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Abstract
The first report of Z-selective macrocyclizations using a ruthenium-based metathesis catalyst is
described. Selectivity for Z-macrocycles is consistently high for a diverse set of substrates with a
variety of functional groups and ring sizes. The same catalyst was also employed for the Z-
selective ethenolysis of a mixture of E and Z macrocycles, providing the pure E-isomer. Notably,
only an atmospheric pressure of ethylene was required. These methodologies were successfully
applied to the construction of several olfactory macrocycles, as well as the formal total synthesis
of the cytotoxic alkaloid motuporamine C.

The macrocyclic motif is widely prevalent in an abundance of natural products and
pharmaceuticals, and also provides the backbone for a unique class of olfactory compounds,
termed macrocyclic musks. Originally derived from natural sources, macrocyclic musks
have been rapidly gaining popularity in the perfume industry as alternatives to synthetic
nitroarene and polycyclic musks, which exhibit bioaccumulation and toxicity hazards.1,2 In
general, many biologically and industrially relevant macrocyclic compounds feature an
internal olefin. The alkene geometry is instrumental in the resulting biological activity or
olfactory properties of the compound of interest, which can be adversely affected by even
minute amounts of stereoisomeric impurities. In addition, stereochemically pure macrocyclic
olefins are often utilized as platforms to stereospecifically install other functional groups.
Although in some cases it might be possible to separate a mixture of E- and Z-isomers
chromatographically or by crystallization, these methods are by no means general and often
require extensive optimization for each individual compound. Furthermore, with respect to
macrocyclic musks in particular, certain perfumes often contain a specific mixture of E- and
Zolfactory macrocycles.2 Hence, selective methods for the preparation of both E- and Z-
olefin containing macrocycles are of paramount importance.

Ring-closing metathesis (RCM) has become a ubiquitous tool for the synthesis of carbo- and
heterocylic ring systems, and is particularly well-suited for the efficient synthesis of
macrocycles.3 Unfortunately, most metathesis catalysts exhibit minimal kinetic selectivity,
and thus for medium- to large-sized ring systems in which both E- and Z-isomers are
accessible, the product distribution at high conversion reflects the thermodynamic energetic
difference between the two. For ruthenium-based metathesis catalysts bearing N-
heterocyclic carbene ligands, the E-isomer is often favored, as in the macrocyclic RCM of
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diene 1a, which produces 14-membered lactones E-1 and Z-1 in a ca. 12:1 ratio (Scheme
1).4 However, it can be difficult to predict the thermodynamic product a priori, and the
reaction will frequently proceed with minimal or inverse selectivity to that which was
anticipated.5 This issue has been circumvented indirectly through the implementation of
ring-closing alkyne metathesis (RCAM), followed by Lindlar- or Birch-type reductions to
generate stereopure Z- or E-macrocycles respectively.3,6 Fürstner and co-workers have also
developed a complementary method for the synthesis of E-macrocycles from cycloalkynes,
employing a hydrosilylation/desilylation sequence.7 More recently, a report has appeared
detailing the use of vinylsiloxanes to promote stereoselective ring-closing metathesis,
generating E-alkenylsiloxanes, which upon desilylation yield Z-macrocycles. 8

Accordingly, a considerable effort has been expended in the search for metathesis catalysts
exhibiting kinetic selectivity. This has resulted in numerous current reports detailing the
successful realization of Z-selective homo-coupling, cross-metathesis, and ring-opening/
cross-metathesis reactions employing tungsten and molybdenum-based catalyst systems.9 In
addition, a single report has emerged detailing the Z-selective ethenolysis of straight-chain
olefins, resulting in pure E-olefins from an E/Z mixture with a molybdenum catalyst.10

Recently, in an elegant publication, the Schrock and Hoveyda groups disclosed the first
example of catalyst systems capable of performing a highly Z-selective macrocyclic RCM
reaction, utilizing the monoaryloxide-pyrrolide (MAP) catalysts 3a and 3b (Figure 1), to
generate a 16-membered lactone.12 They further showcased the utility of these types of
complexes in the synthesis of the 16-membered core of epothilone C (85% yield, 96% Z),
and the 15-membered core of nakadomarin A (90% yield, 97% Z), using tungsten catalyst
3c.

Recently, we have developed a family of chelated ruthenium-based catalysts that promote
highly Z-selective homo-coupling, cross-metathesis, and ring-opening metathesis
polymerization reactions.13 Herein, we disclose the first report of Z-selective macrocyclic
RCM using a ruthenium-based catalyst system (2), applicable to a broad range of ring sizes
and functional groups. Additionally, we report the first instance of Z-selective ethenolysis of
macrocycles, resulting in pure E-macrocycles from an E/Z-mixture, using the same catalyst
system (2). We have successfully applied these strategies to the stereoselective synthesis of
a selection of olfactory macrocycles, and the formal total synthesis of the cytotoxic alkaloid
motuporamine C.

We initiated our studies by optimizing reaction conditions for the macrocyclic RCM of
diene 1a, producing lactone Z-1 in 58% yield and 85% Z (Table 1). Although all reagents
were initially combined in a glovebox, using rigorously degassed anhydrous dichloroethane,
the reaction could also be conveniently set-up on the benchtop, with commercial anhydrous
dichloroethane used directly as received, generating Z-1 in 49% yield and 86% Z. The main
competing process in the macrocyclic RCM to Z-1 was oligomerization of diene 1a,14 and
the amount of Z-1 produced is dependent upon the ratio of these respective rate constants
(kRCM/koligomer), as well as the rate of catalyst decomposition.15 Macrocyclic ring closure in
general is entropically disfavored. In the case of macrocyclic RCM reactions mediated by 2,
the transformation might also suffer from a significant negative enthalpic contribution as a
result of steric interactions with the NHC moiety in transition states leading to productive
turnovers.16 Thus, in order to favor ring closure with respect to oligomerization, dilute
conditions (3 mM) and elevated temperatures (60 °C) were required. The application of a
static vacuum (20 mtorr) was also necessary, as refluxing conditions under either an inert
atmosphere or while sparging with argon resulted in an increased formation of
oligomerization products.14 An increase in temperature (80 °C) decreased the yield of Z-1,
likely as a result of catalyst decomposition, and a further increase in dilution (1 mM)
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resulted in prohibitively slow reaction times. An increase in the catalyst loading (10 mol%)
or reaction time (48 h) did not increase conversion to Z-1.17

A variety of substrates readily underwent macrocyclic RCM with ruthenium catalyst 2,
utilizing the single set of standard reaction conditions optimized for lactone Z-1 (Table 1).18

In almost all cases, consumption of the diene precursor was high, resulting in ca. 80%
conversion to macrocyclic products; unprotected amide 13a was the sole exception, which
reached only ca. 50% conversion to Z-13. Protection of 12a as its tert-butylcarbamate
derivative 13a restored activity, and resulted in higher yields of Z-14.19 The larger, 16-, 17-,
and 20-membered ring lactones (Z-5, Z-7, and Z-6) gave the highest yields (72%, 71%, and
75% respectively),20 whereas the reaction was less efficient for the smaller 13-membered
ring lactone Z-4 (40% yield). In general, the Z-selectivity was high for all macrocyclizations
(75–94% Z), although it was necessary to mask ketone (Z-8) and alcohol (Z-10)
functionality in order to maintain high Z-selectivity.21 The origin of the considerable bias
exhibited by 2 for the production of Z-olefins has been attributed to a strong preference for
the formation of side-bound metallocyclobutanes in these systems, in which transition states
leading to E-olefins are strongly disfavored, as a result of unfavorable steric interactions
with the mesityl ring of the N-heterocyclic carbene ligand.16

It is noteworthy that macrolides Z-4, Z-7, and Z-8 are currently in demand by the perfume
industry (marketed as yuzu lactone, ambrettolide and civetone respectfully).2 Fürstner and
co-workers had previously accessed these compounds by RCAM/Lindlar hydrogenation,22

as ring-closing metathesis strategies had failed to proceed with adequate Z-selectivities for
these types of ring systems.23 Macrocyclic lactam Z-13 is also an intermediate en route to
Goldring and Weiler’s total synthesis of the cytotoxic alkaloid motuporamine C.24.25 In this
case, Z-13 had been obtained following RCM and purification from a mixture with its E-
isomer (only 44% Z), using radial chromatography. Fürstner and co-workers had also
previously employed a RCAM/Lindlar hydrogenation sequence to access motuporamine C
stereospecifically.26

In a complementary approach to the synthesis of the Z-macrocycles shown above in Table 1,
we were also able to further exploit catalyst 2 for the isolation of pure E-macrocy cles,
through the selective degradation of the Z-isomer in the corresponding E-dominant mixtures
(Scheme 2).27 Ring-opening via ethenolysis is simply the reverse of the macrocyclic RCM
reaction. Thus, as high Z-selectivity was evidenced in the forward reaction (cf. Table 1), it
was expected that the reverse reaction would also display high selectivity for Z-olefins. 28

Indeed, exposure of an E/Z mixture of lactone 6 (69% E) to ethylene (1 atm) in the presence
of catalyst 2 (2 mol%) led to the complete degradation of Z-6 after only 2 hours at 35 °C
(Scheme 2). Notably only an atmospheric pressure of ethylene was necessary.30 It is also
significant to mention that the corresponding ring-opened diene was also recovered, and thus
could subsequently be recyclized in subsequent macrocyclic RCM reactions if desired.

We were able to apply similar reaction conditions to macrocycles containing ketone (8),
alcohol (10), and amide (13) functionality (Table 2). In general, complete consumption of
the Z-macrocycle occurs within two hours, affording the pure E-macrocycle in good yield.
The lower yield of ketone-containing product E-8 is likely a result of the elevated
temperature required to form the E-isomer exclusively, which might also be expected to
accelerate undesired degradation of the E-macrocycle. Additionally, an increase in
oligomerization was also observed in this case, thus reducing the yield of the recovered
diene 8a.

In summary, we have demonstrated the first example of a ruthenium metathesis catalyst that
is capable of promoting Z-selective macrocyclic RCM. This represents the first systematic
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study of the scope of Z-selective macrocyclic RCM with respect to a broad range of ring
sizes. The transformation is amenable to a variety of functional groups, and proved
applicable in the synthesis of a number of olfactory macrocycles as well as the formal total
synthesis of motuporamine C. In addition, it has been shown that the same catalyst system
can promote Z-selective ethenolysis of macrocyclic compounds that are present in an E/Z
mixture, providing pure E-macrocycles. It is anticipated that both methods will realize
extensive use in the synthesis of natural products and pharmaceuticals, as well as in the
perfume industry. The ability to utilize an atmospheric pressure of ethylene for Z-selective
ethenolysis should enable the widespread use of this application in particular, for both
bench-top and industrial scales, as an effective method for the isolation of pure E-
macrocycles without advanced chromatography or alternative purification techniques.
Therefore, as improved Z-selective catalysts based on ruthenium are discovered, the utility
of these complementary methodologies will only increase. As in the past, organic chemists
will find these ruthenium-based systems to have broad applicability.
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Figure 1.
Prominent Z-selective metathesis catalysts.
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Scheme 1.
Macrocyclic RCM of diene 1a to E-1 and Z-1.
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Scheme 2.
Z-Selective ethenolysis of E/Z-6.29
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Table 1

Z-Selective macrocyclizations employing ruthenium catalyst 2.a

a
Yields are of isolated product (E/Z ratios determined by 1H- or 13C-NMR).11

b
DCE = 1,2-dichloroethane.

c
Reaction was quenched after 8 hours.
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Table 2

Z-Selective ethenolysis of a mixture of E-dominant macrocycles.

Compound

E-8b E-10c
E-13d

Initial E (%) 80 80 55

Final E (%)e >95 >95 >95

Yield (%)f
E-8: 40g E-10: 78g E-13: 75g

8a: 46h 10a: 79h 13a: 86h

a
Reaction conditions: 2 (2 mol%), C2H4(1 atm), 2 h, THF (1 M).

b
Reaction was run at 75°C.

c
Reaction was run at 35°C,

d
Reaction was run at 40°C.

e
Product was entirely E based on 1H- or 13C-NMR.

f
Isolated product.

g
Calculated based on initial amount of E-isomer.

h
Calculated based on initial amount of Z-isomer.
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