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Abstract
Mammalian sperm are differentiated germ cells that transfer genetic material from the male to the
female. Owing to this essential role in the reproductive process, an understanding of the complex
mechanisms that underlie sperm function has implications ranging from the development of novel
contraceptives to the treatment of male infertility. While the importance of phosphorylation in
sperm differentiation, maturation and fertilization has been well established, the ability to directly
determine the sites of phosphorylation within sperm proteins and to quantitate the extent of
phosphorylation at these sites is a recent development that has relied almost exclusively on
advances in the field of proteomics. This review will summarize the work that has been carried out
to date on sperm phosphoproteomics and discuss how the resulting qualitative and quantitative
information has been used to provide insight into the manner in which protein phosphorylation
events modulate sperm function. The authors also present the proteomics process as it is most
often utilized for the elucidation of protein expression, with a particular emphasis on the way in
which the process has been modified for the analysis of protein phosphorylation in sperm.
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Sperm maturation & function
As a result of their high level of specialization, sperm have abandoned much of the cellular
machinery that is found in other cell types. During spermiogenesis, postmeiotic spermatids
discard several organelles and retain only the minimal protein complement necessary to
deliver the male genetic information to the ovum [1]. At the same time, the DNA condenses
tightly around sperm-specific proteins called protamines, making it unavailable for
transcription [2]. Upon leaving the testes, sperm may be morphologically mature, but they
are immotile and have not yet gained the ability to fertilize. Sperm acquire progressive
motility during their transit through the epididymis in a process known as epididymal
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maturation. After ejaculation, mammalian sperm move actively, but they need to reside in
the female reproductive tract before acquiring fertilization potential through a series of
events collectively referred to as capacitation.

Although capacitation and epididymal maturation are poorly understood at the molecular
level, the belief is that sperm are both transcriptionally and translationally silent after
leaving the testes [3,4]. This lack of protein synthesis in mature sperm supports the current
view that regulation of post-testicular development is controlled almost exclusively by the
addition of exogenous proteins (e.g., during epididymal transit) [5,6] or by the post-
translational modification (PTM) of their intrinsic protein complement [7,8]. An
understanding of sperm function is therefore dependent upon the ability to unequivocally
identify proteins, quantitate their relative abundances and determine the exact sites of
protein PTM. While traditional genomic approaches are of limited utility in this regard, the
field of proteomics is uniquely suited to address these challenges [9].

Previous phosphoproteomic studies in sperm
Although the word ‘proteome’, defined as the entire set of proteins encoded by a genome,
was not coined until 1996 [10], attempts to identify the protein complement of sperm began
in the early 1950s [11]. In fact, the identification of specific sites of protein phosphorylation
in sperm, an area of study currently referred to as ‘sperm phosphoproteomics’, began several
decades ago. In 1967, Ingles and Dixon isolated protamines from trout spermatids
undergoing differentiation and, in a remarkably advanced series of experiments for the time,
determined seven distinct sites of serine phosphorylation [12]. Notably these sites appeared
to be completely dephosphorylated in mature spermatozoa, leading the authors to
hypothesize that phosphorylation was being used as a means to prevent nucleic acids from
binding to the newly synthesized, highly basic protamines until they were properly localized
to the nucleus. Not long after this ground-breaking research, phosphorylation was implicated
in sperm movement when it was discovered that cAMP signaling is essential for the
regulation of motility [13] and that cAMP-dependent protein kinases, such as protein kinase
A (PKA), are highly active in mammalian spermatozoa [14]. The role of phosphorylation in
sperm motility was confirmed in 1980 when it was shown that partially-purified sperm
protein fractions incorporated 32P after cAMP treatment [15]. While these early studies were
essential in establishing a link between protein phosphorylation and sperm function, the
identification of novel phosphoproteins and their specific sites of modification remained
elusive. Unfortunately, the specificity of the protein enrichment methods and the sensitivity
of the protein sequencing used at the time prevented all but the most abundant proteins, such
as the protamines, from being successfully analyzed.

The difficulties associated with the isolation and identification of novel phosphoproteins
were partially addressed with the development of antiphosphotyrosine (anti-pY) antibodies
in the early 1980s [16]. Leyton and Saling first used monoclonal antibodies against
phosphotyrosine while attempting to elucidate the mechanism by which the acrosome
reaction is initiated in mouse sperm [17]. They used radioactively labeled ZP3, a known
acrosome reaction-stimulating ligand, and an anti-pY antibody to probe sperm western blots.
Although a single 95 kDa band was visualized using both methods, identification of the
purified protein was not accomplished until 1994 when Kalab et al. utilized partial ingel
tryptic digestion, HPLC-based peptide separation and Edman sequencing of three specific
peptides to unambiguously identify the 95 kDa protein as a testis-specific form of
hexokinase [18]. Not long after, anti-pY antibodies were used to investigate the role of
phosphorylation in the capacitation of mouse sperm [19]. Using gel electrophoresis, western
blotting and anti-pY labeling, it was observed that a global increase in protein tyrosine
phosphorylation is temporally associated with progression of the capacitation process in
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mouse and that these changes correlate with an increase in cAMP production and
concomitant activation of PKA [20–23]. Additional phosphotyrosine-containing proteins
were seen when a similar approach was used to study the phosphorylation of human sperm
surface proteins. Naaby-Hansen et al. determined the approximate molecular weight (MW)
and isoelectric point (pI) for 22 tyrosine phosphorylated human proteins, but were unable to
unequivocally identify any of these proteins as the sequencing techniques used at the time
required relatively large amounts of highly purified material [24].

While Naaby-Hansen et al. did not sequence the proteins recognized by anti-pY antibodies,
they suggested a technique for phosphoprotein microsequencing utilizing mass spectrometry
(MS) [24]. Their approach, wherein a protein spot on a gel, known to be phosphorylated
through alignment with a corresponding western blot, is cored, in-gel digested and identified
using tandem MS (MS/MS), was first applied to sperm in 1999. Mandal et al. sequenced 18
peptides from a 95 kDa human sperm protein (FSP95) that is tyrosine phosphorylated during
capacitation and which shows reactivity to antibodies present in the sera of infertile men
[25]. Not only did this information lead to the identification of the antigen as a novel A-
kinase anchor protein (AKAP), but it also allowed primers to be generated, cDNA for
FSP95 to be isolated, and protein expression to be carried out in E. coli. In 2001, the same
group used MS/MS-based peptide sequencing on an ion trap mass spectrometer to identify
eight sperm surface proteins cored from two-dimensional (2D) gels [26]. In the same year,
Bohring et al. used an alternative MS-based protein identification approach, peptide mass
fingerprinting (PMF), to identify six autoantigenic sperm surface proteins [27]. While these
studies were not specifically focused on phosphorylation, this same approach is still being
used today for the identification of phosphoproteins involved in the capacitation process
[28–30]. However, these studies have been largely limited to the identification of pY-
containing proteins as the lower inherent immunogenicity of phosphoserine (pS) and
phosphothreonine (pT) has prevented the production of anti-pS/pT antibodies that
demonstrate specificities equivalent to those seen with anti-pY antibodies [31].

In an effort to address the poor specificity associated with anti-pS/pT antibodies and to more
closely track changes in phosphorylation within a given signaling pathway, antibodies
recognizing specific phosphorylated epitopes have been developed. Not only can these
antibodies be used to monitor and quantitate the level of phosphorylation at particular sites,
but they can also be coupled with immunofluorescence to detect phosphorylation-induced
changes in cellular localization. As an example, antiphospho-ERK1/2 antibodies were used
to determine that the MAPK pathway is activated during sperm capacitation [32,33].
However, antibodies of this type are often too specific to be used for the identification of
novel kinase substrates. Zhang et al. addressed this issue by creating a broad range,
phospho-specific substrate antiserum by raising antibodies against a degenerate mix of
phosphopeptides [34]. Using this same approach, Harrison took advantage of antibodies
developed against a phosphopeptide library containing the consensus sequence RXXp(S/T)
in an effort to identify the PKA substrates involved in capacitation [35]. However, as this
consensus sequence is known to be phosphorylated by other kinases, such as Protein Kinase
B (AKT), a control experiment using a known PKA inhibitor was required in order to
exclude non-PKA substrates. This work identified two outer dense fiber proteins as
components of the cAMP/PKA-dependent pathway in boar sperm and similar strategies
have since been used to identify both PKA dependent [36–40] and proline-directed [41]
phosphorylation in sperm from other species. As useful as these studies have been,
experiments relying on antibody binding can only provide indirect evidence of protein
phosphorylation at known sites of modification. In order to truly understand the role which
phosphorylation plays in the regulation of sperm function, direct localization of the specific
sites of phosphorylation in unknown proteins is essential.
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In 2003, an attempt to identify the specific sites of phosphorylation on all of the proteins
present in capacitated human sperm was carried out by Ficarro et al. [28]. Recognizing the
limitations of antibody-based phosphoprotein visualization, the authors used immobilized
metal ion affinity chromatography (IMAC) for unbiased phosphopeptide enrichment.
Combining this methodology with MS/MS-based sequencing resulted in the identification of
five tyrosine, 56 serine and two threonine phosphorylation sites. Notably, this research was
the first to identify specific sites of tyrosine phosphorylation in AKAPs and provided direct
evidence connecting this protein family to the capacitation process. An alternative method
for phosphopeptide enrichment, based upon the affinity of phosphate for titanium dioxide
(TiO2), was first applied to sperm by Baker et al. in 2010 [42]. In this study, 288 distinct
sites of phosphorylation were identified from 120 proteins in capacitated rat sperm. Among
the reported phosphoproteins, many are known to be involved in sperm–egg binding,
suggesting a linkage between capacitation-induced phosphorylation and fertilization
capability. Importantly, the results of these global phosphoproteomic studies have the
potential to be used for the future generation of novel, site-specific antibodies designed to
monitor phosphorylation changes associated with sperm function.

Recent developments in sperm phosphoproteomics obviate the need for antibody-based
quantitation and permit the relative extent of phosphorylation at a specific site to be
determined from MS data acquired during MS/MS-based phosphopeptide sequencing. In
2009, Platt et al. utilized a differential isotopic labeling scheme based on the Fischer
esterification [43] to label peptides derived from both capacitated and noncapacitated mouse
sperm proteins [44]. Of the 55 phosphorylation sites reported in this study, relative
quantitation was achieved for 53 of these sites by comparing the differentially labeled MS
peak areas of 42 unique phosphopeptides. Consistent with previously published reports, a
general increase in phosphorylation was seen following sperm capacitation. Of note, these
experiments also unambiguously identified the site of tyrosine phosphorylation within
hexokinase which was originally visualized by Kalab et al. in 1994 using anti-pY antibodies
[18]. Relative quantitation of phosphorylation levels as a consequence of the capacitation
process in rat sperm was subsequently carried out by Baker et al. in 2010 [42]. In this study
a label-free approach, relying on the ratio of MS peak areas measured in multiple analyses,
was used to identify 15 proteins whose phosphorylation status changed as a result of
capacitation. The following year, Baker et al. used the same approach on rat sperm extracted
from the caput and caudal regions of the epididymis to quantitate the extent of modification
at 77 specific phosphorylation sites during epididymal maturation [45]. Importantly, these
studies also represent the first use of electron transfer dissociation (ETD) for the sequencing
of phosphopeptides derived from sperm proteins. Although only three phosphopeptides were
successfully sequenced using ETD in these two studies, this method overcomes difficulties
associated with traditional phosphopeptide fragmentation [46] and promises to play an
integral role in future studies designed to answer particular biological questions in sperm
phosphoproteomics.

The proteomics process for current investigations into sperm
phosphorylation

The fact that the proteomics workflow is largely a linear process is apparent in Figure 1.
Every sperm phosphoproteomics experiment begins with the selection of a particular
organism for analysis. Although this may seem trivial, the source of spermatozoa determines
protein concentration and directly impacts downstream data analysis. Once an organism is
selected for study, the overall goal of the project (i.e., quantitation, phosphorylation site
determination or phosphoprotein identification) is the primary consideration which drives
sample preparation. The appropriate type of mass spectrometer can be chosen only after the
sample is prepared properly, as each instrument has its own capabilities and limitations.
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Ultimately, the approaches taken to analyze the resulting data are perhaps the most critical
as a compromise must be made between speed and accuracy. Only when all steps in the
process have been considered and integrated into an overall experimental workflow can
valid biological conclusions be drawn from the acquired data.

Sample sourcing
The quality of the information obtained in any phosphoproteomics experiment is dependent
upon the concentration, complexity and contaminating proteins present in the sample
selected for analysis. High concentrations of protein can be obtained from mammalian
sperm because they are readily accessible and protein dense. They are also uniform in their
starting state and a number of techniques are available which can induce them to undergo in
vitro maturational changes as an entire population, thereby limiting their proteomic
complexity. The major difficulty in the analysis of sperm is the presence of highly abundant
species such as protamines, tubulins and outer dense fiber proteins that result in a wide
range of phosphoprotein concentrations [47]. This complicates the MS-based sequencing
approaches used in current phosphoproteomic workflows because the 103 dynamic range,
achievable in a single MS analysis on even the most advanced mass spectrometer, prevents
detection of any analyte whose concentration is 1000-times lower than that of the most
abundant species [48].

Sample preparation
Some sample preparation protocols used in sperm phospho-proteomics involve heating the
samples in the presence of solubilization reagents in an effort to extract the greatest number
of proteins [28,42,44]. While the majority of these compounds, such as salts and detergents,
demonstrate minimal interference with traditional gel-based protein separation methods,
their presence can be detrimental to modern MS-based phosphoproteomic workflows. For
example, heating sperm samples in the presence of urea may aid in membrane protein
solubilization [41], but the cyanic acid found in urea solutions [49] can carbamylate the
primary amines found on lysine residues and protein N-termini [50]. This chemically-
induced modification has a significant impact on all subsequent steps in the proteomics
process: it can suppress ionization, it can inhibit digestion and the altered MW can confound
automated database searching algorithms. It is important to note that modifications such as
this do not necessarily preclude MS-based sequencing, but they do add variables that must
be taken into account in order to avoid peptide sequence misassignment and protein
misidentification.

Denaturing sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), which
separates proteins on the basis of their length (which closely correlates with protein MW),
was relied upon heavily in early phosphoproteomics experiments [12] because the Edman
sequencing used at the time required concentrated protein samples relatively free of
contamination [51]. Even today, SDS-PAGE may still be used before MS if salts and
detergents are used for certain experimental strategies [52,53] or if western blotting using a
specific antibody is the basis for phosphoprotein ‘identification’ [17]. The moderate
resolution afforded by SDS-PAGE is also exploited in some proteomic workflows as a
means to reduce sample complexity prior to MS [54]. An orthogonal method of separation,
in which zwitterionic molecules align themselves at their pIs in an immobilized pH gradient,
is known as isoelectric focusing (IEF) [55]. This technique was used successfully to separate
peptides derived from mouse sperm proteins but, in this case, rapid processing of the IEF-
embedded peptides was necessary to minimize diffusion and sample loss [56]. When used
for the resolution of intact proteins, the problem of diffusion is greatly reduced and IEF can
be coupled with SDS-PAGE to separate a complex protein mixture into thousands of well-
resolved spots [57]. As mentioned earlier, this combination, referred to as 2D gel
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electrophoresis (2DE) has been adopted extensively for the identification of phosphorylated
proteins in sperm and is still used today [24–28,30,58]. Despite this widespread acceptance,
there are several caveats to keep in mind when incorporating 2DE into an overall
phosphoproteomics workflow. To begin with, protein identification from gels requires
visualization, and the sensitivity of the reagents used for staining is often incompatible with
the sensitivity exhibited by current MS-based analytical approaches. For example,
Coomassie Blue, the most commonly used protein stain, is at least an order of magnitude
less sensitive than the lower limit of detection achieved using most modern mass
spectrometers [25–27], meaning that it is not possible to visualize with Coomassie all of the
proteins which could potentially be identified using MS. At the other extreme, fluorescent
protein stains, such as Sypro® Ruby, exhibit greater sensitivity than most MS
instrumentation, meaning that although a protein may be visualized, it may not be present in
sufficient quantity for subsequent in-gel digestion and MS-based identification [58]. In our
experience, a staining approach relying on the reduction of ionic silver [59] demonstrates a
limit of detection most compatible with downstream MS analysis [28]. However, once
visualization is achieved, identification of the exact site(s) of phosphorylation in a protein
cored from a gel may still remain elusive due to the low stoichiometric level of
phosphorylation and the relatively high concentration of enzymatic autolysis products
present following in-gel digestion [60].

As the extensive handling associated with gel-based protein separation can lead to
significant sample loss [61], solution-based digestion procedures are often a better choice.
The enzyme most commonly used for this purpose is trypsin, largely because of its
specificity and tendency to generate peptides which are particularly amenable to sequencing
when using positive ionization MS [62]. Trypsin cleaves the peptide bond C-terminal to the
basic amino acids lysine and arginine, such that most peptides generated from trypsin
digestion carry two charges: one at the C-terminal basic residue and another on the primary
amine at the peptide N-terminus. Importantly, the spatial separation of these charges
increases the amount of structural information obtained following peptide fragmentation
[63] and the relative abundances of lysine and arginine mean that most tryptic peptides fall
within a narrow mass-to-charge (m/z) range of 400–800. Of course, as useful as trypsin is in
preliminary studies, it may not be ideal if the protein or proteins of interest do not contain
lysine or arginine, or if cleavage at these residues generates peptides which are too long or
too short for subsequent analysis. In those situations, chemical digestion [64] or an
alternative enzyme, such as V8 protease, may be required [28].

Regardless of the procedure used for proteolysis, the presence of more abundant
nonphosphorylated peptides in the digestion mixture requires the selective enrichment of
phosphorylated species. Although attempts have been made to use anti-pY antibodies to
enrich for phosphorylated sperm proteins prior to digestion, these approaches still suffer
from the presence of significant numbers of nonphosphorylated peptides after digestion [28].
As a result, several methods for the enrichment of all phosphate-containing species have
been developed and applied at the peptide level [65–69]. One of the most widely used
techniques for global phosphopeptide enrichment, IMAC, is based upon the affinity which
phosphate exhibits towards immobilized metal ions, such as iron(III) [70–72]. A drawback
to the application of this technology, which was recognized early on, is that the affinity
material also binds carboxylate-rich peptides (e.g., those containing aspartic and/or glutamic
acid residues), unnecessarily complicating the sample for analysis [73]. To prevent the
binding of nonphosphorylated peptides to the IMAC resin, a modification of this technique
was developed wherein acidic residues are converted to their corresponding methyl esters
using the Fischer esterification [28,74]. Our group has successfully used this reaction in
sperm phosphoproteomic studies to minimize the binding of nonphosphorylated peptides to
an alternative phosphate-binding material composed of TiO2 beads. However, other groups
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[42,45] have relied on the inclusion of a ‘displacer’, such as dihydroxybenzoic acid (DHB),
into the phosphopeptide loading buffer to compete with carboxylic acids for binding sites on
the TiO2 [75]. While this competitive approach has proven to be successful, the bridging
interaction that characterizes the binding of phosphate to TiO2 makes the elution of multiply
phosphorylated species more difficult [76]. This suggests that it may be best to view TiO2
not as an alternative to IMAC, but rather as a complementary method: TiO2 for the
enrichment of singly phosphorylated peptides and IMAC for the enrichment of multiply
phosphorylated species [74].

The lists of phosphoproteins and phosphopeptides obtained in studies attempting to link
sperm protein PTM with function take on greater biological significance when associated
with measurements permitting their relative quantitation. Difference in-gel electrophoresis
(DIGE) has been used in conjunction with anti-pS antibodies for the relative quantitation of
a protein believed to be phosphorylated to a greater extent in caput versus caudal
spermatozoa [58]. This approach, which relies upon protein labeling using fluorescent dyes
with unique excitation wavelengths, permits the visualization and volume measurement of
the same protein spot from two differentially labeled samples on a single 2DE gel, thereby
eliminating the problems associated with gel to gel variability [77]. However, this technique
does not allow for the localization of specific phosphorylation sites and, as mentioned
earlier, the sensitivity of fluorescent labeling is often incompatible with downstream protein
identification. A more suitable approach for the relative quantitation of phosphorylation
changes occurring on a particular residue is the differential chemical labeling of peptides
following protein digestion [78–80]. To this end, our group has again taken advantage of the
Fischer esterification, which is required for the enrichment of phosphorylated species using
IMAC as explained earlier, and carried out the reaction on capacitated and noncapacitated
sperm protein digests using methanol (d0) and deuterated methanol (d3) as reagents [44]. In
the simplest experiment, the two isotopically labeled peptide samples are combined and
examined together in a single MS analysis for the relative quantitation of protein expression.
Alternatively, as shown in Figure 2, the pooled sample can be enriched for phosphopeptides
and a single MS experiment can be used to simultaneously identify the phosphoproteins,
pinpoint the specific sites of phosphorylation and quantitate the relative extent of
modification at these sites as a consequence of the biological changes occurring within
sperm.

Mass spectrometry
Although it is by no means the only factor to be considered in the proteomics process, MS
represents the major enabling technology for the identification of sperm phosphoproteins
and the localization of phosphorylation sites. Following sample preparation, consideration
must be given to the residual protein complexity, concentration and potential contamination
in order to select the most appropriate MS instrumentation for downstream analysis. As each
type of mass spectrometer uses a specific method of ionization, mass analysis, fragmentation
and detection, each has a unique set of capabilities making it particularly well suited for a
given phosphoproteomic study.

For the rapid identification of sperm phosphoproteins resolved on 2DE gels, several studies
have avoided amino acid sequencing of the peptides resulting from in-gel digestion, and
have instead used the determination of several intact peptide m/z values as a means to
identify the protein from which they are derived [27,58,81–83]. The success of this
approach, known as PMF, requires that multiple peptide m/z values be matched to a single
known protein sequence. For this reason, an instrument coupling time-of-flight (TOF)
detection with matrix-assisted laser desorption/ionization (MALDI) is often used, as this
combination exhibits a high resolving power stemming from the method of ion generation.
MALDI uses a brief laser pulse applied to a dried matrix-sample droplet in a vacuum
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chamber to generate predominantly singly charged gas-phase ions in a discrete location and
with a narrow distribution of kinetic energies [84]. As a consequence, the initial spread of
velocities for ions with the same m/z is minimized, ensuring that their arrival time at the
TOF detector can be measured accurately [85]. This permits the peptide m/z values to be
determined with a high degree of precision, minimizing the number of potential amino acid
sequences associated with each and significantly improving the likelihood of correctly
identifying the corresponding protein of interest.

When irrefutable phosphoprotein identification is required however, a partial determination
of the primary amino acid sequence of the protein must be obtained. MS/MS of peptides
involves the gas-phase isolation of species with a given m/z, their fragmentation, and the
detection of the resulting product ions. Carrying out this process on a MALDI-TOF/TOF
instrument involves an initial round of TOF to isolate ions of a specific m/z in a trapping cell
so that they may undergo a process known as collisionally induced dissociation (CID). The
peptide ions are confined for a finite amount of time, during which they undergo multiple
collisions with an inert gas held at relatively high pressure within the cell. The energy
imparted to the ions through each impact gradually raises their internal vibrational energies
in an ergodic process that eventually induces them to fragment [86]. Following
fragmentation, the product ions are accelerated out of the cell and into a second TOF region,
providing a high mass accuracy determination of the fragment m/z values and permitting
both peptide sequencing and phosphoprotein identification [30].

As useful as it is, a MALDI-dependent approach becomes impractical when the peptide
mixture is of even moderate complexity (i.e., derived from more than two proteins) as
MALDI ionizes all species in a sample simultaneously and may suffer from reproducibility
issues associated with the nonhomogeneity of matrix crystallization and the localization of
peptides to particular regions (‘hot spots’) within the matrix-sample droplet [87]. As an
alternative, electrospray ionization (ESI) involves the application of high potential (±1–5
kV) on a capillary emitter tip to produce multiply charged, gas-phase peptide ions from an
aerosol of small, highly charged liquid droplets [88,89]. This method is particularly well
suited for the generation of ions from a complex mixture because it directly transfers
solvated species into the gas phase and, as it occurs at atmospheric pressure, it can easily be
interfaced with upfront liquid chromatographic (LC) peptide separation [54,90,91].

Although ESI has been successfully used in conjunction with TOF detection [42,45,82], it
has most often been coupled with ion trapping instrumentation. In such mass spectrometers,
the kinetic energies of the species generated by ESI are reduced through low energy
collisions with an inert bath gas present in the ion trap (i.e., ‘collisional cooling’) and are
then sequentially ejected to an electron multiplier in order to produce a mass spectrum. MS/
MS is accomplished by first isolating ions of a given m/z value within the same trapping
region, forcing these ions to undergo CID through more energetic collisions with the bath
gas and then scanning out the fragments [29,40,56,90–92]. While this tandem-in-time
approach to MS/MS allows successive rounds of dissociation to be carried out on the
resulting fragments in order to obtain additional structural information (MSn), mass
spectrometers of this type have a low duty cycle due to the use of the ion trap for both MS
and MS/MS data acquisition. In addition, the effective resolution of these instruments is
limited by the rate at which ions can be scanned out of the trap [93,94]. In order to address
these issues, ESI sources have been coupled with Fourier transform (FT)-based detectors
that exhibit greatly improved duty cycle (i.e., the number of ions detected in a given time)
and resolving power relative to their scanning, ion trapping counterparts [28,85]. The major
drawback of these instruments is the extremely low vacuum required for FT-based detection
that prevents the concomitant use of a CID bath gas in the trapping cell for controlled
peptide fragmentation. Hybrid mass spectrometers work around this issue by incorporating
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both ion trapping and FT-based detectors into a single instrument: while the resolving power
and associated mass accuracy of FT-based detection is being exploited for the determination
of m/z, CID can be carried out simultaneously in the ion trap to generate a linked MS/MS
spectrum for a given precursor [44].

Although advances in peptide ionization and MS instrumentation have resulted in the
unequivocal identification of many sperm phosphoproteins, a molecular-level understanding
of sperm function requires determination of the specific sites of phosphorylation within
these proteins. The electronegativity and unique chemical characteristics of the phosphate
moiety, which make it useful in biological signaling, lead to a number of issues that must be
addressed in order to successfully identify specific sites of protein phosphorylation in sperm.
For example, it has been reported that phosphorylated peptides ionize poorly when
traditional MALDI matrices are used [95]. To overcome this issue, different matrices [96]
and acidic additives [97,98] have been utilized to increase ionization yields and improve
phosphopeptide identification. The complications associated with MALDI-based sequencing
of phosphopeptide mixtures have been circumvented by using reversed phase LC coupled
with ESI MS/MS, but this approach is not without its own inherent difficulties, even when
upstream phosphopeptide enrichment is used. To begin with, phosphorylated species exhibit
decreased hydrophobicity when compared with their unmodified counterparts, so shallow
reversed phase LC elution gradients and minimal column rinsing need to be used to ensure
phosphopeptide retention and chromatographic resolution. In addition, the phosphodiester
bond that links the phosphate moiety to serine and threonine residues is labile, making it the
bond most readily broken when CID is used for phosphopeptide fragmentation [56,75–78].
This produces MS/MS spectra in which the majority of the detected ion current represents
species that have undergone the neutral loss of phosphoric acid and in which there are few,
if any, sequence-informative peaks [28,45].

The creation of a linear ion trap (LIT) capable of isolating significantly more precursor ions
[99] partially addresses this problem by trapping more fragments and increasing, above the
noise threshold, the signals resulting from peptide backbone cleavage [42,44,45]. As shown
in Figure 3A, while there are a few detectable sequence-informative peaks in the MS/MS
spectrum acquired on a LIT mass spectrometer, they are low level and, alone, they are
insufficient to allow for phosphopeptide sequencing. In this instance, it may have been
beneficial to conduct the analysis on a hybrid instrument in which the high mass accuracy
afforded by FT-based detection could have been used in combination with the limited
sequence information to successfully identify the phosphorylation sites [44,99]. Ultimately,
however, the limitation in sperm phosphopeptide sequencing using this approach stems from
the ergodic nature of the CID process itself. This means that the energy deposited gradually
becomes randomized throughout the peptide and leads to fragmentation occurring primarily
at the labile phosphodiester bond [100]. While identification of the phosphorylated peptide
can be improved by using alkaline phosphatase to remove the phosphate moiety prior to
CID, this procedure alone cannot be used to unequivocally identify the site(s) of
phosphorylation [28]. As an alternative, a novel, nonergodic technique referred to as ETD
has been developed wherein the transfer of a low energy (<10 eV) electron from a radical
anionic gas leads to fragmentation of the phosphopeptide without inducing the neutral loss
of phosphoric acid [101]. As illustrated in Figure 3B, the greater extent of backbone
cleavage shown in the ETD MS/MS spectrum permits unambiguous assignment of the
amino acid sequence and localization of the sites of phosphorylation within the large,
multiply phosphorylated peptide [42,45].

Mass spectral data interpretation
The ability to draw meaningful biological conclusions from any sperm phosphoproteomics
experiment depends entirely upon an unbiased interpretation of the data. However, the
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complexity of the proteomics process means that it is possible to unintentionally neglect a
critical consideration, which, in turn, severely compromises the quality of the peptide and
protein assignments. In addition, the large number of spectra obtained in a given MS
experiment is often used to justify complete reliance on software for sequence assignments,
which can further compound the problem. For example, the database searching tool Mascot
[102] has been utilized extensively for the identification of sperm phosphoproteins in PMF
experiments [58,83,103]. The software works by extracting the most abundant peptide m/z
values from an experimental MS spectrum, comparing them with values generated from the
in silico enzymatic digestion of proteins contained within a user-selected database and then
assigning a protein or proteins to each spectrum on the basis of the matched peptide m/z
values. Although the manner in which Mascot carries out these steps is proprietary, it uses
the probability-based MOWSE algorithm [104] to associate a significance threshold with
each protein assignment such that a sequence with a score above this threshold has a low
probability of being assigned by chance. Unfortunately, the significance of this score is
easily altered when an incomplete set of PTMs are considered or when fewer proteins are
present in the interrogated dataset [105], as is the case when a species-specific subdatabase
is used to expedite the data analysis process.

If the goal of the project is not simply the identification of sperm phosphoproteins but rather
the visualization of specific phosphorylation sites, determination of the primary amino acid
sequence is required. The Mascot algorithm can be used for this purpose by matching the m/
z values in an acquired CID MS/MS spectrum with the m/z values generated from in silico
peptide backbone fragmentation [106]. However, even though Mascot is the most widely
used software for phosphopeptide sequencing [30,42,45], the proprietary nature of the
software severely limits user understanding and control of the process [107]. By contrast, the
operation of the second most commonly used database searching algorithm in sperm
phosphoproteomic studies [28,40,42,45,108], SEQUEST, is well documented [109,201].
SEQUEST consists of two rounds of scoring: the first round prioritizes potential peptide
assignments by matching the m/z values for fragment peaks in the MS/MS spectrum with
fragment m/z values determined through in silico peptide fragmentation. The second round
involves the creation of idealized MS/MS spectra for the highest scoring peptide sequences
from the first round and then their translation across the experimental spectrum using the
Fast Fourier Transform (FFT). Unlike the probability-based scoring used in Mascot, this
process results in the calculation of a cross-correlation (XCorr) score that is a measure of
how well a given peptide assignment matches the distribution of peaks within the
experimental spectrum.

Regardless of the software tool, successful use of automated searching algorithms requires
that the correct peptide be present in the database and that the sequence fit the constraints
programmed by the user. As shown in Figure 4A, the best SEQUEST assignment for the
given MS/MS spectrum is the singly phosphorylated peptide AQGMAQpSQGEALPN.
Although this peptide assignment has a relatively high XCorr of 3.016, it actually represents
a false-positive identification: a problem frequently encountered in phosphopeptide
sequencing due to the large number of peaks corresponding to the neutral loss of phosphoric
acid. As shown in Figure 4B, a greater number of fragment ions within the spectrum are
actually explained by the doubly phosphorylated peptide LEMAApSKNpTDNN. The
sequence was misassigned by SEQUEST because the correct sequence contains an
unanticipated modification, deamidation of an asparagine residue to aspartic acid, and
therefore does not exist in any protein database. It is important to note that even if this
modification had been considered, the correct sequence would still not have been
determined using SEQUEST as the aspartic acid, which was generated following
deamidation, was subsequently methylated using the Fischer esterification.
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The correct phosphopeptide sequence (Figure 4B) was only assigned to the MS/MS
spectrum shown in Figure 4 through de novo peptide sequencing, an unbiased, but more
technically challenging, alternative to automated database searching [301]. In its simplest
form, de novo sequencing involves the preliminary identification of sequence informative
peaks within the spectrum by finding complementary pairs of ions whose m/z values sum to
the approximate mass of the intact peptide. Notably, this process can be carried out using the
c- and z-ion pairs that are commonly encountered in ETD or with the b- and y-ion pairs that
are found in CID spectra [110]. Once identified, the spacing between all of the peaks is
examined to find m/z differences that correspond to mass shifts characteristic of particular
amino acids. In this manner, a string of MS/MS peaks can be found which explain the entire
peptide sequence or which explain enough of the sequence (a sequence ‘tag’) to permit a
subsequent database search, such as the Basic Local Alignment Search Tool (BLAST) at the
National Center for Biotechnology Information (NCBI), to be used for peptide/protein
identification [111].

Although a more detailed description of de novo sequencing is beyond the scope of this
review, successful use of the process frequently involves the consideration of several
disparate lines of evidence, especially when it is applied to phosphopeptides. For instance,
our group has used de novo sequencing to assign phosphopeptide sequences to CID MS/MS
spectra derived from isotopically labeled, IMAC-enriched, capacitated and noncapacitated
mouse sperm digests [44]. This is often extremely challenging due to the aforementioned
neutral loss of phosphoric acid, but in this case the ability to compare a given MS/MS
spectrum with its differentially labeled counterpart greatly improved our de novo sequencing
capability. To begin with, calculation of the difference between the ‘heavy’ and ‘light’
precursor masses allowed the number of glutamic and/or aspartic acid residues in the
phosphopeptide to be determined prior to sequencing. Likewise, inspection of the MS/MS
spectrum of the deuterated version of the peptide for fragment peaks whose masses shifted
as a consequence of the ‘heavy’ label simplified the discovery of complementary ion pairs,
permitted the rapid determination of the ion series corresponding to the peptide C-terminus
and made the localization of acidic residues within the sequence remarkably straightforward.
As an example of the utility of this approach, 11 phosphopeptides whose amino acid
sequences were not present in the NCBI non-redundant (nr) protein database were
sequenced in this study. A subsequent search of these sequences against the mouse genome
revealed an unknown gene in a region which had previously been considered noncoding.
The identification of the protein encoded by this gene, which the authors have named testis-
specific serine/proline-rich protein [112], represents an exception to the currently accepted
paradigm: rather than relying on translated genetic information for protein sequencing it is
possible to identify a target gene directly through de novo peptide sequencing.

Quantitation of site-specific phosphorylation
Metabolic labeling strategies (e.g., SILAC) commonly used for relative quantitation in other
cell types are of limited utility in sperm because, as mentioned earlier, sperm are believed to
be both transcriptionally and translationally silent after leaving the testes [3,4]. Nonetheless,
alternative strategies have been used in sperm phosphoproteomic studies to not only
quantitate phosphoprotein expression [56] but to quantify the extent of modification at a
specific phosphorylation site [42,44,45]. One of these methods, label-free quantitation, uses
the ratio of chromatographic peak areas obtained in separate LC-MS analyses to quantify
differences between the samples being compared [113]. Although this method avoids the
additional sample handling associated with chemical labeling, quantitation using this
approach is difficult due to the influence which the sample medium and chromatographic
conditions have on ionization efficiency and, ultimately, on MS-based detection. These
inherent variations require the analysis of a significant number of biological replicates. For
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example, Baker et al. carried out eight replicate MS analyses of both caput and caudal
spermatozoa and used specialized software (DeCyder™ MS) to average out the variability
among these 16 analyses in order to quantitate phosphorylation changes associated with
epididymal maturation [45]. In an alternative strategy, our group circumvented the issue of
run-to-run variability by analyzing the heavy and light labeled versions of capacitated and
noncapacitated sperm digests simultaneously in a single MS experiment [44]. We also
carried out the analysis with the labeling reversed in order to correct for any variation in
chromatographic retention, ionization efficiency or MS detection caused by the presence of
the isotopic label. Within each individual analysis, the chromatographic peak area of a
phosphopeptide derived from the capacitated sample was divided by the peak area of the
identical, differentially labeled phosphopeptide derived from the noncapacitated sample.
These two ratios were then used to calculate an odds ratio [114], which more accurately
reflects the relative change in phosphorylation occurring on a particular phosphopeptide as a
result of the capacitation process.

Expert commentary
The importance of phosphorylation in sperm has been well documented, but only recently,
phosphoproteomic workflows have been developed that can concomitantly identify
phosphoproteins, localize specific sites of phosphorylation and quantitate the extent of
modification at a particular site. In our experience, a workflow incorporating both IMAC
and TiO2 phosphopeptide enrichment is necessary to address the low stoichiometric level of
phosphorylation and to obtain a more comprehensive view of phosphorylation events in
sperm. However, chemical modification should be used to minimize the binding of
nonphosphorylated peptides to the enrichment resins. For this purpose, we use the Fischer
esterification as it has a number of additional advantages: the reagents are relatively
inexpensive, the reaction goes to completion under anhydrous conditions and every peptide
in the mixture contains at least one label (at the peptide C-terminus). In addition, the Fischer
esterification can be carried out using heavy and light methanol if the phosphoproteomic
analysis involves a comparison of dissimilar samples. As mentioned earlier, this allows the
enriched and differentially labeled peptides to be mixed and analyzed in a single LC-MS
experiment. We recommend carrying out this experiment on a hybrid mass spectrometer, as
the high resolving power can be used to more accurately measure chromatographic peak
areas for purposes of quantitation, while the associated increase in accurate mass
determination can be used to improve phosphopeptide sequencing. Furthermore, some of
these instruments are capable of utilizing ETD as an alternative phosphopeptide
fragmentation method if the CID MS/MS spectra exhibit the dominant neutral loss of
phosphoric acid [115]. However, ETD is a relatively recent development and, despite its
commercial availability, optimization of the process is an active area of research [116]. In
addition, ETD involves a different fragmentation mechanism than CID and, as a result,
current database searching algorithms have difficulty assigning amino acid sequences to
ETD spectra. In our laboratory, we capitalize upon the differential isotopic labeling strategy
to aid in the de novo sequencing of both CID and ETD phosphopeptide MS/MS spectra, but
we recognize that this approach is technically challenging and impractical for extremely
large datasets. As an alternative, we suggest that most laboratories use either SEQUEST or
Andromeda [117], a well-documented probability-based scoring algorithm similar to
Mascot, for automated phosphopeptide sequence assignment. We also recommend that
validation of the sequence involve more than a ‘manual check’ to identify the presence of
several fragment m/z values within the spectrum: this only serves to confirm the operation
of the software and says nothing about the quality of the peptide assignment. In our opinion,
no phosphopeptide sequence should be accepted if the associated MS/MS spectrum contains
peak pairs that are unaccounted for, or if a significant portion of the ion current (~20%)
remains unexplained. Under these circumstances, the probability that this assignment is a
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false-positive identification is simply too high and, with more and more laboratories relying
on proteomic data, the potential for this information to be used as the basis for unwarranted
research effort is simply too great.

Five-year view
Our current understanding of the role which phosphorylation plays in the regulation of
sperm function has relied almost entirely on recent advances in the field of proteomics. As
methodologies for the global enrichment of phosphorylated species and MS-based
sequencing techniques are adopted by more and more laboratories involved in sperm
research, it is likely that the number of identified protein phosphorylation sites will increase
dramatically in the next 5 years. In addition, the ability to quantitate changes in the extent of
modification at particular amino acids, coupled with advances in germ cell transplantation
and transgenic rescue of knock-out models will begin to reveal the role of these specific sites
in sperm function. However, the utility of this information is absolutely dependent upon the
quality of the experimental design and the resultant data. As we move forward, the greatest
challenge in the field of sperm phosphoproteomics will be in ensuring that non-proteomic
specialists fully understand the complexity of the overall proteomics process and that they
adequately validate and correctly interpret their results.
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Key issues

• As sperm are transcriptionally and translationally silent after leaving the testes
and because their post-testicular development is controlled almost exclusively
by the addition of exogenous proteins or by the post-translational modification
of their intrinsic protein complement, proteomics is required to investigate
sperm function.

• Phosphorylation has been shown to be one of the major post-translational
modifications controlling sperm function, both during epididymal maturation,
development, and later on in the female reproductive tract during capacitation.
Although more is known about the regulation of capacitation-associated changes
in tyrosine phosphorylation, other pathways still need to be elucidated.

• Drawing meaningful conclusions from a proteomics experiment requires the
successful integration of the diverse areas of sample sourcing/preparation, mass
spectrometric analysis, data interpretation and determination of biological
significance.

• The development of immobilized metal affinity chromatography and titanium
dioxide for phosphopeptide enrichment expands on antibody affinity-based
methods and permits phosphorylation analysis on a global scale.

• The dominant neutral loss of phosphoric acid from phosphopeptides fragmented
using collisionally induced dissociation has recently been addressed by the
development of more sensitive mass spectrometers capable of high mass
accuracy measurements and electron transfer dissociation-based fragmentation.

• Manual validation of phosphopeptide sequence assignments and the quantitation
of relative changes in phosphorylation are absolutely critical as more
laboratories adopt proteomic technologies for the investigation of sperm
phosphorylation and as they carry out additional experiments based on this data.

Porambo et al. Page 20

Expert Rev Proteomics. Author manuscript; available in PMC 2013 August 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 1. Potential phosphoproteomic workflows
Diagram illustrating current approaches used to investigate the role of phosphorylation in
sperm function.
3D IT: Three-dimensional ion trap mass spectrometer; CID: Collisionally induced
dissociation; ETD: Electron transfer dissociation; IMAC: Immobilized metal ion affinity
chromatography; LIT: Linear ion trap mass spectrometer; MS: Mass spectrometry; SDS-
PAGE: Sodium dodecyl sulfate polyacrylamide gel electrophoresis; Q-TOF: Quadrupole
time-of-flight mass spectrometer.
Data taken from [28,41,43,44].
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Figure 2. Differential isotopic labeling strategy for mass spectrometry-based identification and
quantitation of phosphorylation changes associated with capacitation
Proteins extracted from both capacitated and noncapacitated sperm samples are first digested
and split into two aliquots. The Fischer esterification is carried out on one aliquot from each
sample using anhydrous methanol and on another aliquot using anhydrous, deuterated
methanol to convert the peptides to their corresponding methyl esters. Differentially labeled
peptide samples (e.g., d0-labeled capacitated peptides and d3-labeled noncapacitated
peptides) are combined and subjected to IMAC-based phosphopeptide enrichment and MS
analysis. Carrying out the same analysis in the ‘reverse’ direction (e.g., d3-labeled
capacitated peptides and d0-labeled noncapacitated peptides) permits the calculation of an
odds ratio for quantitation.
IMAC: Immobilized metal ion affinity chromatography; MS: Mass spectrometry; MS/MS:
Tandem mass spectrometry.
Adapted with permission from [44]. © 2009 American Chemical Society.
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Figure 3. Comparison between the (A) CID and (B) ETD spectra of a +3, quadruply
phosphorylated peptide from testis-specific serine/proline-rich protein
While the CID spectrum is dominated by the neutral loss of phosphoric acid from the intact
precursor, the ETD spectrum shows significant, sequence-informative peptide backbone
fragmentation. Calculated m/z values found in the spectra are shown in bold while those m/z
values exhibiting the neutral loss of phosphoric acid are underlined. Δ denotes assigned
sequence ions which have undergone the neutral loss of phosphoric acid.
CID: Collisionally induced dissociation; ETD: Electron transfer dissociation.
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Figure 4. Different sequence assignments for a single tandem mass spectrum
(A) Most probable (XCorr 3.016) sequence assignment when the spectrum is searched
against a human, rat and mouse protein database using SEQUEST. (B) The amino acid
sequence as determined through manual de novo peptide sequencing. The sequence shown
in (B) is more probable due to the presence of additional fragment ions (marked with *) in
the spectrum. Calculated m/z values found in the spectra are shown in bold while those m/z
values exhibiting the neutral loss of phosphoric acid are underlined. D denotes assigned
sequence ions that have undergone the neutral loss of phosphoric acid.
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