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The Lyme disease spirochete controls production of its OspC and Erp outer surface proteins, repressing protein synthesis during
colonization of vector ticks but increasing expression when those ticks feed on vertebrate hosts. Early studies found that the syn-
thesis of OspC and Erps can be stimulated in culture by shifting the temperature from 23°C to 34°C, leading to a hypothesis that
Borrelia burgdorferi senses environmental temperature to determine its location in the tick-mammal infectious cycle. However,
borreliae cultured at 34°C divide several times faster than do those cultured at 23°C. We developed methods that disassociate
bacterial growth rate and temperature, allowing a separate evaluation of each factor’s impacts on B. burgdorferi gene and pro-
tein expression. Altogether, the data support a new paradigm that B. burgdorferi actually responds to changes in its own replica-
tion rate, not temperature per se, as the impetus to increase the expression of the OspC and Erp infection-associated proteins.

Vector-borne pathogens, such as the Lyme disease spirochete,
Borrelia burgdorferi, have overcome the challenges of persist-

ing within two very different animal environments and possess
mechanisms to efficiently transmit back and forth between verte-
brate hosts and arthropod vectors. To facilitate this complex life-
style, the bacterium produces specific proteins appropriate for
each step in the infectious cycle. Considerable effort has been ex-
pended to identify the mechanisms by which B. burgdorferi senses
its environment and accordingly regulates gene expression (1, 2).
Such information both provides insight into pathogenic mecha-
nisms and identifies new targets for preventative and curative
therapies.

One of the first studies to delve into the mechanisms of B.
burgdorferi gene regulation focused on OspC (outer surface pro-
tein C). The exact function of that protein remains to be eluci-
dated, but it is necessary for the establishment of mammalian
infection (3–10). In a landmark study in 1995, Schwan et al. dem-
onstrated that synthesis of OspC is repressed in bacteria within
unfed ticks, yet OspC production is induced as those ticks begin to
feed (11). Furthermore, they showed that regulation of OspC syn-
thesis can be recapitulated in culture: the protein is poorly ex-
pressed by bacteria cultured at 23°C but is abundantly expressed
by bacteria that are first grown at 23°C, diluted into fresh medium,
and then cultured at 34°C to 37°C (11).

Shortly thereafter, it was demonstrated that increasing the cul-
ture temperature from 23°C to 34°C enhances the production of
several other antigenic proteins (12). Among these are a paralo-
gous family of outer surface lipoproteins designated Erp (OspE/
OspF-related proteins) (12–15). Erp proteins are expressed
throughout vertebrate infection, adhere to various host factors,
and appear to play roles in dissemination and colonization (16–
25). As with ospC, erp transcription is repressed during tick colo-
nization and induced during tick feeding and transmission (1, 2,
20, 26).

Since those initial reports, numerous studies have determined
that a substantial number of B. burgdorferi genes can be regulated
during cultivation by altering the incubation temperature (e.g.,
see references 2, 27, and 28). The premise behind examining cul-
ture temperature effects was that such changes were hypothesized
to mimic conditions within a colonized tick: 23°C was thought to

represent the ambient temperature of an unfed tick, and the
change from 23°C to 34°C is comparable to that experienced by
bacteria when a tick feeds on a warm-blooded animal (1, 11, 29,
30). As yet, there are no validated mechanisms by which B. burg-
dorferi can directly sense environmental temperature.

Increasing the culture temperature from 23°C to 34°C has pro-
found effects on B. burgdorferi metabolism, a point that has largely
been overlooked. Most notably, borreliae cultured at 34°C grow
much faster than do those cultured at 23°C (12, 31). Several recent
studies have linked B. burgdorferi metabolic activity with regula-
tion of gene expression. As examples, acetate and the mevalonate
pathway are involved in regulating the production of OspC and
several other mammal-specific proteins (32, 33), while cellular
concentrations of the erp antirepressor, EbfC, increase with the
rate of bacterial replication (34, 35).

Prompted by those observations, we developed culture condi-
tions that cause changes in bacterial growth rate independently of
temperature. A new approach to studying the effects of a culture
temperature shift was also employed. Results indicate that the rate
of B. burgdorferi growth, rather than temperature, influences the
expression of the OspC and Erp proteins.

MATERIALS AND METHODS
Bacteria and growth conditions. All studies utilized B. burgdorferi strain
B31-MI-16, an infectious clone of the sequenced type strain B31 (20).
Unless otherwise stated, B. burgdorferi bacteria were grown in complete
Barbour-Stoenner-Kelly II (BSK-II) medium, which contains 6% (vol/
vol) rabbit serum (36, 37). All media were preconditioned by incubation
at 23°C or 34°C for 24 h prior to inoculation. In our experience, Lyme
disease spirochetes grow and divide at optimal rates in artificial media
when incubated near 34°C.

Densities of bacterial cultures were determined by microscopic enu-
meration using a Petroff-Hausser counting chamber (38). At each time
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point, cultures were counted in quadruplicate, and an average and stan-
dard deviation from this mean were calculated.

Temperature shift experiments from 23°C to 34°C were performed as
described previously (11, 12). Briefly, B. burgdorferi was first cultured to
late exponential phase (approximately 108 bacteria/ml) in BSK-II me-
dium at either 23°C or 34°C. An aliquot of such a culture was diluted 1:100
into fresh BSK-II medium and then incubated at 23°C. Upon this culture
attaining late exponential phase, an aliquot was diluted 1:100 into fresh
medium and then incubated at 34°C. Late-exponential-phase cultures of
the constant 23°C and the 23°C-to-34°C-shifted bacteria were harvested
for analyses.

The effects of culture medium composition were assessed by using
essentially the same technique as described above. Bacteria were grown to
late exponential phase at 34°C in an incomplete medium. An aliquot of
that culture was then diluted 1:100 into fresh, complete BSK-II medium
and then incubated at 34°C. Both cultures were harvested at late exponen-
tial phase.

Two deficient media were used, each of which contains suboptimal
concentrations of one or more essential metabolites. Complete BSK-II
medium contains 6% rabbit serum, which provides the bacteria with lip-
ids. Experiments were conducted to determine a concentration of rabbit
serum that impaired borrelial growth yet permitted replication at 34°C at
a rate comparable to that seen in complete medium at 23°C. As described
here, B. burgdorferi bacteria were found to divide at a greatly reduced rate
when cultured at 34°C in medium that contains only 1.2% (vol/vol) rabbit
serum. BSK-II medium is a very complex, rich medium. Trials were un-
dertaken with various concentrations of BSK-II medium diluted with
phosphate-buffered saline (PBS) to determine a composition that facili-
tated slow borrelial growth. Severely reduced division rates were observed
at 34°C in medium consisting of 25% (vol/vol) BSK-II medium diluted in
PBS and containing 6% (vol/vol) rabbit serum.

To further test the hypothesis that an increased borrelial growth rate,
rather than actual temperature, is responsible for the enhanced produc-
tion of OspC and Erp proteins, B. burgdorferi bacteria were moved from
�80°C to 23°C in complete BSK-II medium. Such temperature shifts were
performed by diluting bacteria that had been frozen for �30 days at
�80°C into fresh BSK-II medium and then culturing to late exponential
phase at 23°C. To produce the frozen bacteria, glycerol was added to
mid-exponential-phase cultures at a final concentration of 25%, and ali-
quots were then placed in a �80°C freezer.

Protein expression analyses. Cultures were harvested by centrifuga-
tion, washed at least twice with PBS, and then resuspended in PBS con-
taining 1 mM phenylmethanesulfonyl fluoride (PMSF). Bacteria were
lysed by immersion in boiling water for approximately 2 min. Total cel-
lular proteins were separated by SDS-polyacrylamide gel electrophoresis.
Specific proteins were detected by immunoblot analyses using previously
described antibodies (34, 39–43). Murine monoclonal antibodies against
B. burgdorferi RpoS were obtained from F. Yang (Indiana University, In-
dianapolis, IN) (43), and rat polyclonal antiserum against RpoS was ob-
tained from M. Caimano and J. Radolf (University of Connecticut, Farm-
ingdale, CT). The constitutively expressed FlaB protein served as a
reference (12, 44). OspC, ErpA, ErpM, ErpY, BpaB, EbfC, OspA, and
OspB immunoblot band intensities under each condition were quantified
relative to the FlaB signal, using ImageJ (http://rsbweb.nih.gov/ij/).

Quantitative reverse-transcription PCR. Total RNA was extracted
from cultured B. burgdorferi cells, and transcript levels were determined
by quantitative reverse transcription-PCR (Q-RT-PCR), as described pre-
viously by Miller (45). Oligonucleotide primers are described in Table 1
(14, 46, 47). Each analysis was performed in triplicate, and means and
standard deviations were determined. Levels of mRNA for ospC, erpG, and
rpoS were standardized to levels of the constitutively expressed flaB mes-
sage. A two-tailed Student t test was used to calculate statistically signifi-
cant differences between culture conditions. GraphPad Prism v.5 (Graph-
Pad, La Jolla, CA) was used to generate all graphs.

RESULTS
Effects of culture medium composition on bacterial division
rates. B. burgdorferi cells cultivated at 34°C in complete BSK-II
medium with 6% rabbit serum divide approximately once every
12 h (Fig. 1). In contrast, bacteria grown in this medium at 23°C
double approximately once every 32 h. We hypothesized that
these differences in growth rate are responsible for the differences
in B. burgdorferi expression patterns, independently of tempera-
ture. To test this prediction, culture media that lowered the rate of
growth at 34°C were devised. The reduced genome of the obli-
gately parasitic bacterium B. burgdorferi encodes very few anabolic
enzymes, and the Lyme disease spirochete is an auxotroph for
nearly all macromolecules (48). BSK-II medium is a very rich
medium containing a mixture of defined and undefined ingredi-
ents (36, 37, 49). Complete BSK-II medium contains 6% rabbit
serum, which provides sufficient fatty acids for optimal growth
(36, 37, 49, 50). Reducing the amount of rabbit serum in the me-
dium to 1.2% extended the doubling time to approximately 32 h
(Fig. 1). Dilution of the components of BSK-II medium to one-
quarter strength, with rabbit serum kept at 6%, impaired growth
to approximately one doubling every 40 h (Fig. 1). These two
media, designated “1.2% serum” and “25% BSK-II,” respectively,
were then used for studies on the effects of the B. burgdorferi
growth rate on gene and protein expression. To do so, bacteria
were first cultured at 34°C in either 25% BSK-II or 1.2% serum
medium and then diluted 1:100 into complete BSK-II medium
and cultured at 34°C. All bacteria passaged in complete medium
grew with a doubling time of approximately 12 h (Fig. 1). These
culture medium formulations then permitted the following stud-
ies on the effects of different growth rates at a constant tempera-
ture.

Effects of bacterial division rates on OspC and Erp protein
and mRNA levels. The borrelial ospC and erp genes are carried on
distinct genetic elements and are regulated through different
mechanisms (31, 51). The ospC locus is carried on a small circular
replicon, cp26, while erp operons are located on episomal pro-
phages named cp32s (13, 52–55). Three different Erp proteins
were assayed, which are encoded by separate operons, each on a
different cp32 prophage: ErpA, encoded by two identical erpAB
operons, one each on cp32-1 and cp32-8; ErpM, encoded by
erpLM on cp32-7; and ErpY, encoded by erpHY on cp32-4 (54).
Previous analyses demonstrated that Erp protein levels are regu-
lated at the level of transcription and that cellular erp mRNA levels
are directly proportional to Erp protein levels (14). Rather than
be repetitive, transcript levels of a fourth erp locus, erpG, en-
coded on cp32-3, were examined by Q-RT-PCR. To enable
comparisons of the current studies with previous reports,

TABLE 1 Oligonucleotide primers used for Q-RT-PCR

Transcript Primer Sequence (5=–3=) Reference

ospC OSPCF-7 CAGGGAAAGATGCGAATACATCTGC 46
ospC OSPCR-8 TAAGCTAAAGCTAACAATGATCC 46
erpG E-33 TGCAAGATTGATGCG 14
erpG E-34 ATTTTGAGGCTCTGC 14
rpoS 88-111 CTTGCAGGACAAATACAAAGAGGC 47
rpoS 245-220 GCAGCTCTTATTAATCCCAAGTTGCC 47
flaB FLA3 GGGTCTCAAGCGTCTTGG 46
flaB FLA4 GAACCGGTGCAGCCTGAG 46
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steady-state protein and mRNA levels were determined by im-
munoblotting and Q-RT-PCR.

Temperature shift experiments recapitulated previously re-
ported results (11, 12, 14), with B. burgdorferi cultivated at 23°C
producing less OspC and Erp proteins than did bacteria shifted
from 23°C to 34°C (Fig. 2). In the analysis illustrated in Fig. 2,
OspC protein levels were 1.5-fold higher in the bacteria shifted
from 23°C to 34°C than in the bacteria maintained at 23°C. As
previously observed, relative expression levels of different Erp
proteins varied between alleles, apparently due to differences in
promoter and operator strengths and the proportional utilization
of the housekeeping RpoD and alternative RpoS sigma factors (14,
26, 56–60). For the experiment illustrated in Fig. 2, bacteria shifted
in temperature produced 1.4-fold more ErpA, 3.4-fold more
ErpM, and a slight, but statistically insignificant, increase in the
ErpY level. Q-RT-PCR analyses mirrored protein results, with sig-
nificantly higher levels of ospC and erpG mRNAs being produced
by bacteria shifted from 23°C to 34°C than by those maintained at
23°C (Fig. 3).

Disassociation of bacterial growth rate and temperature was
achieved by using the 1.2% serum and 25% BSK-II formulations
of culture medium. B. burgdorferi cells were cultured at 34°C in
either of the incomplete media and then diluted into complete
medium and grown further at 34°C. Immunoblot analyses dem-
onstrated differential protein expression patterns comparable to
those observed with temperature shifts. In the experiment illus-
trated in Fig. 2, shifting bacteria from 1.2% serum to complete
medium increased OspC levels 14-fold. B. burgdorferi bacteria cul-
tured in 25% BSK-II medium did not produce detectable levels of
OspC, whereas those shifted to complete BSK-II medium ex-
pressed high levels of that protein. The expression of Erp proteins

was similarly induced by shifts from either 1.2% serum or 25%
BSK-II medium to complete medium (Fig. 2). For the illustrated
experiments, shifting B. burgdorferi from 1.2 to 6% serum in-
creased ErpA levels 1.3-fold, ErpM 3.8-fold, and ErpY 1.3-fold.
Changing from 25% to full-strength BSK-II medium increased
ErpA levels 4.5-fold, ErpM 1.8-fold, and ErpY 1.9-fold. Q-RT-
PCR of bacteria shifted from 1.2% to complete medium also
showed that greatly enhanced ospC and erpG transcript levels ac-
companied an enhanced bacterial growth rate (Fig. 3). These dif-
ferences in protein and mRNA levels are in line with analyses of
temperature shift effects (see above) (11, 12, 14, 26).

Control studies indicated constitutive expression of the flagel-
lin subunit FlaB under all culture conditions (Fig. 2). The OspA
and OspB surface proteins were not affected to any significant
extents by either changes in the culture temperature or BSK-II
concentrations. However, a decrease in the OspA, but not the
OspB, level was occasionally observed following an increase of the
serum concentration from 1.2 to 6% (Fig. 2). Previous studies
have shown mixed results for OspA regulation in culture, with
some reports describing no effects on OspA following a tempera-
ture shift (11, 12) and others noting changes in culture (61, 62).
The mechanisms controlling the ospAB operon are evidently com-
plex and will require substantial further experimentation to un-
ravel.

Effects of bacterial division rates on regulatory factors. OspC
and Erp protein levels are regulated at the level of transcription
(14, 63). Transcription of erp genes is controlled through two
DNA-binding proteins and, to various extents, the RpoS sigma
factor (34, 59, 60). BpaB represses erp transcription, while EbfC
competes against BpaB for binding to the erp operator and func-
tions as the antirepressor (34, 64). In contrast, transcription of

FIG 1 Effects of culture temperature and medium composition on B. burgdorferi growth. Culture densities were determined by enumerating cultured bacteria
using a Petroff-Hausser counting chamber. Cultures were counted in quadruplicate at each time point. Culture conditions were as follows (unless otherwise
noted, BSK-II medium contains 6% rabbit serum): 34°C to 23°C, grown to late exponential phase in BSK-II medium at 34°C, diluted into BSK-II medium, and
then grown at 23°C; 23°C to 34°C, grown to late exponential phase in BSK-II medium at 23°C, diluted into BSK-II medium, and then grown at 34°C; �80°C to
23°C, stored at �80°C for �1 month, diluted into BSK-II medium, and then grown at 23°C; 1.2% R.S., grown to late exponential phase in BSK-II medium at
34°C, diluted into BSK-II medium plus 1.2% rabbit serum, and then grown at 34°C; 1.2% R.S. to 6% R.S., grown to late exponential phase in BSK-II medium plus
1.2% rabbit serum at 34°C, diluted into BSK-II medium, and then grown at 34°C; 25% BSK-II, grown to late exponential phase in BSK-II medium plus rabbit
serum at 34°C, diluted into 25%-strength BSK-II medium, and then grown at 34°C; 25% BSK-II to 100% BSK-II, grown to late exponential phase in 25%-strength
BSK-II medium at 34°C, diluted into full-strength BSK-II medium, and then grown at 34°C.
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ospC is dependent primarily upon RpoS, with possible contribu-
tions from DNA supercoiling and an additional, as-yet-unidenti-
fied DNA-interacting factor(s) (62, 65–67).

Immunoblot analyses indicated that cellular levels of the erp
repressor, BpaB, were decreased following changes from slow- to
fast-growth conditions. In the studies illustrated in Fig. 2, BpaB
levels decreased 2.2-fold, 1.1-fold, or 1.3-fold as a result of a shift
to complete medium at 34°C from 23°C, 1.2% serum, or 25%
BSK-II medium, respectively. These same changes in culture con-
ditions also led to 1.3-fold, 1.7-fold, or 3.5-fold increases, respec-
tively, in cellular levels of the erp antirepressor, EbfC (Fig. 2).
These changes correspond with the known functions of BpaB and
EbfC in regulating erp transcription (34).

RpoS is apparently expressed at relatively low levels under all
examined conditions and could not be detected by immunoblot-
ting using any of the anti-RpoS monoclonal or polyclonal anti-
bodies. Although the cellular concentration of RpoS in actively
growing B. burgdorferi bacteria is not known, Escherichia coli may
contain between 0 and 100 molecules of each alternative sigma
factor per cell (68). However, rpoS mRNA was detectable by Q-
RT-PCR, which indicated that bacteria shifted from 1.2% to 6%
serum increased rpoS mRNA levels by 4-fold (Fig. 3).

Actual culture temperature does not affect B. burgdorferi
OspC or Erp protein levels. Previous 23°C-versus-34°C temper-
ature shift studies used actively growing cultures to inoculate the
23°C culture (e.g., see references 11, 12, 14, and 69). Regardless of
whether inoculating bacteria are first grown at 23°C or at 34°C, B.
burgdorferi will produce low levels of OspC and Erp proteins when
it is cultured at 23°C (11, 12, 14, 69). Considering the effects of the

bacterial growth rate changes described above, and the observa-
tion that a temperature shift from 23°C to 34°C enhances the
growth rate, we evaluated what the effect would be if 23°C cultures
were started with bacteria that initially had even less metabolic
activity. To do so, cultures that had been frozen at �80°C for over
1 month were used as inocula for cultures that were then incu-
bated at 23°C. The hypothesis that environmental temperature
directly influences OspC and Erp expression predicts that levels of
those proteins will be the same in all 23°C cultures, independent of
conditions previously experienced by the inoculum. Growth
curve analyses of B. burgdorferi bacteria cultured at 23°C in com-
plete medium indicated the same doubling times regardless of
whether inocula were previously grown at 34°C or passaged di-
rectly from �80°C (Fig. 1).

Contrary to predictions of the temperature hypothesis, bacte-
ria passaged from �80°C to 23°C produced appreciably larger
amounts of OspC and Erp proteins than did bacteria passaged
from 34°C to 23°C (Fig. 4). Comparing the cultures grown at
�80°C to 23°C with those grown at 34°C to 23°C, the illustrated
studies found 1.7-fold more OspC, 1.3-fold more ErpA, 4.6-fold
more ErpM, and 1.8-fold more ErpY.

Cellular levels of BpaB, the erp repressor, were 1.6-fold higher
in bacteria shifted from 34°C to 23°C than in bacteria shifted from
�80°C to 23°C (Fig. 4). EbfC protein and rpoS mRNA were pro-
duced at low levels under both growth conditions (Fig. 3 and 4 and
data not shown).

Control studies indicated that neither FlaB, OspA, nor OspB
levels were affected by shifts from �80°C to 23°C or 34°C to 23°C
(Fig. 4).

DISCUSSION

In order for the Lyme disease spirochete to infect a human or
another vertebrate host, it is critical that bacteria within a tick
detect when the arthropod is feeding on blood and then synthesize
proteins appropriate for transmission and infection. In nature,
Ixodes sp. ticks fast for several months between blood meals. Thus,
B. burgdorferi bacteria within the midgut of an unfed tick experi-

FIG 2 Increases in B. burgdorferi growth rate correlate with increased produc-
tion of OspC and Erp proteins. Effects of changing culture conditions on B.
burgdorferi protein expression profiles were examined by immunoblotting.
For each column, two conditions were kept constant, while a third was varied.
For all studies, bacteria were first cultured to late exponential phase under a
condition that impaired growth (complete BSK-II medium at 23°C, BSK-II
medium containing only 1.2% rabbit serum at 34°C, or 25%-strength BSK-II
medium with 6% serum at 34°C) and then diluted 1:100 into fresh, complete
BSK-II medium and cultured at 34°C. All cultures were harvested at late ex-
ponential phase. The constitutively expressed flagellar component FlaB served
as a control, and fold changes of other proteins were calculated relative to the
FlaB band intensities (44). Illustrated data for each condition are from analyses
of the same paired bacterial lysates.

FIG 3 Further indications that changes in borrelial growth rates lead to alter-
ations in gene expression. Shown are data from quantitative reverse transcrip-
tion-PCR (Q-RT-PCR) analyses of bacterial ospC, erpG, and rpoS mRNAs.
Results are presented relative to mRNA levels of the constitutively expressed
flaB gene (45). All analyses were performed in triplicate. Error bars (�1 stan-
dard deviation) are below the resolution of the figure. Differences within
paired conditions were all statistically significant (P � 0.001).
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ence a nutrient-poor environment, and the bacteria probably do
not grow or divide to any great extent (2). However, as the tick
begins to feed on a host, nutrients in the ingested blood enable
bacterial division at rates of approximately 1 to 2 h per cycle (1, 2,
70–74). This sudden change from low-level metabolism to rapid
multiplication occurs only during transmission from tick to ver-
tebrate host.

The initial hypothesis to explain the regulated expression of the
ospC and erp operons proposed that bacteria sense environmental
temperature, which changes from ambient to blood temperature
during tick feeding (1, 11, 12). Cultivation at 23°C was hypothe-
sized to represent the environment of an unfed tick, while a
change in temperature from 23°C to 34°C represented the incom-
ing warm blood meal. Results of the present studies contradict
that notion and suggest that it be replaced with a new paradigm.
The effects of changing culture conditions from �80°C to 23°C
were similar to the effects of shifting temperatures from 23°C to
34°C, demonstrating that temperature per se cannot not be the
primary cue controlling ospC and erp expression. However, both
tested changes in culture temperatures increased the rate of bac-
terial growth and cell division. OspC and Erp production was also
increased following shifts in culture medium composition that
stimulated the growth rate, without any changes in temperature.
Relating these observations to the natural infectious cycle, we hy-
pothesize that B. burgdorferi uses changes in its own metabolic
activity to determine when its vector tick is feeding on a vertebrate
host. Since the change from slow to fast metabolism occurs only
during the tick-to-vertebrate transmission stage, it would be an
appropriate signal that B. burgdorferi must start producing factors

involved in transmission through the tick and establishment of
mammalian infection.

While the molecular mechanisms by which B. burgdorferi con-
trols ospC and erp expression have not been completely elucidated,
all current data support the hypothesized connection between lev-
els of bacterial metabolism and gene expression. Transcription of
ospC is dependent primarily upon the alternative sigma factor
RpoS, which, in turn, is controlled by the Rrp2 response regulator,
the Fur-like BosR DNA-binding protein, the RNA-binding pro-
tein CsrA, and an antisense RNA (47, 65, 75–84). Activation of
Rrp2 is sensitive to levels of the metabolite acetate (32, 33). BosR
responds to oxidizing conditions (79–81, 83, 85–87). The mecha-
nisms controlling the antisense RNA or CsrA are not yet known,
although in other bacterial species, CsrA is responsive to carbon
source availability (82, 84). In addition, rpoS mutant B. burgdorferi
bacteria are unable to transmit from feeding ticks to mammals,
apparently due to defects in energy production (88). Borrelial erp
transcription utilizes both RpoS and the housekeeping sigma fac-
tor RpoD, with some operons being dependent primarily upon
RpoS and others not being detectably affected by this sigma factor
(59, 60). erp transcription is also controlled by two DNA-binding
proteins that compete for the erp operator: the repressor BpaB and
the antirepressor EbfC (34, 58, 64, 89–91). ebfC is cotranscribed
with dnaX, which encodes subunits of DNA polymerase, and both
are positively regulated by the rate of bacterial multiplication (35).
The present studies indicated that cytoplasmic concentrations of
BpaB are inversely correlated with rates of bacterial replication
(Fig. 2 and 4). Borrelial growth leads to production of 4,5-dihy-
droxy-2,3-pentanedione, also known as autoinducer-2, which
positively affects production of Erp and other infection-associated
B. burgdorferi proteins (42, 92–97). Taken together, these data
support the hypothesis that the bacterial metabolic level is a key
factor in the regulation of B. burgdorferi ospC and erp gene expres-
sion. Additional tests of this hypothesis are under way, including
metabolic analyses of borreliae under various in vitro and in vivo
conditions.

B. burgdorferi differentially expresses many proteins during
its vertebrate-tick infectious cycle. We caution that bacterial
metabolism levels may not be involved in the regulation of all
borrelial proteins. Each gene and protein will need to be tested
experimentally.

Evidence is accumulating that other pathogens control pro-
duction of infection-associated factors in response to changes in
their metabolism. As examples, Salmonella enterica senses its levels
of ATP to control a virulence locus (98), while Listeria monocyto-
genes and Legionella pneumophila regulate virulence factor pro-
duction in response to metabolites such as fatty acids and
amino acids (99–101). The demonstrated effects of various
metabolic activities in B. burgdorferi and other pathogens indi-
cate that previously reported effects of temperature on other
bacteria should be reexamined to determine the actual regula-
tory cue(s) (30).
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FIG 4 Absolute temperature does not control production of OspC or Erp
proteins. B. burgdorferi bacteria were cultured in complete BSK-II medium
under various temperature regimens, and protein contents were examined by
immunoblotting. Conditions examined were cultures inoculated with bacteria
that had been frozen for �1 month at �80°C and then cultured at 23°C (left
lanes), cultures inoculated with bacteria that had been grown to late exponen-
tial phase at 34°C and then cultured at 23°C (center lanes), and cultures inoc-
ulated with bacteria that had been grown to late exponential phase at 23°C and
then cultured at 34°C (right lanes). All cultures were harvested at late expo-
nential phase. The constitutively expressed flagellar component FlaB served as
a control, and fold changes of other proteins were calculated relative to the
FlaB band intensities (44). Illustrated data for each condition are from analyses
of the same paired bacterial lysates.
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