::HIS3MX6$ $bul2\Delta::KanMX6$	This study
KK1427	MA1a LYS2 $ura3\Delta0$ his3 $\Delta1$ trp1 Δ -63 $leu2\Delta0$ ME115 1A12 ^{dAC}	This study
KK 1428	MATa LYS2 urasA0 hissA1 trp12-63 teu2A0 METTS tem3 Δ ::HIS3MX6 TAT2 ^{245 K}	This study
KK 1429 VVT 420	$MA13L152$ μ rabu n n $sabu$ n n sbb n n h c sbb n e n h h h n h n h n h	This study
KK1450 KKT422	$MAT(a \ by SZAO \ uta SAO \ missA1 \ uta 1-o5 \ uta 2AO \ me T15 \ uta 2AO. uta bar vo vos 1A: Rumma A A A A A A A A A A A A A A A A A A $	This study
KKT433	MATA 192 musaa misaa misaa 1 muta-63 muzaa muta musaa musaa musaa muta muta 1977 muta 197	This study
KKT435	MATa 1 YS2 ura3A0 his3A1 trn1A-63 lev2A0 me115A0 red1AVKanMY24 red2AvHIS3MX6	This study
KKT436	$MATa LYS2$ $ura3\Delta0$ his3 $\Delta1$ trn1 Δ -63 leu $2\Delta0$ METL5 tat1 Δ ::HIS3MX6	This study
KKT437	MATa LYS2 ura $3\Delta 0$ his $3\Delta 1$ trn 1Δ -63 leu $2\Delta 0$ MET15 lem 3Δ ::KanMX6 tat 1Δ ::HIS $3MX6$	This study
KKT438	MATa LYS2 ura $3\Delta 0$ his $3\Delta 1$ trp 1Δ -63 leu $2\Delta 0$ MET 15 lem 3Δ ::HIS $3MX6$ tat 2Δ ::Kan $MX4$	This study
KKT439	MATa lys $2\Delta 0$ ura $3\Delta 0$ his $3\Delta 1$ TRP1 leu $2\Delta 0$ met $15\Delta 0$ cho 1Δ ::KanMX6	This study
KKT440	$MAT \alpha$ lys2 $\Delta 0$ ura3 $\Delta 0$ his3 $\Delta 1$ trp1 Δ -63 leu2 $\Delta 0$ MET15 end3 Δ ::HphMX4	This study
KKT441	MAT α lys2 $\Delta 0$ ura3 $\Delta 0$ his3 $\Delta 1$ trp1 Δ -63 leu2 $\Delta 0$ met15 $\Delta 0$ vrp1 Δ ::LEU2	This study
KKT442	MATa lys $2\Delta 0$ ura $3\Delta 0$ his $3\Delta 1$ TRP1 leu $2\Delta 0$ met $15\Delta 0$ end 3Δ ::HphMX4 DNF1-GFP::HIS3MX6	This study
KKT443	MATa lys $2\Delta0$ ura $3\Delta0$ his $3\Delta1$ TRP1 leu $2\Delta0$ met $15\Delta0$ end 3Δ ::HphMX4 DNF2-GFP::HIS3MX6	This study
KKT444	MATa lys $2\Delta 0$ ura $3\Delta 0$ his $3\Delta 1$ TRP1 leu $2\Delta 0$ met $15\Delta 0$ DNF1-GFP::HIS3MX6 SEC7-mRFP1::HIS3MX6	This study
KKT445	MAT_{a} LYS2 $ura3\Delta 0$ $his3\Delta 1$ TRP1 $leu2\Delta 0$ $met15\Delta 0$ DNF2-GFP::HIS3MX6 SEC7-mRFP1::HIS3MX6	This study
KKT446	$MAT\alpha LYS2$ $ura3\Delta0$ $his3\Delta1$ $trp1\Delta$ -63 $leu2\Delta0$ $MET15$ $rsp5$ -1	This study
KK1447	MA1 α LYS2 μ ra300 μ s301 μ s104 μ c3 μ e μ 200 ME115 μ em33::KanMX6 μ sp5-1	This study
KK 1 448 VVT 440	$MA13L152$ μ rabab misbal trp12-63 μ u2 $\Delta0$ $ME115$ μ rabab misbab $MA141A12^{misb}$	This study
KK 1449 VVT450	MATa $1_{3}_{2}_{2}_{2}_{2}_{2}_{2}_{2}_{2}_{2}_{2$	This study
KK1450 KKT451	$MATALISZ UUUSAD UUSAA UUSAA UUTA-OS UUZAD UMETIS VIPIA\mathbb{Z}LEUZ TATZMATA USZ UUGAAD UUSAT UTATA (2 AUJAD UUGISAD UUGISAD UUTAUTAUTETA)$	This study
KKT452	MATa 1952 introdo hista 1 in provo trazato metrista O npriaLetz outra introducto MATa 1952 ura 300 hista 1 TRP1 log 200 METIS non A ··Kan MY4 nrh 1A··Nat MY4	This study
KKT453	$MATa hs_2 ma_3 ma_3 ma_3 TRT (ward) his 201 ma_1 ma_1 ma_2 ma_3 ma_3 ma_3 ma_3 ma_3 ma_3 ma_3 ma_3$	This study
KKT454	$MATa [vs2\Delta0 wra3\Delta0 his3\Delta1 trp1\Delta-63]eu/2\Delta0 met15\Delta0 [em/3\Delta::HIS3MX6 vnt6\Delta::KanMX4$	This study
KKT455	MATa LYS2 ura $3\Delta 0$ his $3\Delta 1$ TRP1 leu $2\Delta 0$ MET15 lem 3Δ ::HIS $3MX6$ pep 4Δ ::Kan $MX4$ prb 1Δ ::Nat $MX4$	This study
KKT456	MATa/α LYS2/LYS2 ura3 Δ 0/ura3 Δ 0 his3 Δ 1/his3 Δ 1 trp1 Δ -63/trp1 Δ -63 leu2 Δ 0/leu2 Δ 0 MET15/MET15	This study
	lem3∆::HIS3MX6/lem3∆::HIS3MX6 tat2∆::KanMX4/tat2∆::KanMX4	-
KKT457	MATα LYS2 ura 3Δ 0 his 3Δ 1 trp 1Δ -63 leu 2Δ 0 MET15 tat 2Δ ::KanMX4 bul 1Δ ::HIS3MX6 bul 2Δ ::KanMX6	This study
KKT458	MATa LYS2 ura $3\Delta 0$ his $3\Delta 1$ TRP1 leu $2\Delta 0$ met $15\Delta 0$ tat 2Δ ::KanMX4	This study
KKT459	MATa LYS2 ura $3\Delta 0$ his $3\Delta 1$ trp 1Δ -63 leu $2\Delta 0$ MET 15 TAT2-GFP::HIS3MX6 lem 3Δ ::KanMX6	This study
KKT460	MATa LYS2 ura $3\Delta 0$ his $3\Delta 1$ trp 1Δ -63 leu $2\Delta 0$ MET15 TAT2-GST::HIS3MX6 lem 3Δ ::KanMX6	This study
KKT461	MATa LYS2 ura3d0 his3d1 trp1d-63 leu2d0 MET15 TAT2–13myc::HIS3MX6 lem3d::KanMX6	This study
KKT462	$MA1a LYS2$ $ura3\Delta0$ $his3\Delta1$ $trp1\Delta$ -63 $leu2\Delta0$ $MET15$ $TAT2-3HA::URA3$	This study
KKT465	MATa LYS2 ura $3\Delta 0$ his $3\Delta 1$ TRP1 leu $2\Delta 0$ MET15 lem 3Δ ::HIS $3MX6$ tat 2Δ ::Kan $MX4$	This study

^{*a*} KKT strains are isogenic derivatives of BY4743.

 $100 \times$ plan Apo oil immersion objective with the appropriate fluorescence filter sets and differential interference contrast optics. Images were acquired with a digital cooled charge-coupled device camera (C4742-95-12NR; Hamamatsu Photonics, Hamamatsu, Japan) using AQUACOSMOS software (Hamamatsu Photonics). Observations were compiled from the examination of at least 200 cells.

Liposome Flotation Experiments—Binding of the Tat2p NH₂-terminal fragment to liposomes was assayed by liposome flotation experiments (35). The NH₂-terminal cytoplasmic

region (residues 1–85) of Tat2p (Tat2pNT) and its mutant proteins were expressed and purified as a GST fusion protein from the cells of yeast KKT452 (*pep4* Δ *prb1* Δ *TRP1*) containing pKT2026, pKT2027, pKT2028, or pKT2029 as described (15) with the following modifications. In ammonium sulfate precipitation, the fraction that precipitated between 15 and 35% (w/v) salt saturation was used. In affinity purification with glutathione-Sepharose 4B (GE Healthcare), the column was washed three times with 3.3 bed volumes of 20 mM HEPES buffer, pH 8.0, after loading the sample, and GST fusion proteins were

TABLE 2			
Plasmids	used ir	n this	studv

Plasmid	Characteristics	Derivation/source
YCplac33	URA3 CEN4	76
YEplac195	URA3 2 µm	76
pKO10	P _{GAL1} -HA URA3 2 μm	77
pGEX	$GSTAmp^R$	GE Healthcare
pKU51 [YIplac211-TAT2–3HA]	TAT2–3HA URA3 Amp ^R	20
pKU65 [pUC18-vps27 Δ]	$vps27\Delta$::HIS3 Amp ^R	20
pKT1742 [YCplac33–3HA-TAT2]	<i>3HA-TAT2 URA3 CEN4</i>	78
pKT1747 [YEplac195-TAT2]	TAT2 URA3 2 μm	79
pKT1763 [YCplac33–2HA-TAT2]	2HA-TAT2 URA3 CEN4	79
pKT1765 [YCplac33-TAT2]	TAT2 URA3 CEN4	This study
pKT1855 [pGEX-GST-TAT2NT]	GST-TAT2 (residues 1–85) Amp^{R}	This study
pKT2008 [pBSII-TAT2 ^{3K>R}]	$TAT2^{3K>R}Amp^R$	This study
pKT2019 [YCplac33-TAT2 ^{5K>A}]	$TAT2^{5K>A}$ URA3 CEN4	This study
pKT2020 [YCplac33-TAT2 ^{2R>A}]	TAT2 ^{2R>A} URA3 CEN4	This study
pKT2021 [YCplac33-tat2 ^{2K2R>A}]	tat2 ^{2K2R>A} URA3 CEN4	This study
pKT2026 [pKO10-GST-TAT2NT]	P_{GAL1} -HA-GST-TAT2 (residues 1–85) URA3 2 μm	This study
pKT2027 [pKO10-GST-TAT2NT ^{5K>A}]	P_{GAL1} -HA-GST-TAT2 ^{5K>A} (residues 1–85) URA3 2 μm	This study
pKT2028 [pKO10-GST-TAT2NT ^{2R>A}]	P_{GAL1} -HA-GST-TAT2 ^{2R>A} (residues 1–85) URA3 2 μm	This study
pKT2029 [pKO10-GST-TAT2NT ^{2K2R>A}]	P_{GAL1} -HA-GST-TAT2 ^{2K2R>A} (residues 1–85) URA3 2 μm	This study
pKT2045 [pRS316-P _{ACT1} -3myc-TAT2]	P _{ACT1} -3myc-TAT2 URA3 CEN6	This study
pKT2046 [pRS316-P _{ACT1} -GFP-TAT2]	P _{ACT1} -GFP-TAT2 URA3 CEN6	This study

successively eluted five times with 1 bed volume of the same buffer containing 10 mM reduced glutathione. Liposomes were prepared as follows. A dried film, prepared by evaporation of a mixture of defined lipids in chloroform, was resuspended in 20 mM HEPES buffer, pH 7.2, followed by brief sonication. After five steps of freezing and thawing in liquid nitrogen, the liposome suspension was extruded through a polycarbonate filter (pore size 0.1 μm, GE Healthcare) using LiposoFast (Avestin, Ottawa, Canada). Liposomes were stored at room temperature and used within 2 days after preparation. Lipids used were dioleoylphosphatidylcholine (DOPC), dioleoylphosphatidylethanolamine (DOPE), dioleoylphosphatidylserine (DOPS), L- α phosphatidic acid (PA) (Avanti Polar Lipids, Alabaster, AL), and L- α -phosphatidylinositol (PI) (Nacalai Tesque, Kyoto, Japan). A fluorescence 7-nitrobenz-2-oxa-1,3-diazol-4-yl (NBD)-labeled PE, 1-palmitoyl-2-(6-NBD-aminocaproyl)-PE (Avanti Polar Lipids), was added to every liposome at 0.2 mol % to visualize flotation of liposomes. Liposome flotation assay was modified as follows. GST-Tat2pNT or its mutant protein (1 μ M) was incubated at 30 °C for 5 min with liposomes (1 mM lipids) in 20 mM HEPES buffer, pH 7.2. The suspension was then adjusted to 30% (w/v) sucrose and sequentially overlaid with 25 and 0% sucrose in 20 mM HEPES buffer, pH 7.2, followed by centrifugation at 20 °C for 1 h. The top (0.1 ml), middle (0.2 ml), and bottom (0.25 ml) fractions were manually collected, and proteins were precipitated with 10% TCA. After washing twice with 1 ml of cold acetone, the pellet was air-dried and resuspended in SDS-PAGE sample buffer. After SDS-PAGE, proteins were stained with SYPRO Red (Lonza, Rockland, ME), followed by quantification with a FLA-3000 fluorescence imaging system (Fuji Photo Film, Tokyo, Japan).

Tryptophan Uptake Assay—Tryptophan uptake was assayed as follows based on a previous study (36). Cells were grown to early log phase in SDA-W medium at 30 °C. $0.9 A_{600}$ units of the cells were washed twice with wash buffer (10 mM sodium citrate, pH 4.5, and 20 mM (NH₄)₂SO₄). The cells were then resuspended in 2.7 ml of incubation medium (10 mM sodium citrate, pH 4.5, 20 mM (NH₄)₂SO₄, and 2% glucose), and the absorbance at 600 nm was measured. The assay was initiated by the addi-

tion of 300 μ l of radiolabeled tryptophan solution (297 μ l of the incubation medium and 3 μ l of L-[5-³H]tryptophan, 20 Ci/mmol; American Radiolabeled Chemicals, St. Louis) at a final tryptophan concentration of ~10 μ g/ml. An aliquot (500 μ l) was withdrawn at each time point and chilled by the addition of 1 ml of the ice-cold incubation medium. The cells were collected by filtration through a nitrocellulose filter (pore size 0.45 μ m, Schleicher & Schuell) presoaked in the wash buffer and washed three times with chilled water. The filters were completely dried at 50 °C for more than 2 h, and intracellular radiolabeled tryptophan was quantified by scintillation counting.

When tryptophan import activity of Tat2p was estimated (Fig. 7*B*), the Tat2p content in the plasma membrane was determined. Cells were grown to early log phase in SDA-UW medium at 30 °C. $50A_{600}$ units of the cells were subjected to the sucrose gradient fractionation as described above to obtain the plasma membrane-rich fraction, which was analyzed by immunoblotting. The Tat2p content was quantified by densitometric scanning with LAS-1000 (Fuji Photo Film). Other $3.5A_{600}$ units of the cells instead of $0.9 A_{600}$ units were subjected to tryptophan uptake assay as described above. The data ($10^4 \text{ dpm}/A_{600}$) were corrected for the difference of Tat2p content in the plasma membrane-rich fraction.

Antibodies—Rabbit anti-Tat2p polyclonal antibodies were generated against two synthetic peptides of 17 amino acids, N1 (residues 5–21) and N2 (residues 66–82), from the NH₂-terminal cytoplasmic tail of Tat2p. Peptide synthesis and rabbit immunizations were performed in MBL (Nagoya, Japan). Antibodies were affinity-purified with a protein column in which 5 mg of GST-Tat2pNT (residues 1–85) was coupled to 0.5 ml of CNBr-activated Sepharose 4B beads (GE Healthcare). GST-Tat2pNT was expressed in *E. coli* and purified as described previously (37). The antiserum was incubated with the protein beads for 1 h at room temperature with gentle rotation. The beads were then successively washed five times with 1 ml of high salt wash buffer (50 mM Tris-HCl, pH 7.5, and 500 mM NaCl) and five times with 1 ml of low salt wash buffer (50 mM Tris-HCl, pH 7.5, and 150 mM NaCl). The antibodies were suc-

FIGURE 1. *lem3* Δ *trp1* Δ mutant exhibits tryptophan-dependent growth. *A* and *B*, tryptophan requirement in flippase and flippase-related mutants. Cells were grown to early log phase in YPDAW, washed, and adjusted at a concentration of 2.5 × 10⁷ cells/ml. 4- μ l drops of 5-fold serial dilutions were spotted on YPDAW or YPDA, followed by incubation at 30 °C for 20 h (*A*) or at 18 °C for 3 days (*B*). Strains were KKT61 (wild-type *TRP1*), KKT369 (wild-type *trp1* Δ), KKT402 (*tat2* Δ), KKT403 (*dnf1* Δ), KKT404 (*dnf2* Δ), KKT405 (*dnf1* Δ *dnf2* Δ), KKT406 (*drs2* Δ), KKT372 (*lem3* Δ), KKT433 (*cdc50* Δ), KKT434 (*fpk1* Δ *fpk2* Δ), and KKT407 (*cho1* Δ). These were *trp1* Δ background strains except for KKT61. *C*, suppression of tryptophan requirement of flippase and flippase-related mutants by overproduction of Tat2p. Cell growth was examined as in *A*. Strains were KKT372 (*lem3* Δ), KKT434 (*fpk1* Δ *fpk2* Δ), and KKT407 (*cho1* Δ). These were *trp1* Δ background strains were KKT372 (*lem3* Δ), KKT434 (*fpk1* Δ *fpk2* Δ), and KKT407 (*cho1* Δ). These were *trp1* Δ background strains were KKT372 (*lem3* Δ), KKT434 (*fpk1* Δ *fpk2* Δ), and KKT407 (*cho1* Δ). These were *trp1* Δ background strains were KKT372 (*lem3* Δ), KKT434 (*fpk1* Δ *fpk2* Δ), and KKT407 (*cho1* Δ). These were *trp1* Δ background strains were KKT369 (wild-type *trp1* Δ), KKT434 (*fpk1* Δ *fpk2* Δ), and KKT407 (*cho1* Δ) harboring YEplac195 (vector) or pKT1747 (YEp-TAT2). KKT369 was used as a WT control. *D*, *lem3* Δ *tat1* Δ *trp1* Δ mutant exhibits severe tryptophan requirement. Cells were spotted as in *A*, followed by incubation at 25 °C for 1.5 days. Strains were KKT369 (wild-type *trp1* Δ), KKT372 (*lem3* Δ), KKT436 (*tat1* Δ), KKT437 (*lem3* Δ *tat1* Δ), KKT402 (*tat2* Δ), and KKT438 (*lem3* Δ *tat2* Δ). These were also *trp1* Δ background strains.

cessively eluted five times with 0.5 ml of 0.1 M glycine-HCl, pH 3.5, and five times with 0.5 ml of 0.1 M glycine-HCl, pH 2.5, and the eluates were immediately equilibrated to pH 7.5 by mixing with 1 M Tris-HCl, pH 8.5. Fractions were divided into aliquots and stored at -20 °C. The antibodies against the N1 and N2 peptides were named anti-Tat2pN1 and anti-Tat2pN2 antibodies, respectively. Mouse anti-Pep12p monoclonal antibody was purchased from Invitrogen. Rabbit anti-Kex2p and anti-Pma1p polyclonal antibodies were gifts from S. Nothwehr (University of Missouri, Columbia, MO) and R. Serrano (Polytechnic University of Valencia, Valencia, Spain), respectively. For immunoblot analyses, these antibodies were used at the following dilutions: anti-Pep12p, 1:1000; anti-Kex2p, 1:5000; anti-Pma1p, 1:50,000; anti-Tat2pN1, 1:10,000; anti-Tat2pN2, 1:5000. Horseradish peroxidase-conjugated secondary antibodies (sheep anti-mouse IgG and donkey anti-rabbit IgG) used for immunoblotting were purchased from GE Healthcare.

RESULTS

Flippase Mutants Are Defective in Tryptophan Uptake Because of Dysregulation of Tat2p—The TRP1 gene product (phosphoribosylanthranilate isomerase) catalyzes the third step in the tryptophan biosynthesis pathway in budding yeast (38). Thus, $trp1\Delta$ cells require extracellular tryptophan for growth. As shown in Fig. 1A, $trp1\Delta$ cells grew normally in YPDA-rich medium containing tryptophan at a standard con-

centration ($\sim 100 \ \mu g/ml$), which was estimated by amino acid compositional analysis.³ Tryptophan uptake at this tryptophan concentration is thought to mainly depend on a high affinity tryptophan permease, Tat2p (39). Thus, $tat2\Delta trp1\Delta$ cells did not grow on YPDA but grew on YPDAW, which contained a high concentration of tryptophan (\sim 300 µg/ml), because tryptophan could be taken up by a low affinity tryptophan permease, Tat1p (Fig. 1A) (39). We previously identified Fpk1p and Fpk2p as kinases that phosphorylated Dnf1p and Dnf2p flippases for activation (15). We noticed that $fpk1\Delta$ $fpk2\Delta$ $trp1\Delta$ cells did not grow on YPDA but rather on YPDAW (Fig. 1A). Consistently, $dnf1\Delta dnf2\Delta trp1\Delta$ as well as $lem3\Delta trp1\Delta$ cells also exhibited tryptophan requirement, albeit weakly (Fig. 1*A*). Similar tryptophan requirement was also observed in $drs2\Delta$ $trp1\Delta$ and $cdc50\Delta$ $trp1\Delta$ mutants, but the phenotype seems to be milder compared with the $dnf1\Delta$ $dnf2\Delta/lem3\Delta$ $trp1\Delta$ mutants, because the $drs2\Delta/cdc50\Delta$ $trp1\Delta$ mutants exhibited slower growth even in YPDAW medium. Tryptophan requirement was not seen in the $dnf3\Delta/crf1\Delta$ trp1 Δ mutants.³ These results suggest that the tryptophan requirement of $lem3\Delta$ and $dnf1\Delta$ $dnf2\Delta$ mutants reflects a unique function of Lem3p-Dnf1/2p. The severest tryptophan requirement in the $fpk1\Delta$ $fpk2\Delta$ trp1 Δ mutant could be due to reduced phosphorylation

³ T. Hachiro, T. Yamamoto, and K. Tanaka, unpublished results.

of Drs2p, Ypk1p, or other substrates in addition to Dnf1p/ Dnf2p (15, 40). The $dnf1\Delta dnf2\Delta trp1\Delta$ and $lem3\Delta trp1\Delta$ mutants exhibited clearer tryptophan-dependent growth at 18 °C (Fig. 1*B*). Interestingly, the $tat2\Delta trp1\Delta$ mutant did not grow even in YPDAW, suggesting that the function or localization of Tat1p may be impaired at 18 °C. The $cho1\Delta trp1\Delta$ mutant also exhibited tryptophan requirement for growth as reported previously (23), but it grew slowly even in YPDAW (Fig. 1*A*).

These results suggest that the tryptophan requirement in the $dnf1\Delta dnf2\Delta/lem3\Delta trp1\Delta$ mutant is caused by dysregulation of Tat2p, and this was supported by the following results. (i) The tryptophan requirement of $lem3\Delta trp1\Delta$, $fpk1\Delta fpk2\Delta trp1\Delta$, and $cho1\Delta trp1\Delta$ mutants was suppressed by the overexpression of TAT2 (Fig. 1*C*). (ii) The $tat2\Delta$ mutation is synthetically lethal with the $tat1\Delta$ mutation in the $trp1\Delta$ background due to the severe uptake defect of tryptophan (39). The $lem3\Delta trp1\Delta$ mutation was synthetically lethal with $tat1\Delta$, but not with $tat2\Delta$ (Fig. 1*D*). Our strain background contains not only $trp1\Delta$ but also $leu2\Delta$, $his3\Delta$, $met15\Delta$, and $lys2\Delta$ mutations, but the $lem3\Delta$ mutant did not require a higher level of these amino acids for growth,³ suggesting that dysregulation of an amino acid transporter is specific to Tat2p.

Plasma Membrane Tat2p Is Decreased in the lem 3Δ Mutant— Our previous microarray analysis suggested that the *lem3* Δ mutation did not affect transcription of *TAT2*.³ To investigate intracellular localization of Tat2p, we constructed tagged versions of Tat2p, in which GFP, GST, 13 copies of the Myc epitope (13myc), and three copies of the HA epitope (3HA) were appended at the COOH terminus of *TAT2* in the genomic locus. However, TAT2-GFP, TAT2-GST, and TAT2-13myc resulted in suppression of the tryptophan requirement in the *lem3* Δ *trp1* Δ mutant, whereas *TAT2–3HA* was nonfunctional in the $tat2\Delta$ mutant (Fig. 2, A and B). TAT2-GFP also suppressed the tryptophan requirement in the $fpk1\Delta$ $fpk2\Delta$ $trp1\Delta$ and *cho1* Δ *trp1* Δ mutants.³ We also constructed the NH₂-terminally tagged versions of Tat2p, but again they did not complement the *tat2* Δ mutation (Fig. 2*C*). Therefore, we decided to generate antibodies against Tat2p.

Anti-Tat2p polyclonal antibodies were generated in rabbits against two Tat2p peptides (N1, residues 5–21, and N2, residues 66–82) from the NH₂-terminal cytoplasmic region of Tat2p. As shown in Fig. 3*A*, Tat2p was detected as a band of about 50 kDa in wild-type cells, but not in *tat2* Δ cells, by immunoblot assay with affinity-purified antibodies, although some cross-reactive bands were also detected especially with the anti-N2 antibodies. In the following experiments, the anti-N1 antibodies were used if not otherwise specified.

The plasma membrane Tat2p level is regulated by extracellular tryptophan in the *trp1* Δ mutant as well as wild type, and this is accomplished by rerouting intracellular transport of Tat2p (20). Because previous reports used strains expressing tagged Tat2 proteins, we reassessed the endogenous Tat2p level in cells grown in a different tryptophan concentration. In these assays, we first used *TRP1* strains rather than *trp1* Δ mutants to examine the effect of tryptophan depletion. Tat2p was most expressed when tryptophan was depleted from the medium (SDA-W) compared with the SDA medium with a low (30

FIGURE 2. **Tagged versions of Tat2p are abnormally regulated or are not fully functional.** 10-Fold serial dilutions of cell suspension were prepared as described in Fig. 1A and spotted on YPDAW and YPDA plates, followed by incubation at 30 °C for 22 h. A, strains were KKT372 (*lem3*Δ), KKT459 (*TAT2-GFP lem3*Δ), KKT460 (*TAT2-GST lem3*Δ), and KKT461 (*TAT2-J3myc lem3*Δ). B, strains were KKT369 (wild-type *trp1*Δ) and KKT461 (*TAT2-J3myc lem3*Δ). B, strains were KKT369 (wild-type *trp1*Δ) and KKT461 (*TAT2-J3MA*), c, strains were KKT381 (wild-type *trp1*Δ) and KKT418 (*tat2*Δ/*tat2*Δ *trp1*Δ/*trp1*Δ) harboring YCplac33 (vector), pKT1765 (YCp-TAT2), pKT1763 (YCp-2HA-TAT2), pKT1742 (YCp-3HA-TAT2), pKT2045 (YCp-P_{ACT1}-3myc-TAT2), and pKT2046 (YCp-P_{ACT1}-GFP-TAT2). These were *trp1*Δ background strains.

 μ g/ml) or high (200 μ g/ml) concentration of tryptophan (Fig. 3*B*). We next examined intracellular localization of Tat2p by separating organelles on a sucrose density gradient. As shown in Fig. 3*C*, the plasma membrane marker Pma1p fractionated in a denser fraction (*lane* 6), whereas the TGN marker Kex2p and the endosome marker Pep12p fractionated in lighter fractions (*lanes* 3 and 4). Hereafter, fraction 6 is referred to as the plasma membrane (PM)-rich fraction, whereas fractions 3 and 4 are referred to as the internal membrane (IM)-rich fractions. Tat2p was clearly increased in the PM-rich fraction by tryptophan depletion, whereas Tat2p in the IM-rich fraction was little affected by extracellular tryptophan concentration (Fig. 3*C*).

The fractionation profile of Tat2p was next examined in the *lem3* Δ and other mutants grown at 30 °C. Tat2p in the PM-rich fraction was slightly decreased in the $lem 3\Delta$ mutant, although it was clearly decreased in the *cho1* Δ mutant (Fig. 3D). These results paralleled weak and strong tryptophan requirements in the *lem3* Δ *trp1* Δ and *cho1* Δ *trp1* Δ mutants, respectively (Fig. 1*A*). In contrast, although the *fpk1* Δ *fpk2* Δ mutant exhibited a strong tryptophan requirement (Fig. 1A), Tat2p was only slightly decreased in this mutant, suggesting that the plasma membrane Tat2p might be less functional in the $fpk1\Delta$ $fpk2\Delta$ mutant. Tat2p in the PM-rich fraction was more decreased at 18 °C in the *lem3* Δ and *fpk1* Δ *fpk2* Δ mutants (Fig. 3D), again consistent with the growth phenotype (Fig. 1B). The fractionation profile of Tat2p was also examined in the *lem3* Δ *trp1* Δ mutant grown in YPDA at 30 °C, and it was confirmed that Tat2p was decreased in the PM-rich fraction (Fig. 3E). These results suggest that the tryptophan requirement in the *lem3* Δ mutant is due to the decreased Tat2p in the plasma membrane.

FIGURE 3. Mislocalization of Tat2p in the lem3 mutant. A, detection of Tat2p by anti-Tat2p antibodies. Protein extracts from bulk membrane fraction after centrifugation at 100,000 $\times q$ were subjected to immunoblotting with antibodies against the NH₂-terminal cytoplasmic region of Tat2p. α -N1 and α -N2 indicate anti-Tat2pN1 and anti-Tat2pN2 antibodies, respectively. Strains were KKT369 (wild-type trp1 Δ) and KKT402 (tat2 Δ trp1 Δ). B, effect of extracellular tryptophan concentration on the expression level of Tat2p. Total cell lysates prepared from cells of KKT61 (wild-type TRP1) were subjected to immunoblotting with the anti-Tat2pN1 or anti-Kex2p (a loading control) antibodies. The cells were grown to early log phase in SDA medium containing 200 (200W), 30 (30W), or 0 (-W) μg/ml of tryptophan at 30 °C. C, effect of extracellular tryptophan concentration on the subcellular distribution of Tat2p. Total cell lysates prepared from the KKT61 cells grown as described in B were subjected to sucrose gradient fractionation as described under "Experimental Procedures," followed by immunoblotting with antibodies against Tat2p, Pma1p, Kex2p, and Pep12p. PM and IMs indicate the plasma membrane-rich fraction and internal membranes-rich fractions, respectively. Distribution of Pma1p, Kex2p, and Pep12p was not affected by extracellular tryptophan concentration (data not shown). D. mislocalization of Tat2p in the lem3A mutant. Subcellular distribution of Tat2p was examined by sucrose gradient fractionation as in C. Cells were grown in SDA-W medium at 30 or 18 °C. Strains were KKT61 (wild-type *TRP1*), KKT102 (*lem3* Δ), KKT268 (*fpk1* Δ $fpk2\Delta$), and KKT439 (*cho1* Δ). For the *cho1* Δ mutant, 1 mm ethanolamine was supplemented to the culture medium. E, mislocalization of Tat2p in the lem 3Δ *trp1* Δ mutant. Subcellular distribution of Tat2p was examined as in C. Cells were grown in YPDA medium at 30 °C. Strains were KKT369 (wild-type *trp1* Δ) and KKT372 (*lem3* Δ *trp1* Δ). *F*, vacuole-dependent degradation of Tat2p in the $lem 3\Delta$ mutant. Total cell lysates prepared from cells grown in SDA-W medium at 18 °C were subjected to immunoblotting with the anti-Tat2pN1 or anti-Kex2p (a loading control) antibodies. Strains were KKT61 (wild-type TRP1), KKT102 (*lem3* Δ), KKT452 (*pep4* Δ *prb1* Δ), and KKT455 (*lem3* Δ *pep4* Δ *prb1* Δ). These were TRP1 background strains.

Tat2p that was not delivered to the plasma membrane seemed to be degraded, because the total cellular Tat2p level was decreased in the *lem3* Δ mutant (Fig. 3*F*). This reduction was suppressed by mutations in *PEP4* and *PRB1*, encoding vacuolar proteases that are required for maturation and activation of

most vacuolar hydrolases (41, 42). These results suggest that Tat2p is missorted to vacuoles in the $lem3\Delta$ mutant.

Tat2p May be Missorted to the Vacuole from the TGN in the lem3 Δ *Mutant*—Lem3p-Dnf1p and Lem3p-Dnf2p are recycled through the endocytic recycling pathway to maintain their primary localization to the plasma membrane (6, 43, 44). Thus, Lem3p-Dnf1/2p could regulate phospholipid asymmetry of endosomal/TGN membranes in addition to the plasma membrane. Two mechanisms can be envisioned to account for the decreased plasma membrane localization of Tat2p as follows: (i) Tat2p is missorted to the vacuole from the TGN in the *lem3* Δ mutant, and (ii) Tat2p is rapidly endocytosed in the lem3 Δ mutant. We first examined whether a mutation in genes involved in the vacuolar sorting pathway suppressed the tryptophan requirement in the *lem3* Δ mutant. The *VPS1* and GGA1/GGA2 genes encode a dynamin-like GTPase (45, 46) and Golgi-associated coat proteins with homology to γ -adaptin (47, 48), respectively. Both proteins are implicated in vesicle formation from the TGN for transport to the vacuole via late endosomes. Thus, mutations in these genes would redeliver cargo proteins destined for the vacuole to the plasma membrane (46, 49–51). As shown in Fig. 4A, both $vps1\Delta$ and $gga1\Delta$ $gga2\Delta$ mutations suppressed growth defects of the $lem3\Delta$ mutant on YPDA medium. If Tat2p is missorted to the vacuole through the vacuolar sorting pathway, mutations in late endosome-to-vacuole transport would also suppress the $lem3\Delta$ mutation. The PEP12 and VPS27 genes encode a t-SNARE required for vesicle fusion with late endosomes (52, 53) and a subunit of the ESCRT-0 complex involved in the sorting of ubiquitinated cargo into intraluminal budding of the endosomal membrane (54–56), respectively. $pep12\Delta$ and $vps27\Delta$ mutations also suppressed growth defects of the *lem3* Δ mutant (Fig. 4A).

We next confirmed that the suppression was caused by increased Tat2p at the plasma membrane. The PM-rich fraction was isolated by sucrose gradient centrifugation as described in Fig. 3C, and Tat2p content was examined (Fig. 4B). The $vps1\Delta$ mutation slightly increased Tat2p at the plasma membrane in the *lem3* Δ mutant, and the *gga1* Δ *gga2* Δ mutations substantially increased it, but to a lesser extent than the $pep12\Delta$ and $vps27\Delta$ mutations. In the $vps1\Delta$ and $gga1\Delta$ $gga2\Delta$ mutants, Tat2p might be transported to the vacuole via the TGN-to-early endosome pathway, which would not be affected by these mutations. As shown in Fig. 4C, Dnf1p-GFP and Dnf2p-GFP were partially co-localized with a TGN marker Sec7p-mRFP (arrowheads) (57). Taken together, these results suggest that Tat2p is missorted to the vacuole from the TGN membrane whose phospholipid asymmetry is abnormally regulated in the *lem3* Δ mutant.

As shown in Fig. 4*B*, the plasma membrane Tat2p level in $pep12\Delta$ and $vps27\Delta$ mutants was not clearly decreased by the $lem3\Delta$ mutation, suggesting that Tat2p was not rapidly cleared from the plasma membrane by endocytosis in the $lem3\Delta$ mutant. In addition, Pomorski *et al.* (14) reported that flippase mutants are rather defective in endocytosis; the uptake of a lipophilic dye FM4-64 was delayed in the $dnf1\Delta dnf2\Delta$ mutant, and the internalization of the mating factor receptor is inhibited in the $dnf1\Delta dnf2\Delta drs2\Delta$ mutant. If endocytosis of Tat2p is

asbmb

FIGURE 4. Tat2p is redelivered to the plasma membrane by inhibition of the vacuolar sorting pathway in the lem3 mutant. A, suppression of tryptophan requirement in the lem3 Δ mutant. 10-Fold serial dilutions of cell suspension were prepared as described in Fig. 1A and spotted on YPDAW and YPDA plates, followed by incubation at 30 °C for 22 h. Strains were KKT369 (wild-type), KKT372 ($lem3\Delta$), KKT429 ($vps1\Delta$), KKT430 ($lem3\Delta$ $vps1\Delta$), KKT419 $(gga1\Delta gga2\Delta)$, KKT420 $(lem3\Delta gga1\Delta gga2\Delta)$, KKT421 $(pep12\Delta)$, KKT422 (*lem3* Δ *pep12* Δ), KKT423 (*vps27* Δ), and KKT424 (*lem3* Δ *vps27* Δ). These were $trp1\Delta$ background strains. B, restoration of the plasma membrane localization of Tat2p in the *lem3* Δ mutant. The cells of strains in A were grown in YPDA at 30 °C and the PM-rich fractions were isolated, followed by immunoblotting with anti-Tat2pN1 (upper panel) or anti-Pma1p (lower panel, a loading control) antibodies as described in Fig. 3C. C, co-localization of Dnf1p-GFP and Dnf2p-GFP with Sec7p-mRFP. Cells were grown to early log phase in YPDA at 30 °C, followed by fluorescence microscopic observation after fixation in 3.7% formaldehyde. Strains used were KKT444 (DNF1-GFP SEC7-mRFP, upper panel) and KKT445 (DNF2-GFP SEC7-mRFP, lower panel). Images were merged to compare two signal patterns. Arrowheads indicate co-localization between Dnf1p-GFP or Dnf2p-GFP and Sec7p-mRFP. Bars, 5 μ m.

enhanced in the *lem3* Δ mutant, inhibition of endocytosis would recover Tat2p on the plasma membrane. *END3* and *VRP1* encode a factor of the endocytic coat/adaptor complex (58) and a regulator of cortical actin patch assembly (59), respectively, and removal of them causes a defect in receptor-mediated and fluid-phase endocytosis (60, 61). However, to our great surprise, the *end3* Δ *trp1* Δ and *vrp1* Δ *trp1* Δ mutants exhibited tryptophan-dependent slow growth, which was suppressed by

FIGURE 5. Mislocalization of Tat2p in endocytosis-defective mutants. A, tryptophan requirement in endocytosis-defective mutants. 10-Fold serial dilutions of cell suspension were prepared and spotted on YPDAW and YPDA plates as in Fig. 1A, followed by incubation at 25 °C for 1.5 days. Stains were KKT369 (wild-type trp1 Δ), KKT440 (end3 Δ), KKT441 (vrp1 Δ), and KKT440 and KKT441 containing pKT1747 (YEp-TAT2). These were $trp1\Delta$ background strains. B, subcellular distribution of Tat2p in endocytosis-defective mutants. The cells of KKT61 (wild-type TRP1), KKT290 (end3 Δ TRP1), and KKT144 (vrp1 Δ TRP1) were grown in SDA-W medium at 25 °C, and the cell lysates were subjected to sucrose gradient fractionation, followed by immunoblotting with anti-Tat2pN1 antibodies. C, accumulation of Dnf1p-GFP and Dnf2p-GFP at the plasma membrane in endocytosis-defective mutants. The cells of wildtype and $end3\Delta$ strains expressing either Dnf1p-GFP or Dnf2p-GFP were grown to early log phase in YPDA at 25 °C, followed by fluorescence microscopic observation. Strains were KKT33 (DNF1-GFP), KKT334 (DNF2-GFP), KKT442 (end3 Δ DNF1-GFP), and KKT443 (end3 Δ DNF2-GFP). Bars, 5 μ m. D, tryptophan requirement in the ypt6 Δ mutant. Cell growth was examined as in Fig. 1A at 30 °C for 22 h. Strains were KKT369 (wild-type trp1 Δ), KKT372 (*lem* 3Δ), KKT453 (*ypt* 6Δ), and KKT454 (*lem* 3Δ *ypt* 6Δ). These were *trp* 1Δ background strains.

the overproduction of Tat2p (Fig. 5*A*). Consistently, the plasma membrane Tat2p was decreased in these mutants as estimated by sucrose density gradient fractionation (Fig. 5*B*). These results suggest that Tat2p is not properly delivered to the

plasma membrane due to some indirect defect in the TGN-toplasma membrane transport of Tat2p.

Lem3p-Dnf1p is recycled from the plasma membrane through early endosomes to the TGN and back to the plasma membrane (6, 43). We previously showed that Dnf1p-GFP was exclusively localized to the plasma membrane in the $vrp1\Delta$ mutant (6). Similarly, Dnf1p-GFP and Dnf2p-GFP were localized to the plasma membrane in *end3* Δ cells (Fig. 5*C*). Thus, in end mutants, Lem3p-Dnf1/2p could not be localized to the TGN, resulting in deregulated phospholipid asymmetry of this membrane. This would account for the possible missorting of Tat2p from the TGN to the vacuole in end mutants. Consistently, the *ypt6* Δ *trp1* Δ mutant, in which Dnf2p was mislocalized to endocytic recycling vesicles (62), also exhibited tryptophan requirement that was not strongly exacerbated by the additional *lem3* Δ mutation (Fig. 5D). However, because various membrane proteins are recycled through the endocytic pathway, mislocalization of other proteins than Lem3p-Dnf1/2p may be also involved in the missorting of Tat2p.

Inhibition of Ubiquitination Restores Plasma Membrane Localization of Tat2p-How does deregulated phospholipid asymmetry drive Tat2p to the vacuolar sorting pathway? Ubiquitination of yeast permeases is involved in their transport from the TGN to endosomes, endocytosis from the plasma membrane, and invagination into late endosomes (21). It was reported that ubiquitination at the TGN redirected Gap1p general amino acid permease to vacuoles from the exocytosis pathway (63). Thus, we examined whether inhibition of Tat2p ubiquitination restored plasma membrane localization of Tat2p in the *lem3* Δ mutant. Beck *et al.* (22) identified five lysine residues in the NH₂-terminal domain of Tat2p as ubiquitin acceptor sites during starvation, and Umebayashi and Nakano (20) reported that three (residues 10, 17, and 20) of them were mainly ubiquitinated. $TAT2^{3K>R}$, in which these three lysine residues were replaced by arginine, was constructed and the genomic TAT2 was replaced with this allele. $TAT2^{3K>R}$ suppressed the tryptophan requirement in the lem3 Δ trp1 Δ mutant (Fig. 6A). Rsp5p is an E3 ubiquitin ligase of the NEDD4 family, and Bul1/2p are Rsp5p adaptors required for the substrate recognition (21). Both $bull\Delta bull\Delta$ and rsp5-1 mutations suppressed the tryptophan-dependent growth in the $lem3\Delta$ *trp1* Δ mutant (Fig. 6A). To confirm that the plasma membrane localization of Tat2p was restored by inhibition of ubiquitination, the PM-rich fraction was isolated by sucrose gradient fractionation, and the Tat2p content was examined by immunoblotting. In these experiments, we used the anti-Tat2pN2 antibodies instead of the anti-Tat2pN1 antibodies, which were raised against the NH2-terminal peptide containing the substitution sites of $Tat2p^{3K>R}$. All mutations increased the plasma membrane Tat2p in the *lem3* Δ mutant (Fig. 6*B*). However, the increase by $TAT2^{3K>R}$ and rsp5-1 mutations was not high, probably due to ubiquitination on other ubiquitin acceptor sites in Tat2p^{3K>R} (*e.g.* residues 29 and 31) (22) and leakiness of the temperature-sensitive rsp5-1 mutation at 30 °C, respectively.

The results described above imply that Tat2p is ubiquitinated at the TGN and missorted to the vacuole in the $lem3\Delta$ mutant. However, we cannot exclude a possibility that the

FIGURE 6. Inhibition of ubiquitination restores the plasma membrane **localization of Tat2p in the** *lem3* Δ **mutant.** *A*, suppression of tryptophan requirement in the $lem 3\Delta$ mutant by mutations in ubiquitination machinery. 10-Fold serial dilutions of cell suspension were prepared and spotted on YPDAW and YPDA plates as in Fig. 1A, followed by incubation at 30 °C for 22 h. Strains were KKT369 (wild-type *trp1* Δ), KKT372 (*lem3* Δ), KKT427 (*TAT2*^{3K>R}), KKT428 (lem3Δ TAT2^{3K>R}), KKT425 (bul1Δ bul2Δ), KKT426 (lem3Δ bul1Δ bul2 Δ), KKT446 (rsp5-1), and KKT447 (lem3 Δ rsp5-1). These were trp1 Δ background strains. B, restoration of the plasma membrane localization of Tat2p in the *lem3* Δ mutant. The cells of strains in A were grown in YPDA at 30 °C, and the PM-rich fractions were isolated by sucrose gradient fractionation, followed by immunoblotting with anti-Tat2pN2 (upper panel) or anti-Pma1p (lower panel, a loading control) antibodies as described in Fig. 3C. C, suppression of tryptophan requirement in end mutants by mutations in ubiquitination machinery. 10-Fold serial dilutions of cell suspension were prepared and spotted on YPDAW and YPDA plates as in Fig. 1A, followed by incubation at 25 °C for 1.5 days. Strains were KKT369 (wild-type $trp1\Delta$), KKT440 (end3 Δ), KKT448 (end3Δ TAT2^{3K>R}), KKT449 (end3Δ bul1Δ), KKT441 (vrp1Δ), KKT450 (vrp1Δ TAT2^{3K>R}), and KKT451 (vrp1Δ bul1Δ). These were trp1Δ background strains.

plasma membrane Tat2p was increased due to blockade of endocytosis. Interestingly, $TAT2^{3K>R}$ and $bul1\Delta$ also suppressed the tryptophan requirement in the $end3\Delta$ $trp1\Delta$ and $vrp1\Delta$ $trp1\Delta$ mutants (Fig. 6*C*). These results suggest that ubiquitination of Tat2p occurs at the TGN, not at the plasma membrane, at least in *end* mutants. We also examined increased ubiquitination of Tat2p in the $lem3\Delta$ mutant. Tat2p was immunoprecipitated with the anti-Tat2p antibodies from cells expressing Myc-tagged ubiquitin, followed by immunoblotting with the anti-Myc antibody. However, we could not reproducibly detect an increase of ubiquitination in the $lem3\Delta$ mutant, because of abundant ubiquitinated Tat2p in wild-type cells, possibly originating from Tat2p localized in intracellular membranes (Fig. 3, *C* and *D*).³

FIGURE 7. Tryptophan uptake activity of Tat2p in the lem3 Δ mutant. A, tryptophan uptake in the *lem3* Δ and *tat2* Δ mutants. Tryptophan import activity was assayed with L-[5-3H]tryptophan as described under "Experimental Procedures." The data represent means \pm S.D. of three independent experiments. Strains were KKT61 (wild-type TRP1), KKT102 (lem3Δ), KKT458 $(tat2\Delta)$, and KKT465 $(lem3\Delta tat2\Delta)$. These were TRP1 background strains. B, tryptophan uptake activity of Tat2p was not affected by the lem3 Δ mutation. Upper panel, Tat2p content in the PM-rich fraction. PM-rich fractions were isolated by sucrose gradient fractionation from KKT61 (wild-type TRP1) harboring YCplac33 (vector) and KKT102 (lem3 TRP1) harboring pKT1765 (YCp-TAT2), followed by immunoblotting with anti-Tat2pN2 or anti-Pma1p (a loading control) antibodies. The plasma membrane Tat2p level in the $lem 3\Delta$ mutant was 129 \pm 15% of the wild type. Lower panel, tryptophan uptake activity of Tat2p. Tryptophan import activity ($10^4 \text{ dpm}/A_{600}$), which was assayed as described in A, was corrected for the difference of Tat2p content in the PM-rich fraction.

Tryptophan Import Activity of Tat2p Was Not Affected by the lem3 Δ Mutation—Because Lem3p-Dnf1/2p are implicated in phospholipid asymmetry in the plasma membrane (14, 64), it is possible that tryptophan import activity of Tat2p is decreased by perturbed phospholipid asymmetry in the *lem3* Δ mutant. Tryptophan uptake was examined in the *lem3* Δ mutant using radiolabeled tryptophan. As shown in Fig. 7A, tryptophan uptake was decreased in the *lem3* Δ mutant in accordance with the decreased Tat2 protein level in the PM-rich fraction (Fig. 3D). Tat2p was mainly responsible for this tryptophan uptake in the *lem3* Δ mutant as well as in the wild type and *lem3* Δ mutant, we constructed a *lem3* Δ mutant that expressed Tat2p

Phospholipid Asymmetry Is Involved in Localization of Tat2p

at the plasma membrane in a level comparable with that in the wild type by transforming the *lem3* Δ mutant with YCp-TAT2. The plasma membrane Tat2p level in this strain was 129 ± 15% of the wild type. As shown in Fig. 7*B*, tryptophan uptake was not affected by the *lem3* Δ mutation when the Tat2p level in the *lem3* Δ mutant was normalized to the wild type. These results suggest that tryptophan requirement in the *lem3* Δ mutant was not caused by decreased Tat2p activity.

Interaction of the Tat2p NH₂-terminal Cytoplasmic Region with Phosphatidylserine May be Involved in the Ubiquitination of Tat2p—We next investigated a mechanism for sensing perturbed phospholipid asymmetry by Tat2p. If Tat2p is directly involved in the sensing, the sensing site might be located in the vicinity of the ubiquitination sites in the NH₂-terminal region. Thus, we examined whether the Tat2p NH₂-terminal region (residues 1-85, Tat2pNT) directly interacted with phospholipids by the liposome flotation assay (35). In these experiments, liposomes and their bound proteins move to the top fraction from the bottom fraction after centrifugation, whereas unbound proteins are left in the bottom fraction. Interestingly, GST-Tat2pNT bound to liposomes composed of 80% DOPC and 20% DOPS, or 80% DOPC and 20% PA (mol/mol) (Fig. 8A). GST-Tat2pNT very weakly bound to 80% DOPC and 20% PI liposomes but did not bind to DOPC-only liposomes or 80% DOPC and 20% DOPE liposomes, suggesting that GST-Tat2pNT specifically bound to acidic phospholipid-containing liposomes in a preferable manner for PS and PA. These results are interesting, because Lem3p-Dnf1/2p are suggested to translocate PS but not PA to the cytoplasmic leaflet (see under "Discussion") (14).

To evaluate the physiological significance of the above findings, we isolated mutant Tat2pNT proteins that were impaired in the binding to PS-containing liposomes. Given that the interaction was sensitive to high salt concentrations (e.g. 200 mM KCl),³ we speculated that positively charged amino acids may be involved in the lipid binding. The partial amino acid sequence of Tat2pNT is shown in Fig. 8B. This region is highly variable among yeast amino acid permeases except for the conserved sequence (residues 78-85) that precedes the first transmembrane domain. Two lysine- and arginine-containing sequences, regions 1 and 2, which are separated by a serine-rich sequence (residues 34-47) were found. In region 1, five lysine residues (10, 17, 20, 29, and 31) had been identified as ubiquitin acceptor lysines (22), and these lysines were replaced with alanines to construct Tat2pNT^{5K>A}. There are also two arginine residues (11 and 19) in this region, and they were replaced with alanines to construct Tat $2pNT^{2R>A}$. In region 2, there are two arginine residues (55 and 60) and lysine residues (54 and 66), and these four residues were replaced with alanines to construct Tat2pNT^{2K2R>A}. These three mutant proteins fused to GST were expressed, purified, and examined for binding to the PC liposomes containing 20% PS (Fig. 8C). Interestingly, the 2K2R>A substitutions greatly impaired the interaction as follows: only 14.8 \pm 1.1% of GST-Tat2pNT^{2K2R>A} was found in the top fraction compared with 71.2 \pm 4.5% of the wild type. The binding of GST-Tat2pNT^{5K>A} was slightly impaired to 42.4 \pm 9.6% but that of GST-Tat2pNT^{2R>A} was not affected.

FIGURE 8. **Mutational analysis of basic residues in the NH₂-terminal region of Tat2p for interaction with liposomes and** *in vivo* **functions.** *A***, NH₂-terminal region of Tat2p preferentially binds to PS- or PA-containing liposomes. Liposome flotation experiments were performed with GST-Tat2p(residues 1–85) (GST-Tat2pNT) as described under the "Experimental Procedures."** *T***,** *M***, and** *B* **indicate** *top***,** *middle***, and** *bottom fractions***, respectively. Percent Tat2p in the top fraction is shown (mean \pm S.D. of three independent experiments). The liposome composition was 100 mol % DOPC (PC), 80% DOPC, and 20% DOPC (20% PS), 80% DOPC and 20% PDE (20% PE), 80% DOPC and 20% PA (20% PA), or 80% DOPC and 20% PI (20% PI).** *Arrowheads* **indicate GST-Tat2pNT.** *B***, alanine substitution mutations in the NH₂-terminal region of Tat2p. Partial amino acid sequence of the NH₂-terminal region (residues 1–85) and three alanine substitution mutants are shown.** *Asterisks* **indicate ubiquitin (***Ub***) acceptor lysines.** *C***, interaction of Tat2pNT mutant proteins with PS liposomes. Binding of GST-fused mutant Tat2pNT to PS liposomes (80% DOPC and 20% DOPS) was examined by liposome flotation experiments as in** *A***.** *D***, tryptophan-dependent growth phenotypes of the** *tat2* **mutants. 10-Fold serial dilutions of cell suspension were prepared and spotted on YPDAW and YPDA plates as in Fig. 1A: followed by incubation at 30 °C for 22 h. Strains were KKT381 (wild-type** *trp1***Δ/***trp1***Δ) and KKT418 (***tat2***Δ/***tat2***Δ). These were** *trp1***Δ background strains.** *E***, subcellular distribution of mutant Tat2 proteins. Cells were grown to early log phase in SDA-UW medium at 30 °C, and the cell lysates were subjected to sucrose gradient fractionation, followed by immunoblotting with anti-Tat2pN1 (***α***-***N***1) and -Tat2pN2 (***α***-***N***2) antibodies. Tat2p^{SK>A} exhibited mobility shifts possibly because of post-translational modifications or structural alteration by substitutions. An** *arrowhead* **indicates the original Tat2p position. Strains were KKT369 (wild-t**

These results suggest that the four basic residues in region 2 are mainly involved in the PS-liposome binding.

We next constructed mutant *tat2* genes containing these substitutions and expressed them in the *tat2* Δ *trp1* Δ mutant. Most interestingly, the *tat2*^{2K2R>A} gene failed to complement the *tat2* Δ mutation (Fig. 8D). This was because the plasma membrane Tat2p^{2K2R>A} was decreased as estimated by sucrose gradient fractionation (Fig. 8*E*). We next expressed the

 $tat2^{2K2R>A}$ gene in the $bul1\Delta \ bul2\Delta \ tat2\Delta \ trp1\Delta$ mutant. As shown in Fig. 8*F*, $bul1\Delta \ bul2\Delta$ mutations clearly suppressed the tryptophan requirement of the $tat2^{2K2R>A}$ mutant. Taken together, these results suggest that $Tat2p^{2K2R>A}$ is ubiquitinated and missorted to the vacuole, possibly because its NH₂-terminal region does not interact with membranes.

We similarly examined the functionality of $TAT2^{5K>A}$ and $TAT2^{2R>A}$ mutant genes. The $TAT2^{5K>A}$ mutation restored

growth in the *lem3* Δ *tat2* Δ *trp1* Δ mutant as well as in the *tat2* Δ *trp1* Δ mutant (Fig. 8*D*), consistent with the previous observation that the mutated lysine residues are ubiquitin acceptor sites; this protein would be continuously transported to the plasma membrane from the TGN and would be defective in its endocytosis (22, 65). In fact, Tat2p^{5K>A} was exclusively found in the PM-rich fraction (Fig. 8*E*). As shown in Fig. 8*C*, GST-Tat2pNT^{5K>A} exhibited an ~30% reduction in liposome binding. It is an interesting possibility that these lysine residues are also involved in sensing the PS level for ubiquitination of Tat2p. The *TAT2*^{2*R*>*A*} mutant behaved like wild type in tryptophan requirement for growth and subcellular localization (Fig. 8, *D* and *E*). Consistently, this mutation did not affect the binding to PS-containing liposomes (Fig. 8*C*).

DISCUSSION

Here, we report that phospholipid flippases Lem3p-Dnf1/2p are involved in the plasma membrane localization of Tat2p. Considering the primary localization site of Lem3p-Dnf1/2p at the plasma membrane, we first speculated that the missorting of Tat2p was due to the perturbation of phospholipid asymmetry at the plasma membrane. However, the missorting seems to occur at the TGN, because the inhibition of TGN-to-late endosome transport rerouted Tat2p to the plasma membrane. Interestingly, endocytosis-defective mutants also exhibited the defects in the plasma membrane localization of Tat2p, suggesting that, in end mutants, Tat2p was also missorted from the TGN to the vacuole. In end mutants, various membrane proteins that are recycled through the endocytic pathway are trapped at the plasma membrane. Thus, the Tat2p missorting seems to be caused by sequestering some proteins, including Lem3p-Dnf1/2p, from the TGN. Consistently, the end3 Δ mutation did not exhibit a synthetic tryptophan requirement with the *lem3* Δ *trp1* Δ mutations at 25 °C.³ Although we cannot exclude the possibility that Tat2p is endocytosed at an increased rate in the *lem3* Δ mutant, it is not plausible, because of the following: (i) the plasma membrane-associated Tat2p level was not very different between $pep12\Delta$ and $lem3\Delta$ $pep12\Delta$ mutants (Fig. 4B), and (ii) Lem3p-Dnf1/2p were rather required for endocytosis (14).

If the phospholipid flip at the TGN is generally required for the plasma membrane transport of Tat2p, the $cdc50\Delta/drs2\Delta$ $trp1\Delta$ mutant should exhibit a stronger tryptophan requirement, because Cdc50p-Drs2p is mainly localized to TGN/endosomal membranes (13). However, the $cdc50\Delta/drs2\Delta$ mutants exhibited a weaker tryptophan requirement than the $lem 3\Delta/dn f 1/2\Delta$ mutants, taking into account the slower growth rates of the $cdc50\Delta/drs2\Delta$ mutants in a tryptophan-rich medium (Fig. 1A). One possibility is that Lem3p-Dnf1/2p and Tat2p are present in a similar membrane microenvironment; both proteins have been reported to be present in detergentresistant membrane domains, the so-called lipid rafts (20, 64). In yeast, most plasma membrane proteins, including Lem3p and Tat2p, were found to be associated with lipid rafts. Accumulating evidence suggests that lipid rafts function as a sorting platform at the TGN for cell surface delivery of plasma membrane proteins (66). Quantitative analysis of isolated secretory vesicles by mass spectrometry revealed that they are highly enriched in ergosterol and sphingolipids compared with the donor TGN membranes (67). Thus, Lem3p-Dnf1/2p and Tat2p may be segregated at the TGN from Cdc50p-Drs2p, which is normally transported to the early endosome. It is unknown how phospholipid asymmetry is organized in these raft domains, but Lem3p-Dnf1/2p may affect the destination of Tat2p by flipping phospholipids in raft domains.

The binding of Tat2pNT to liposomes required positively charged amino acid residues and PS or PA on liposomes, suggesting that the NH₂-terminal region of Tat2p electrostatically interacts with negatively charged membranes. It was reported that the $trp1\Delta$ mutant exhibited growth sensitivity to weak organic acid stress, which was suppressed by tryptophan supplementation or overexpression of Tat2p (68). Acid stress might disrupt the electrostatic interaction of Tat2p with membranes, resulting in mislocalization of Tat2p. Electrostatic interaction between a cytoplasmic region and membranes is involved in the regulation of various membrane proteins. The cytoplasmic COOH-terminal domain of the epithelial Na⁺/H⁺ exchanger NHE3 interacted with negatively charged membranes through basic residues, and this association seemed to be involved in the regulation of NHE3 activity in vivo (69). In rhodopsin, a cytoplasmic helical segment (H8) extending from the transmembrane domain seven could act as a membrane-dependent conformational switch by interacting with PS (70). In addition, it has been proposed that a cytoplasmic juxtamembrane domain of epidermal growth factor receptor binds electrostatically to acidic phospholipids in the plasma membrane, resulting in autoinhibition of the tyrosine kinase activity (71).

It has not been clearly demonstrated that Lem3p-Dnf1/2p flip PS, because NBD-labeled PS was still flipped in the *lem3* Δ mutant probably due to an unidentified protein on the plasma membrane (72), and NBD-PS was a less preferred substrate of Dnf1p compared with NBD-PC and NBD-PE (73). However, growth of the *lem3* Δ mutant was clearly sensitive to papuamide B, a cyclic lipopeptide that shows cytotoxicity by binding to PS in biological membranes (74), and this sensitivity was suppressed by the *cho1* Δ mutation,³ indicating that PS is exposed on the cell surface in this mutant. These results may suggest that Lem3p-Dnf1/2p flips PS more efficiently than NBD-PS. The results that Tat2p was missorted in the $cho1\Delta$ mutant (Fig. 3D) also support that PS is involved in Tat2p transport. Involvement of PS was also demonstrated for the ferrichrome-induced plasma membrane transport of the siderophore transporter Arn1p; Arn1p-GFP was mislocalized to intracellular structures in the *cho1* Δ mutant (75). Interestingly, in the *drs2* Δ mutant, the ferrichrome-induced plasma membrane transport of Arn1p-GFP was not affected, whereas Arn1p-GFP was mislocalized to the plasma membrane in the absence of ferrichrome. It seems that phospholipid asymmetry is involved in sorting of various membrane proteins in a different manner.

Because it was suggested that Lem3p-Dnf1/2p flip PE and PC (14, 64), these phospholipids may be also involved in Tat2p missorting. Interaction with the Tat2p NH_2 -terminal region was not detected with PE or PC in the liposome flotation experiments, but it is possible that changes in asymmetric distribution of these lipids are sensed through other regions of Tat2p or

by other proteins that regulate Tat2p ubiquitination. Further studies are required to examine these possibilities.

Inhibition of ubiquitination restored plasma membrane localization of Tat2p in the *lem3* Δ mutant, suggesting that perturbation of phospholipid asymmetry induces ubiquitination of Tat2p. Thus, an important question is how changes in phospholipid asymmetry are sensed and ultimately result in ubiquitination of Tat2p. Identification of the liposome binding activity in the Tat2p NH₂-terminal region shed light on this mechanism. Amino acid substitutions that reduced interaction with liposomes (2K2R>A: K54A, R55A, R60A, and K66A) caused ubiquitination-dependent missorting of Tat2p. These results suggest that Tat2p^{2K2R>A} mimics Tat2p in the *lem3* Δ mutant, although we cannot exclude a possibility that the substitutions cause other defects such as structural change or the inability to interact with an interacting protein. Because these residues are close to the ubiquitin acceptor lysines (residues 10, 17, 20, 29, and 31), we propose that the interaction of the Tat2p NH₂-terminal region with PS/PA-rich membranes through the basic residues plays an important role for whether Tat2p is ubiquitinated or not. When the Tat2p NH₂-terminal region is bound to membrane phospholipids, it is not ubiquitinated, but when it dissociates from the membrane, Tat2p would be ubiquitinated and then transported to the vacuole. To test this hypothesis, ubiquitination of Tat2p should be reconstituted in vitro with liposomes. PA, which seems not to be flipped by Lem3p-Dnf1/2p (14), is likely to exist in TGN/endosomal membranes at a level comparable with that of PS (67). This might account for the mild missorting of Tat2p in the *lem3* Δ mutant.

Plasma membrane localization of Tat2p is also sensitive to perturbation of other lipids, including ergosterol; Tat2p was missorted to the vacuole by ubiquitination in the $erg6\Delta$ mutant (20). Thus, Tat2p is suitable for the study of effects of lipid microenvironment on protein sorting.

Acknowledgments—We thank Drs. Akihiko Nakano, Fumiyoshi Abe, Ramon Serrano, and Steven Nothwehr for yeast strains, plasmids, and antibodies. We thank Tomohiro Hirose (Instrumental Analysis Division, Equipment Management Center, Creative Research Institution, Hokkaido University) for amino acid compositional analysis. We thank our colleagues in the Tanaka laboratory for valuable discussions and Eriko Itoh for technical assistance.

REFERENCES

- 1. Devaux, P. F., López-Montero, I., and Bryde, S. (2006) Proteins involved in lipid translocation in eukaryotic cells. *Chem. Phys. Lipids* **141**, 119–132
- 2. Daleke, D. L. (2007) Phospholipid flippases. J. Biol. Chem. 282, 821-825
- Lenoir, G., Williamson, P., and Holthuis, J. C. (2007) On the origin of lipid asymmetry. The flip side of ion transport. *Curr. Opin. Chem. Biol.* 11, 654–661
- 4. Tanaka, K., Fujimura-Kamada, K., and Yamamoto, T. (2011) Functions of phospholipid flippases. *J. Biochem.* **149**, 131–143
- Sebastian, T. T., Baldridge, R. D., Xu, P., and Graham, T. R. (2012) Phospholipid flippases. Building asymmetric membranes and transport vesicles. *Biochim. Biophys. Acta* 1821, 1068–1077
- Saito, K., Fujimura-Kamada, K., Furuta, N., Kato, U., Umeda, M., and Tanaka, K. (2004) Cdc50p, a protein required for polarized growth, associates with the Drs2p P-type ATPase implicated in phospholipid translocation in *Saccharomyces cerevisiae*. *Mol. Biol. Cell* 15, 3418–3432

- Furuta, N., Fujimura-Kamada, K., Saito, K., Yamamoto, T., and Tanaka, K. (2007) Endocytic recycling in yeast is regulated by putative phospholipid translocases and the Ypt31p/32p-Rcy1p pathway. *Mol. Biol. Cell* 18, 295–312
- Lenoir, G., Williamson, P., Puts, C. F., and Holthuis, J. C. (2009) Cdc50p plays a vital role in the ATPase reaction cycle of the putative aminophospholipid transporter Drs2p. J. Biol. Chem. 284, 17956–17967
- Takahashi, Y., Fujimura-Kamada, K., Kondo, S., and Tanaka, K. (2011) Isolation and characterization of novel mutations in *CDC50*, the noncatalytic subunit of the Drs2p phospholipid flippase. *J. Biochem.* 149, 423–432
- Jacquot, A., Montigny, C., Hennrich, H., Barry, R., le Maire, M., Jaxel, C., Holthuis, J., Champeil, P., and Lenoir, G. (2012) Phosphatidylserine stimulation of Drs2p-Cdc50p lipid translocase dephosphorylation is controlled by phosphatidylinositol 4-phosphate. J. Biol. Chem. 287, 13249–13261
- Natarajan, P., Wang, J., Hua, Z., and Graham, T. R. (2004) Drs2p-coupled aminophospholipid translocase activity in yeast Golgi membranes and relationship to *in vivo* function. *Proc. Natl. Acad. Sci. U.S.A.* 101, 10614–10619
- Alder-Baerens, N., Lisman, Q., Luong, L., Pomorski, T., and Holthuis, J. C. (2006) Loss of P4 ATPases Drs2p and Dnf3p disrupts aminophospholipid transport and asymmetry in yeast post-Golgi secretory vesicles. *Mol. Biol. Cell* 17, 1632–1642
- Hua, Z., Fatheddin, P., and Graham, T. R. (2002) An essential subfamily of Drs2p-related P-type ATPases is required for protein trafficking between Golgi complex and endosomal/vacuolar system. *Mol. Biol. Cell* 13, 3162–3177
- Pomorski, T., Lombardi, R., Riezman, H., Devaux, P. F., van Meer, G., and Holthuis, J. C. (2003) Drs2p-related P-type ATPases Dnf1p and Dnf2p are required for phospholipid translocation across the yeast plasma membrane and serve a role in endocytosis. *Mol. Biol. Cell* 14, 1240–1254
- Nakano, K., Yamamoto, T., Kishimoto, T., Noji, T., and Tanaka, K. (2008) Protein kinases Fpk1p and Fpk2p are novel regulators of phospholipid asymmetry. *Mol. Biol. Cell* 19, 1783–1797
- Devaux, P. F., Herrmann, A., Ohlwein, N., and Kozlov, M. M. (2008) How lipid flippases can modulate membrane structure. *Biochim. Biophys. Acta* 1778, 1591–1600
- Graham, T. R., and Kozlov, M. M. (2010) Interplay of proteins and lipids in generating membrane curvature. *Curr. Opin. Cell Biol.* 22, 430–436
- Saito, K., Fujimura-Kamada, K., Hanamatsu, H., Kato, U., Umeda, M., Kozminski, K. G., and Tanaka, K. (2007) Transbilayer phospholipid flipping regulates Cdc42p signaling during polarized cell growth via Rga GTPase-activating proteins. *Dev. Cell* 13, 743–751
- Das, A., Slaughter, B. D., Unruh, J. R., Bradford, W. D., Alexander, R., Rubinstein, B., and Li, R. (2012) Flippase-mediated phospholipid asymmetry promotes fast Cdc42 recycling in dynamic maintenance of cell polarity. *Nat. Cell Biol.* 14, 304–310
- Umebayashi, K., and Nakano, A. (2003) Ergosterol is required for targeting of tryptophan permease to the yeast plasma membrane. J. Cell Biol. 161, 1117–1131
- Lauwers, E., Erpapazoglou, Z., Haguenauer-Tsapis, R., and André, B. (2010) The ubiquitin code of yeast permease trafficking. *Trends Cell Biol.* 20, 196–204
- Beck, T., Schmidt, A., and Hall, M. (1999) Starvation induces vacuolar targeting and degradation of the tryptophan permease in yeast. *J. Cell Biol.* 146, 1227–1238
- Nakamura, H., Miura, K., Fukuda, Y., Shibuya, I., Ohta, A., and Takagi, M. (2000) Phosphatidylserine synthesis required for the maximal tryptophan transport activity in *Saccharomyces cerevisiae*. *Biosci. Biotechnol. Biochem.* 64, 167–172
- Rodríguez-Vargas, S., Sánchez-García, A., Martínez-Rivas, J. M., Prieto, J. A., and Randez-Gil, F. (2007) Fluidization of membrane lipids enhances the tolerance of *Saccharomyces cerevisiae* to freezing and salt stress. *Appl. Environ. Microbiol.* **73**, 110–116
- Rose, M. D., Winston, F., and Hieter, P. (1990) *Methods in Yeast Genetics:* A Laboratory Course Manual, pp. 177–186, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY
- 26. Guthrie, C., and Fink, G. R. (eds) (1991) *Guide to Yeast Genetics and Molecular Biology*, Vol 194, Academic Press, San Diego

- 27. Elble, R. (1992) A simple and efficient procedure for transformation of yeasts. *BioTechniques* **13**, 18–20
- Gietz, R. D., and Woods, R. A. (2002) Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene glycol method. *Methods Enzymol.* 350, 87–96
- Brachmann, C. B., Davies, A., Cost, G. J., Caputo, E., Li, J., Hieter, P., and Boeke, J. D. (1998) Designer deletion strains derived from *Saccharomyces cerevisiae* S288C. A useful set of strains and plasmids for PCR-mediated gene disruption and other applications. *Yeast* 14, 115–132
- Longtine, M. S., McKenzie, A., 3rd, Demarini, D. J., Shah, N. G., Wach, A., Brachat, A., Philippsen, P., and Pringle, J. R. (1998) Additional modules for versatile and economical PCR-based gene deletion and modification in *Saccharomyces cerevisiae. Yeast* 14, 953–961
- Goldstein, A. L., and McCusker, J. H. (1999) Three new dominant drug resistance cassettes for gene disruption in *Saccharomyces cerevisiae*. Yeast 15, 1541–1553
- Ho, S. N., Hunt, H. D., Horton, R. M., Pullen, J. K., and Pease, L. R. (1989) Site-directed mutagenesis by overlap extension using the polymerase chain reaction. *Gene* 77, 51–59
- Valdivia, R. H., and Schekman, R. (2003) The yeasts Rho1p and Pkc1p regulate the transport of chitin synthase III (Chs3p) from internal stores to the plasma membrane. *Proc. Natl. Acad. Sci. U.S.A.* 100, 10287–10292
- Misu, K., Fujimura-Kamada, K., Ueda, T., Nakano, A., Katoh, H., and Tanaka, K. (2003) Cdc50p, a conserved endosomal membrane protein, controls polarized growth in *Saccharomyces cerevisiae*. *Mol. Biol. Cell* 14, 730–747
- Bigay, J., Casella, J. F., Drin, G., Mesmin, B., and Antonny, B. (2005) Arf-GAP1 responds to membrane curvature through the folding of a lipid packing sensor motif. *EMBO J.* 24, 2244–2253
- Heitman, J., Koller, A., Kunz, J., Henriquez, R., Schmidt, A., Movva, N. R., and Hall, M. N. (1993) The immunosuppressant FK506 inhibits amino acid import in *Saccharomyces cerevisiae. Mol. Cell. Biol.* 13, 5010–5019
- 37. Mochida, J., Yamamoto, T., Fujimura-Kamada, K., and Tanaka, K. (2002) The novel adaptor protein, Mti1p, and Vrp1p, a homolog of Wiskott-Aldrich syndrome protein-interacting protein (WIP), may antagonistically regulate type I myosins in *Saccharomyces cerevisiae*. *Genetics* 160, 923–934
- Braus, G. H. (1991) Aromatic amino acid biosynthesis in the yeast Saccharomyces cerevisiae. A model system for the regulation of a eukaryotic biosynthetic pathway. Microbiol. Rev. 55, 349 – 370
- Schmidt, A., Hall, M. N., and Koller, A. (1994) Two FK506 resistanceconferring genes in *Saccharomyces cerevisiae*, *TAT1* and *TAT2*, encode amino acid permeases mediating tyrosine and tryptophan uptake. *Mol. Cell. Biol.* 14, 6597–6606
- 40. Roelants, F. M., Baltz, A. G., Trott, A. E., Fereres, S., and Thorner, J. (2010) A protein kinase network regulates the function of aminophospholipid flippases. *Proc. Natl. Acad. Sci. U.S.A.* **107**, 34–39
- Zubenko, G. S., Park, F. J., and Jones, E. W. (1982) Genetic properties of mutations at the *PEP4* locus in *Saccharomyces cerevisiae*. *Genetics* 102, 679–690
- 42. Jones, E. W., Zubenko, G. S., and Parker, R. R. (1982) *PEP4* gene function is required for expression of several vacuolar hydrolases in *Saccharomyces cerevisiae. Genetics* **102**, 665–677
- 43. Liu, K., Hua, Z., Nepute, J. A., and Graham, T. R. (2007) Yeast P4-ATPases Drs2p and Dnf1p are essential cargos of the NPFXD/Sla1p endocytic pathway. *Mol. Biol. Cell* **18**, 487–500
- Takagi, K., Iwamoto, K., Kobayashi, S., Horiuchi, H., Fukuda, R., and Ohta, A. (2012) Involvement of Golgi-associated retrograde protein complex in the recycling of the putative Dnf aminophospholipid flippases in yeast. *Biochem. Biophys. Res. Commun.* **417**, 490–494
- 45. Vater, C. A., Raymond, C. K., Ekena, K., Howald-Stevenson, I., and Stevens, T. H. (1992) The VPS1 protein, a homolog of dynamin required for vacuolar protein sorting in *Saccharomyces cerevisiae*, is a GTPase with two functionally separable domains. *J. Cell Biol.* **119**, 773–786
- 46. Bensen, E. S., Costaguta, G., and Payne, G. S. (2000) Synthetic genetic interactions with temperature-sensitive clathrin in *Saccharomyces cerevisiae*. Roles for synaptojanin-like Inp53p and dynamin-related Vps1p in clathrin-dependent protein sorting at the *trans*-Golgi network. *Genetics*

154, 83–97

- Dell'Angelica, E. C., Puertollano, R., Mullins, C., Aguilar, R. C., Vargas, J. D., Hartnell, L. M., and Bonifacino, J. S. (2000) GGAs. A family of ADP ribosylation factor-binding proteins related to adaptors and associated with the Golgi complex. *J. Cell Biol.* **149**, 81–94
- Hirst, J., Lui, W. W., Bright, N. A., Totty, N., Seaman, M. N., and Robinson, M. S. (2000) A family of proteins with γ-adaptin and VHS domains that facilitate trafficking between the *trans*-Golgi network and the vacuole/ lysosome. *J. Cell Biol.* 149, 67–80
- 49. Nothwehr, S. F., Conibear, E., and Stevens, T. H. (1995) Golgi and vacuolar membrane proteins reach the vacuole in *vps1* mutant yeast cells via the plasma membrane. *J. Cell Biol.* **129**, 35–46
- Costaguta, G., Stefan, C. J., Bensen, E. S., Emr, S. D., and Payne, G. S. (2001) Yeast Gga coat proteins function with clathrin in Golgi to endosome transport. *Mol. Biol. Cell* 12, 1885–1896
- Scott, P. M., Bilodeau, P. S., Zhdankina, O., Winistorfer, S. C., Hauglund, M. J., Allaman, M. M., Kearney, W. R., Robertson, A. D., Boman, A. L., and Piper, R. C. (2004) GGA proteins bind ubiquitin to facilitate sorting at the *trans*-Golgi network. *Nat. Cell Biol.* 6, 252–259
- Gerrard, S. R., Levi, B. P., and Stevens, T. H. (2000) Pep12p is a multifunctional yeast syntaxin that controls entry of biosynthetic, endocytic and retrograde traffic into the prevacuolar compartment. *Traffic* 1, 259–269
- Becherer, K. A., Rieder, S. E., Emr, S. D., and Jones, E. W. (1996) Novel syntaxin homologue, Pep12p, required for the sorting of lumenal hydrolases to the lysosome-like vacuole in yeast. *Mol. Biol. Cell* 7, 579–594
- Bilodeau, P. S., Winistorfer, S. C., Kearney, W. R., Robertson, A. D., and Piper, R. C. (2003) Vps27-Hse1 and ESCRT-I complexes cooperate to increase efficiency of sorting ubiquitinated proteins at the endosome. *J. Cell Biol.* 163, 237–243
- Piper, R. C., Cooper, A. A., Yang, H., and Stevens, T. H. (1995) VPS27 controls vacuolar and endocytic traffic through a prevacuolar compartment in Saccharomyces cerevisiae. J. Cell Biol. 131, 603–617
- Katzmann, D. J., Stefan, C. J., Babst, M., and Emr, S. D. (2003) Vps27 recruits ESCRT machinery to endosomes during MVB sorting. *J. Cell Biol.* 162, 413–423
- Franzusoff, A., Redding, K., Crosby, J., Fuller, R. S., and Schekman, R. (1991) Localization of components involved in protein transport and processing through the yeast Golgi apparatus. *J. Cell Biol.* **112**, 27–37
- 58. Tang, H. Y., Munn, A., and Cai, M. (1997) EH domain proteins Pan1p and End3p are components of a complex that plays a dual role in organization of the cortical actin cytoskeleton and endocytosis in *Saccharomyces cerevisiae*. *Mol. Cell. Biol.* **17**, 4294–4304
- Vaduva, G., Martin, N. C., and Hopper, A. K. (1997) Actin-binding verprolin is a polarity development protein required for the morphogenesis and function of the yeast actin cytoskeleton. *J. Cell Biol.* 139, 1821–1833
- Raths, S., Rohrer, J., Crausaz, F., and Riezman, H. (1993) *end3* and *end4*. Two mutants defective in receptor-mediated and fluid-phase endocytosis in *Saccharomyces cerevisiae. J. Cell Biol.* **120**, 55–65
- Munn, A. L., Stevenson, B. J., Geli, M. I., and Riezman, H. (1995) *end5*, *end6*, and *end7*. Mutations that cause actin delocalization and block the internalization step of endocytosis in *Saccharomyces cerevisiae*. *Mol. Biol. Cell* 6, 1721–1742
- Takagi, K., Iwamoto, K., Kobayashi, S., Horiuchi, H., Fukuda, R., and Ohta, A. (2012) Involvement of Golgi-associated retrograde protein complex in the recycling of the putative Dnf aminophospholipid flippases in yeast. *Biochem. Biophys. Res. Commun.* **417**, 490–494
- Risinger, A. L., and Kaiser, C. A. (2008) Different ubiquitin signals act at the Golgi and plasma membrane to direct *GAP1* trafficking. *Mol. Biol. Cell* 19, 2962–2972
- Kato, U., Emoto, K., Fredriksson, C., Nakamura, H., Ohta, A., Kobayashi, T., Murakami-Murofushi, K., Kobayashi, T., and Umeda, M. (2002) A novel membrane protein, Ros3p, is required for phospholipid translocation across the plasma membrane in *Saccharomyces cerevisiae. J. Biol. Chem.* 277, 37855–37862
- Nagayama, A., Kato, C., and Abe, F. (2004) The N- and C-terminal mutations in tryptophan permease Tat2 confer cell growth in *Saccharomyces cerevisiae* under high pressure and low-temperature conditions. *Extremophiles* 8, 143–149

- Surma, M. A., Klose, C., and Simons, K. (2012) Lipid-dependent protein sorting at the *trans*-Golgi network. *Biochim. Biophys. Acta* 1821, 1059–1067
- Klemm, R. W., Ejsing, C. S., Surma, M. A., Kaiser, H. J., Gerl, M. J., Sampaio, J. L., de Robillard, Q., Ferguson, C., Proszynski, T. J., Shevchenko, A., and Simons, K. (2009) Segregation of sphingolipids and sterols during formation of secretory vesicles at the *trans*-Golgi network. *J. Cell Biol.* 185, 601–612
- Bauer, B. E., Rossington, D., Mollapour, M., Mamnun, Y., Kuchler, K., and Piper, P. W. (2003) Weak organic acid stress inhibits aromatic amino acid uptake by yeast, causing a strong influence of amino acid auxotrophies on the phenotypes of membrane transporter mutants. *Eur. J. Biochem.* 270, 3189–3195
- Alexander, R. T., Jaumouillé, V., Yeung, T., Furuya, W., Peltekova, I., Boucher, A., Zasloff, M., Orlowski, J., and Grinstein, S. (2011) Membrane surface charge dictates the structure and function of the epithelial Na⁺/H⁺ exchanger. *EMBO J.* **30**, 679–691
- Krishna, A. G., Menon, S. T., Terry, T. J., and Sakmar, T. P. (2002) Evidence that helix 8 of rhodopsin acts as a membrane-dependent conformational switch. *Biochemistry* 41, 8298–8309
- McLaughlin, S., Smith, S. O., Hayman, M. J., and Murray, D. (2005) An electrostatic engine model for autoinhibition and activation of the epidermal growth factor receptor (EGFR/ErbB) family. *J. Gen. Physiol.* 126, 41–53
- Stevens, H. C., Malone, L., and Nichols, J. W. (2008) The putative aminophospholipid translocases, *DNF1* and *DNF2*, are not required for 7-nitrobenz-2-oxa-1,3-diazol-4-yl-phosphatidylserine flip across the plasma

membrane of Saccharomyces cerevisiae. J. Biol. Chem. 283, 35060-35069

- Baldridge, R. D., and Graham, T. R. (2012) Identification of residues defining phospholipid flippase substrate specificity of type IV P-type ATPases. *Proc. Natl. Acad. Sci. U.S.A.* 109, E290–E298
- 74. Parsons, A. B., Lopez, A., Givoni, I. E., Williams, D. E., Gray, C. A., Porter, J., Chua, G., Sopko, R., Brost, R. L., Ho, C. H., Wang, J., Ketela, T., Brenner, C., Brill, J. A., Fernandez, G. E., Lorenz, T. C., Payne, G. S., Ishihara, S., Ohya, Y., Andrews, B., Hughes, T. R., Frey, B. J., Graham, T. R., Andersen, R. J., and Boone, C. (2006) Exploring the mode-of-action of bioactive compounds by chemical-genetic profiling in yeast. *Cell* **126**, 611–625
- Guo, Y., Au, W. C., Shakoury-Elizeh, M., Protchenko, O., Basrai, M., Prinz, W. A., and Philpott, C. C. (2010) Phosphatidylserine is involved in the ferrichrome-induced plasma membrane trafficking of Arn1 in *Saccharomyces cerevisiae. J. Biol. Chem.* **285**, 39564–39573
- 76. Gietz, R. D., and Sugino, A. (1988) New yeast-*Escherichia coli* shuttle vectors constructed with *in vitro* mutagenized yeast genes lacking six-base pair restriction sites. *Gene* 74, 527–534
- 77. Kikyo, M., Tanaka, K., Kamei, T., Ozaki, K., Fujiwara, T., Inoue, E., Takita, Y., Ohya, Y., and Takai, Y. (1999) An FH domain-containing Bnr1p is a multifunctional protein interacting with a variety of cytoskeletal proteins in *Saccharomyces cerevisiae*. *Oncogene* 18, 7046–7054
- Abe, F., and Iida, H. (2003) Pressure-induced differential regulation of the two tryptophan permeases Tat1 and Tat2 by ubiquitin ligase Rsp5 and its binding proteins, Bul1 and Bul2. *Mol. Cell. Biol.* 23, 7566–7584
- Abe, F., and Horikoshi, K. (2000) Tryptophan permease gene *TAT2* confers high pressure growth in *Saccharomyces cerevisiae*. *Mol. Cell. Biol.* 20, 8093–8102

