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Abstract
Virtually all docking methods include some local continuous minimization of an energy/scoring
function in order to remove steric clashes and obtain more reliable energy values. In this paper, we
describe an efficient rigid-body optimization algorithm that, compared to the most widely used
algorithms, converges approximately an order of magnitude faster to conformations with equal or
slightly lower energy. The space of rigid body transformations is a nonlinear manifold, namely, a
space which locally resembles a Euclidean space. We use a canonical parametrization of the
manifold, called the exponential parametrization, to map the Euclidean tangent space of the
manifold onto the manifold itself. Thus, we locally transform the rigid body optimization to an
optimization over a Euclidean space where basic optimization algorithms are applicable.
Compared to commonly used methods, this formulation substantially reduces the dimension of the
search space. As a result, it requires far fewer costly function and gradient evaluations and leads to
a more efficient algorithm. We have selected the LBFGS quasi-Newton method for local
optimization since it uses only gradient information to obtain second order information about the
energy function and avoids the far more costly direct Hessian evaluations. Two applications, one
in protein-protein docking, and the other in protein-small molecular interactions, as part of
macromolecular docking protocols are presented. The code is available to the community under
open source license, and with minimal effort can be incorporated into any molecular modeling
package.

In this paper we describe a highly efficient minimization algorithm in the six dimensional
(denoted as 6D) space of rigid affine transformations of macromolecules. This step is an
integral component of many predictive docking algorithms. The challenge for predictive
docking is to start with the coordinates of the unbound component molecules and to
computationally obtain a model of the bound complex.1–3 One of the component molecules,
usually the larger, will be considered as the receptor, and the other the ligand. Our focus is
restricted to protein receptors, and the ligand can be another protein, a drug-sized small
molecule, or a molecular fragment. Assuming that the receptor is fixed at the origin of the
coordinate system, the essential search space of docking consists of the 6D space of
rotations and translations of the ligand. However, the search generally involves n additional
variables that describe the conformational changes in one or both molecules, resulting in an
extended search space that will be denoted as (6+n)D. The docking problem is defined as
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searching for the global minimum (or the lowest minima) of an energy/scoring function,
denoted by E, in this space. A large variety of algorithms have been proposed in the
literature to address this problem. In protein-protein docking, the essential 6D space can be
searched using the Fast Fourier Transform (FFT) correlation approach4–6 or by geometric
matching.7 The sampling is usually followed by refinement, involving further minimization
of the energy function E in both 6D and (6+n)D.3 The other frequently used method is
Monte Carlo minimization, which combines random moves in 6D with minimizations in
both 6D and (6+n)D.8,9 There is a much larger variety of approaches to the docking of small
molecules, including geometric matching, incremental construction from fragments of the
ligand, and stochastic methods such as Monte Carlo and genetic algorithms.10,11

Independently of the algorithm used for sampling the conformational space, virtually all
docking algorithms also include some type of local continuous minimization of the energy
function E in order to remove steric clashes and obtain more reliable energy values.3 The
minimization algorithm we propose in this paper addresses this problem. The commonly
used algorithms for this purpose either define the problem as an all-atom optimization where
the rigidity is indirectly imposed by interatomic forces, or they include rigidity constraints
by adding them to the objective function of optimization via Lagrange multipliers. In both
cases the domain of the optimization is a high dimensional space. By contrast, we define the
optimization on the 6D manifold (i.e., a space which locally resembles a Euclidean space) of
rigid affine transformations of the ligand. A rigid transformation can be represented by a
pair of rotation and translation (R,t). Here the rotation R is represented by a 3 ×3 orientation-
preserving matrix, an element of the so-called Special Orthogonal group SO(3), and t is a 3-
dimensional translation vector, i.e., t ∈ ℜ3. The rigid body transformations can be
considered as SO(3) ×ℜ3, the direct product of SO(3) and ℜ3. We note that the problem of
parameterizing the group of rotations has been of interest since Euler’s related work in 1776
and has received significant attention in the robotics area12–14 but less so in modeling
biomolecular conformations.15 For instance, it is known that there exists no global
parametrization without singular points for this space. However, we can locally map the
manifold onto a subset of the Euclidean space, and thereby redefine the optimization as a
problem over a Euclidean space. We use a local parametrization using the so called
exponential coordinates. In this parametrization, the tangent space of the manifold at any
point, a Euclidean space, is locally mapped onto the nonlinear manifold. A simple example
of a manifold and its natural exponential map, is a circle, S1. Globally, S1 is a curved space;
however, locally, each piece of a circle is similar to a part of a line. More specifically,
consider a tangent line to a circle at any point and let φ denote the coordinate of a point on
this line. Then, we have a natural mapping of this line onto the circle in the complex plane
by exponentiating φ → expiφ. This transformation can be generalized to any manifold. More
details for the manifold of rigid body transformations are given in the paper.

Given the exponential coordinates, the rigid body energy minimization is defined on the 6-
dimensional Euclidean space ℜ6, and any traditional minimization method can be used. We
have selected the LBFGS16 quasi-Newton method since it uses only gradient information to
obtain second order information about the energy function, and avoids the far more costly
direct Hessian evaluations. The advantage of this manifold optimization formulation is that
it searches over a significantly lower-dimensional space, leads to a much smaller number of
costly function and gradient evaluations, and results in a significantly more efficient
optimization algorithm.

We describe applications of the new algorithm to both protein-protein and protein-fragment
docking. The first application complements our docking program PIPER,6 also implemented
in the heavily used docking server ClusPro.17 PIPER performs exhaustive evaluation of an
energy function in discretized 6D space of mutual orientations of two proteins using the fast
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Fourier transform (FFT) correlation approach. We sample 70,000 rotations, which
approximately correspond to sampling at every 5 degrees in the space of Euler angles. In the
translational space, the sampling is defined by the 1.2 Å grid cell size. PIPER is used with a
“smooth” scoring function, including terms representing shape complementarity,
electrostatic, and desolvation terms, the latter represented by the pairwise interaction
potential DARS (Decoys As the Reference State).18 We call the potential “smooth” because
the repulsive contributions in the shape complementarity terms are selected to allow for a
certain amount of overlaps. While this helps to retain more near-native docked
conformations, it also implies that the structures generated by PIPER are generally not free
of steric clashes. To remove steric clashes, the current version of ClusPro minimizes the
CHARMM19 energies of the docked structures generated by PIPER. As will be shown, this
step can be made much more efficient by the application of the novel method described in
this paper.

The second application to protein-small molecule docking complements our protein
mapping program FTMap,20 also implemented as a server. Mapping places molecular
probes—small organic molecules that vary in size and shape—on a dense grid around the
protein to identify potentially favorable binding positions. The method is based on X-ray
and NMR screening studies showing that the binding sites of proteins also bind a large
variety of fragment-sized molecules. Similarly to PIPER, for each probe type the first step of
FTMap is global sampling of the 6D space using the FFT correlation approach. In the
current version of FTMap the docked structures generated by this calculation are minimized
off-grid using the CHARMM potential, primarily for removing steric clashes and obtaining
better energies, since only a few of the lower-energy probe clusters are retained for further
processing. As in protein-protein docking, the traditional all-atom CHARMM minimization
is computationally expensive, and thus replacing it with our novel method provides
substantial benefits.

1 Methods
We assume the larger protein, the receptor, is fixed at the origin of the coordinate system. A
rigid body motion/transformation of the ligand is specified by a pair of translation and
rotation motions, (R,t). This rigid body motion corresponds to a receptor-ligand
conformation with its associated energy. The space of all rigid body motions constitutes a
6D nonlinear manifold and the optimization problem we consider is a minimization of
conformational energy over this nonlinear manifold.

1.1 Formulation of rigid body optimization
A rigid body transformation can be represented by a rotation R and a translation t, i.e., (R,t).
The rotation R is represented by a 3 ×3 orientation-preserving matrix, i.e., an element of the
so-called Special Orthogonal group,

and t is a 3 dimensional translation vector t ∈ ℜ3.

We note that there is not a unique way to associate (R,t) with a rigid body motion. The
unspecified element is the center of rotation. In our formulation, we select an initial center of
rotation p in ℜ3. For example, this point may be the center of mass of the ligand, the center
of mass of the interface between the ligand and the receptor, or any point on the line
connecting the center of mass of the ligand and the center of mass of the receptor. Given this
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choice, the rigid body transformation we associate with (R,t) transforms a point q in ℜ3 as
follows.

In this transformation, atoms of the ligand are rotated around p by an amount specified by
the rotation matrix R and are translated by an amount equal to t.

1.2 Local parametrization of SO(3) ×ℜ3 via the exponential map
As mentioned earlier, we use a local parametrization approach via exponential coordinate
parameters. In this parametrization, the tangent space to the manifold, which is a Euclidean
space, is mapped to the nonlinear manifold using an exponential map. The geodesics of the
tangent space, namely straight lines, are mapped to the geodesics of the manifold. For this
reason, the exponential map parametrization is a particularly suitable local parametrization.

1.2.1 The exponential map coordinates—ℜ3 is a Euclidean and linear manifold and
its standard coordinates provide a global parametrization. We define the local
parametrization SO(3) manifold via the exponential map below. Parametrization for SO(3) ×
ℜ3 is simply the product of parameterizations for SO(3) and ℜ3.

The tangent space of SO(3) at I, the identity of the group of rotations, is denoted by so(3)
and can be identified with the space of 3 ×3 skew-symmetric matrices. For ω = (ω1, ω2,
ω3)T ∈ ℜ3, let

The exponential map at identity I ∈ SO(3) maps the tangent space at identity, so(3), to
SO(3). It is defined by

where the expression on the right hand side of the equation is a matrix exponential. The right
hand side simplifies to give what is known as the Rodrigues formula

where ||ω|| is the Euclidean norm of ω.

The exponential map defined on the tangent space at R ∈ SO(3) is simply defined as
expR(ω) = Re[ω]. Geodesics of SO(3) are given by R(u) = R0e[ω]u, ω ∈ ℜ3 and u ∈ R and
correspond to the projection by the exponential map of lines going through the origin on the
tangent space.
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The exponential map of SO(3) × ℜ3 can be easily obtained from that of SO(3). Consider the
exponential map at the identify of the product group SO(3) × ℜ3, i.e., (I,0). The tangent
space can be identified with ℜ6. Let (ω, υ) ∈ ℜ6 be a point of the tangent space. Then,

Therefore,

defines a local parametrization for SO(3) × ℜ3 in the neighborhood of (I, 0).

1.3 The optimization algorithm
Given the exponential map parametrization, the rigid body energy minimization is defined
on the 6-dimensional Euclidean space ℜ6. From among the many deterministic algorithms
available to solve local minimization problems on a Euclidean space, we have selected the
quasi-Newton method of Limited memory BFGS (LBFGS).16 In our parametrization, the
gradient and the Hessian of the energy function with respect to the parameters of
optimization can be explicitly calculated. However, these are costly operations, evaluating
the Hessian being significantly more costly than evaluating the gradient. Our choice of
LBFGS has been based on the fact that it uses only gradient information to obtain second
order information about the energy function.

1.3.1 Gradient of the Energy Function With Respect to Exponential Map
Parametrization—Let q = (q1, ···, qml) be the initial position of the ligand where ml is the
number of ligand atoms and every element of q indicates the position of a ligand atom. Let
also p, a fixed point in ℜ3, represent the initial center of rotation. Furthermore, consider the
exponential coordinate parametrization of SO(3) × ℜ3 described above and let (ω, υ) ∈ ℜ6

be a point in the tangent space of SO(3) × ℜ3 at (I, 0). ω represents the rotation parameters
and υ, the translation parameters. Then, the energy function can be views as a function of
(ω, υ). More specifically,

The only components of gradient evaluation that require some discussion are the terms ∂
exp([ω])/∂ωi.

Using the Rodrigues formula, we have
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For ||ω|| near zero, we make the following approximations.  and

.

1.3.2 Limited memory BFGS (LBFGS)—We denote points in ℜ6 by x. The LBFGS
method consists of the following iterations16

(1)

where

(2)

and where ∇Ek is the gradient of the energy function, Hk is the LBFGS approximation of the
inverse of the Hessian of the energy function, and αk is an appropriately selected step-length
satisfying the so-called Wolf conditions.16

As pointed out in,16 the choice of H0 influences the behavior of the algorithm. When the
diagonal entries of the Hessian are all positive, it is recommended to let H0 be a diagonal
matrix with the diagonal entries of the inverse of the Hessian. Given that in our problem the
diagonal entries of the Hessian are sometimes negative, we use the identity matrix as the
initial H0. We use the line search algorithm described in the literature.21

To avoid moving away from a local minimum that is in the vicinity of the initial
configuration, we avoid big rotational moves in the iterations of the algorithm. In the initial
configuration there may be clashes between the ligand and the receptor, and the energy and
its gradient may be very large. As a result, it is possible that at the first step the algorithm
may suggest a big rotational move. In such cases, we scale the diagonal elements of the
initial Hessian approximation corresponding to the rotational parameters to avoid big
rotational moves. At subsequent steps, if the algorithm suggests making a big rotational
move, we re-initialize the Hessian to the identity matrix and restart LBFGS.

Figure 1 (a) & (b) provide a schematic representation of our parametrization approach. The
local optimization is performed on the tangent space. Figure 1(a) shows the evolution of the
optimization algorithm on the tangent space until a local minimum is reached. The solution
is then mapped to the manifold of rigid body transformations. Figure 1(b) shows the
evolution of the optimization algorithm in terms of the movement of the ligand. The ligand
is shown by a small sphere with an attached coordinate frame that shows its orientation.
Translational moves can be seen by the movement of the center of the sphere and rotational
moves by the rotation of the coordinate frame.

Figures 2 presents the configuration of the receptor and ligand for the complex 1AY7 before
and after the application of the local minimization.

2 RESULTS AND DISCUSSION
In this section we describe the experimental setup and results from the application of the
proposed manifold optimization algorithm to protein-protein docking and protein-small
molecule docking. We compare the performance of the manifold optimization algorithm
with the optimization algorithms currently being used. Our comparison is based on the
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quality of solutions generated and the computational efficiency of the algorithms. The
results show that the quality of solutions produced by the manifold optimization algorithm is
equal or slightly better than the alternatives tested but its computational efficiency is
significantly superior to them.

2.1 Application to protein-protein docking
As mentioned in the introduction, the first application of the new method is to the off-grid
minimization of structures generated by the PIPER docking program.6 Currently, the rigid
body minimization option of the CHARMM package is used for this purpose. Therefore, we
compare the proposed manifold optimization with the rigid body minimization option of the
CHARMM package.

The results reported here are based on the application of the two algorithms to 9 enzyme-
inhibitor, 6 antigen-antibody, and 4 other complexes selected from the protein docking
benchmark set.22 In each case, the unbound structures of the component proteins of the
complex were downloaded from the Protein Data Bank.23 These structures were docked
using PIPER. Then, for each protein pair, the 1500 lowest energy structures were refined by
minimizing their CHARMM energy using the rigid body minimization option of the
CHARMM and the proposed manifold optimization algorithm. This test set was selected in
order to provide a diverse and representative set of complexes, and for each complex, a large
set of initial conditions for comparing the optimization algorithms. While we selected only
19 protein-protein complexes, for each complex the minimizations were started from 1500
different conformations. Thus, the two algorithms are compared based on about 28,000 test
cases.

As discussed earlier, in our algorithm we have the flexibility of selecting a center of rotation
for rigid body transformation. We examined two different centers of rotation: (i) the center
of mass of the ligand and (ii) the center of mass of the contact residue interfaces of the
ligand. The contact residue interface of the ligand is defined as the residues of the ligand
which have at least one atom within 10 Å of an atom of the receptor. Our experiments
showed that option (ii) produced better results. These results are reported in what follows.

We compare the two algorithms based on the quality of solutions they generate and their
computational efficiency. To assess the quality of the solutions, we consider the ensemble of
1500 solutions produced for each protein pair. The solutions where the local minima found
by the two algorithms are within 0.01 Å RMSD distance of each other, or when the
difference between the energies of the solutions found are less than  are considered as
ties. If the local minimum found by one of the algorithms is further than 10 Å from the
initial conformation, the solution is considered as a failure, as we expect to find some local
minimum within a 10 Å RMSD range of the initial conformation. The cases where both
algorithms fail and there is no basis for comparison are removed from those reported. In all
other cases, the quality of the solution of one algorithm relative to the other is considered as
superior if it has a lower energy (by more than ). For each complex, the number of
cases where one algorithm was found to be superior to the other as well as the number of
ties are reported in Table 1.

As a measure of computational efficiency of each algorithm, we have selected the number of
energy function evaluations needed to converge to a local minimum. Given that energy
function evaluations are the most costly operations, their number justifiably characterizes
the run time efficiency of the algorithm. Furthermore, since the same energy function is used
for both algorithms, the number of energy function evaluations is a fair comparison between
the runtime of the two algorithms.
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Results From both algorithms, with center of rotation being the center of mass of the contact
residue interface, is reported in Table 1. Based on these results it can be seen that our
proposed algorithms leads to a a better performance and, more importantly, is on average
about 7.4 times faster than CHARMM.

2.2 Application to Protein Mapping
Our second application of the manifold optimization algorithm is to protein-small molecule
docking to be used as a complement to our protein mapping program FTMap.20 Mapping
places molecular probes–small organic molecules that vary in size and shape–on a dense
grid around the protein to identify potentially favorable binding positions. Similarly to
PIPER, for each probe type the first step of FTMap is global sampling of the 6D space using
the FFT correlation approach. In the current version, the docked structures generated by this
calculation are minimized off-grid using the CHARMM potential and an all-atom
minimization. We therefore compare the proposed manifold optimization with this all atom
minimization. To compare the two algorithms 14 protein structures, shown in Table 2, were
selected from the Protein Data Bank.23 Seven of these proteins have been the subject of a
recent mapping study.24 All ligand and bound water molecules are removed prior to
mapping. 16 small organic molecules (ethanol, isopropanol, isobutanol, acetone,
acetaldehyde, dimethyl ether, cyclohexane, ethane, acetonitrile, urea, methylamine, phenol,
benzaldehyde, benzene, acetamide and ndimethylformamide) are used as probes. For each
target, FTMap performs a grid search using the Fast Fourier Transform (FFT) correlation
approach in order to find the low energy docked positions of the probes. Each complex is
evaluated using an energy expression that includes van der Waals and electrostatic
interaction energy terms as well as solvation effects.20 In the current version of FTMap, the
2000 most favorable docked positions of each probe are then energy-minimized using the
CHARMM force field and all-atom minimization. During this minimization the probe
molecules are considered fully flexible, but the atoms of the receptor protein are taken as
fixed.

Similarly to the protein docking case we compare the two off-grid minimization algorithms
based on the quality of their solutions and their computational efficiency. The cases where
the local minima found by the two algorithms are within 0.05 Å RMSD distance of each
other, or their energy differences are less than , are considered ties. In the manifold
optimization algorithm, selecting the center of rotation as the center of mass of the ligand
produced better results and these are the results we report.

One of the basic advantages of mapping relative to docking is that due to the use of rigid
small molecules as probes we can perform an exhaustive sampling of the protein surface. In
fact, 11 of the 16 probes used by FTMap have no rotatable bonds, whereas the other five
have a single rotatable C-O bond, allowing for the rotation of the H atom of an OH group.
Given that the manifold optimization algorithm does not take the flexibility of the rotatable
OH bond into account, we expect the all-atom optimization algorithm to have a somewhat
better overall performance in terms of the energy values if all 16 probes are considered. To
give an indication of the impact caused by not accounting for the rotatable bonds, we report
two comparisons of the optimization algorithms, the first based on including all probes, the
second based on considering only rigid probes.

The comparison results based on all probes, and rigid only probes are presented in Table 2.
As can be seen, when all probes are included, the quality of the solutions produced by all-
atom minimization is slightly better than that of manifold optimization algorithm, while the
manifold optimization algorithm is approximately 8 times faster than the all-atom
minimization algorithm. When we restrict ourselves to rigid probes the rigid body
algorithms is not only faster, but also provides lower energies. As noted, most probes used
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for mapping are rigid. If necessary, the presence of one rotatable bond in a probe can be
taken into account by using several conformers, and selecting the lowest energy. Since the
rigid body minimization is more than eight times faster than the all-atom one, with a few
rotamers the algorithm still remains competitive.

Next, we provide another comparison between the two optimization algorithms based on the
hot spots they identify. The goal of FTMAP20 is to find the hot spot on the receptor, namely
the positions which attract the probes after minimization. To compare the two algorithms
based on this criterion we discretize the space by considering a grid of cell size 0.8 Å. We
assign each atom of a probe after minimization to a grid point that is closest to it and
compute the total number of atoms assigned to each grid point by each algorithm. This leads
to two grid-size vectors of integers.

We consider two different measures to evaluate the similarity of these two vectors that
reflect on the similarity of hot spots identified by the two algorithms. We calculate the norm
of the difference of these two vectors and normalize it by dividing by the norm of the vector
produced by all-atom minimization. The second measure is the correlation between the two
vectors. The results are presented in Table 3 and Table 4. Table 3 provides the results based
on the probes while Table 3 presents the results based on the proteins considered.

In both cases the results indicate that the performance of the two algorithms, in terms of
identifying hot spots, are very similar.

3 Conclusions
In this paper, we introduce a new algorithm for rigid body local minimization of
macromolecules. We note that the natural space of rigid body transformations is a nonlinear
6-dimensional manifold. We use a canonical parametrization of this manifold via the
exponential map. This parametrization allows us to define the local optimization as an
optimization on a 6-dimensional Euclidean space, namely, on a space of far lower dimension
when compared with commonly used alternatives. As a result, the optimization requires far
fewer costly function and gradient evaluations and leads to a more efficient algorithm. We
have selected the LBFGS quasi-Newton method for local optimization since it uses only
gradient information to obtain second order information about the energy function and
avoids the far more costly direct Hessian evaluations. Two applications, one in protein-
protein docking, and the other in protein-small molecular interactions, as part of
macromolecular docking protocols are presented. Our experimental results show about an
order of magnitude improvement in computational efficiency when compared with
alternatives. The code is available to the community under open source license, and with
minimal effort can be incorporated into any molecular modeling package.
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Figure 1.
(a) The sphere represents the SO(3)×ℜ3 manifold and the plane represents the tangent space
at the identity. The dots on the tangent space correspond to optimization steps and the
position of each dot corresponds to the first two coordinates of the exponential map
parametrization at the identity. The position produced by the local optimization algorithm on
the tangent space after every ten steps is shown by a color dot. Colors correspond to the
energy value at that step of the optimization. Red represents high energy and blue represents
low energy. Each step of the optimization is connected by a line to the next step. (b) Each
sphere represents the center of mass of the ligand at every ten step of the optimization of the
1AY7 complex. The color codes are the same as in (a). The axes connected to each sphere
show the rotational axes of the ligand at that step of the optimization.
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Figure 2.
a) 1AY7 complex before rigid body minimization; the coordinate axes is centered at the
center of rotation. b) 1AY7 complex after rigid body minimization; the axes rotate and
translate with the ligand and settle at a new position.
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Table 3

Comparison of the density of solutions of manifold optimization (MO) with all-atom optimization (FA). The
results are shown for each probe.

Probe Normalized distance Correlation

acetamide 0.10 0.994

acetone 0.07 0.997

acetonitrile 0.06 0.997

acetaldehyde 0.09 0.995

methylamine 0.08 0.996

benzene 0.10 0.994

cyclohexane 0.05 0.998

ndimethylformamide 0.09 0.995

dimethyl ether 0.06 0.997

ethane 0.03 0.999

urea 0.21 0.978
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Table 4

Comparison of the density of solutions of manifold optimization (MO) with all-atom optimization (FA). The
results are shown for the proteins considered.

Protein Normalized distance Correlation

2CAB 0.07 0.997

1IVG 0.03 0.999

1BBC 0.02 0.999

1F5L 0.03 0.999

1S3E 0.06 0.998

2B23 0.02 0.999

2O8T 0.03 0.999

1W50 0.02 0.999

1HCL 0.09 0.995

1J2E 0.03 0.999

1YES 0.07 0.997

1PUD 0.03 0.999

1THS 0.05 0.999

1BN5 0.04 0.998
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