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Abstract

Inner ear sensory hair cells die following exposure to aminoglycoside antibiotics or chemotherapeutics like cisplatin, leading
to permanent auditory and/or balance deficits in humans. Zebrafish (Danio rerio) are used to study drug-induced sensory
hair cell death since their hair cells are similar in structure and function to those found in humans. We developed a cisplatin
dose-response curve using a transgenic line of zebrafish that expresses membrane-targeted green fluorescent protein
under the control of the Brn3c promoter/enhancer. Recently, several small molecule screens have been conducted using
zebrafish to identify potential pharmacological agents that could be used to protect sensory hair cells in the presence of
ototoxic drugs. Dimethyl sulfoxide (DMSO) is typically used as a solvent for many pharmacological agents in sensory hair cell
cytotoxicity assays. Serendipitously, we found that DMSO potentiated the effects of cisplatin and killed more sensory hair
cells than treatment with cisplatin alone. Yet, DMSO alone did not kill hair cells. We did not observe the synergistic effects of
DMSO with the ototoxic aminoglycoside antibiotic neomycin. Cisplatin treatment with other commonly used organic
solvents (i.e. ethanol, methanol, and polyethylene glycol 400) also did not result in increased cell death compared to
cisplatin treatment alone. Thus, caution should be exercised when interpreting data generated from small molecule screens
since many compounds are dissolved in DMSO.
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Introduction

Sensory hair cells are mechanoreceptors found in the inner ear

that detect sound and mediate balance. Loss of sensory hair cells

through prolonged noise exposure, aging, and drugs, such as

aminoglycoside antibiotics and certain chemotherapeutics, causes

permanent hearing deficits in humans. One such chemotherapeu-

tic, cisplatin (cis-diamminedichloroplatinum(II)) is a commonly

prescribed platinum-based drug used to treat different types of

tumors including testicular, ovarian, cervical, head and neck, and

brain cancers [1]. One of the major side effects, however, is

irreversible high frequency hearing loss. The overall reported

incidence of cisplatin-induced hearing loss is between 28–68% [2]

and the variability is due to different risk factors including method

of administration (i.e. intravenous), age of the patient, and

presence of concurrent treatment with radiotherapy or additional

chemotherapeutic agents [1]. Cisplatin ototoxicity in humans is

also dose-dependent and cumulative [1].

The zebrafish (Danio rerio) is an animal model used to study the

signaling pathways regulating sensory hair cell death [3]. Zebrafish

have sensory hair cells in inner ear structures that perform both

vestibular and auditory functions and a superficial lateral line

system that detects vibrations from the surrounding environment

[4]. Lateral line hair cells are found in neuromasts along the head,

body, and tail and are structurally and functionally similar to

mammalian inner ear hair cells. Sensory hair cells in the lateral

line neuromasts project into the water, and are readily accessible

to pharmacological agents added to the aquatic environment,

thereby avoiding drug delivery issues normally associated with

in vivo model systems. Moreover, several small molecule screens
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have been used to determine whether certain drugs can ameliorate

the effects of different commonly prescribed ototoxic drugs and if

they can enhance the regeneration of hair cells in zebrafish

neuromasts [3,5–12].

Cells undergoing apoptosis exhibit morphological abnormalities

including chromatin condensation, nuclear pyknosis and fragmen-

tation, and plasma membrane blebbing [13]. Cisplatin has been

shown to kill zebrafish lateral line hair cells through an apoptotic

signaling pathway. Dying hair cells exhibit apoptotic morpholog-

ical changes [14,15]. Ou and colleagues (2007) used time-lapse

imaging to study cisplatin-induced hair cell death in zebrafish

larvae [16] and others have confirmed by ultrastructure analysis

that dying zebrafish sensory hair cells exposed to cisplatin undergo

apoptosis [15]. Nevertheless, the cellular signaling mechanisms

regulating cisplatin-induced hair cell death are still poorly

understood [17].

One line of transgenic zebrafish expresses membrane-targeted

green fluorescent protein (GFP) under the control of the Brn3c

promoter/enhancer [10,18]. The Brn-3 subfamily of POU-

domain transcription factor genes consists of 3 homologous

members (Brn3a formerly Brn 3.0, Brn3b formerly Brn 3.2, and

Brn3c formerly Brn 3.1). In mammals, all three members are

expressed in retinal ganglion cells but only Brn3c is expressed in

auditory and vestibular hair cells [19], and also in neuromast hair

cells in the zebrafish lateral line.

In this study we treated Brn3c-GFP transgenic zebrafish with

cisplatin to develop a dose-response curve. Serendipitously, we

found that dimethyl sulfoxide (DMSO), a solvent used with many

cell death inhibitors (e.g., zVAD) to study aminoglycoside-induced

sensory hair cell death in the lateral line [20], potentiated the

effects of cisplatin and killed more sensory hair cells than cisplatin

alone. DMSO by itself did not kill hair cells. Interestingly, we did

not observe synergistic ototoxicity when cisplatin was paired with

other organic solvents including methanol, ethanol, or polyethyl-

ene glycol 400 (PEG 400), nor when neomycin was paired with

DMSO. Finally, we observed more fluorescently-tagged cisplatin

in sensory hair cells when the conjugate was solubilized in DMSO

rather than with methanol.

Materials and Methods

Animals
Wildtype *AB zebrafish (Zebrafish International Resource

Center, Eugene, Oregon) and the transgenic TG(Brn3c:GAP43-

GFP)s356t fish on the TL background (AKA Brn3c-GFP zebrafish;

a gift from Dr. Herwig Baier, University of California San

Francisco) [10,18] were used for these experiments. These

zebrafish were maintained on a 14 hour light/10 hour dark cycle

and bread using standard procedures in the Harvard University

and the Pomona College zebrafish facilities [21]. The embryos

were raised in embryo medium until 5 days post-fertilization (dpf)

in a 28.5uC incubator (Tritech Research, Los Angeles, CA) [21].

This study was carried out based on recommendations outlined

in the Guide for the Care and Use of Laboratory Animals that was

issued by the National Institutes of Health. Boston Children’s

Hospital Institutional Animal Care and Use Committee (IACUC;

Animal assurance number A3303-01) and the Pomona College

IACUC (Animal assurance number A3605-01) approved all of the

protocols.

For the initial hair cell counts, 5 dpf Brn3c-GFP fish were

anesthetized in ethyl 3-aminobenzoate (MS-222; Sigma-Aldrich

Corporation, St. Louis, MO) and then fixed in 4% paraformal-

dehyde (Mallinckrodt Chemical, Hazelwood, MO) at 4uC for 18

to 24 hours. Fixed larvae were rinsed three times in phosphate

buffered saline (PBS, Sigma) and immersed in PBS with 0.1%

Triton X-100 (PBST; Sigma) for ten minutes. Whole zebrafish

larvae were then incubated in Alexa Fluor 594 phalloidin (1:100;

Life Technologies, Carlsbad, CA) for two hours at room

temperature, followed by three rinses in PBS, mounted and

imaged using a confocal microscope. After it was determined that

the GFP tag was sufficient to identify all of the sensory hair cells

within the neuromast, zebrafish were no longer co-labeled with

phalloidin.

Cisplatin Treatment
A stock solution of cisplatin (Sigma) was prepared by dissolving

solid cisplatin in embryo media. Fresh cisplatin stock solutions

were made for each experiment due to its instability in water

(Sigma). All solutions were prepared by serial dilution when

appropriate. Beginning at 5 dpf, larvae were transferred to 6-well

plates (BD Biosciences, San Diego, CA) and incubated in cisplatin

for four hours at 0.25 mM, 0.50 mM, 0.75 mM, 1.0 mM, and

1.5 mM [16]. Following drug treatment, we assessed the health of

the zebrafish prior to fixation by examining whether each larva

had a heartbeat, could swim, and exhibited eye and tail

movements. If these parameters were met, then zebrafish were

briefly anaesthetized in MS-222 and fixed in 4% paraformalde-

hyde at 4uC for 18 to 24 hours.

Detection of Pyknotic Nuclei
After fixation, zebrafish were rinsed three times with PBS for 5

minutes each, permeabilized with PBST for 30 minutes, and then

incubated with the cyanine monomeric dye TO-PRO-3 (1:1000 in

PBST; Life Technologies) for two to three hours. TO-PRO-3

binds to DNA and labels nuclei. Zebrafish were rinsed with PBS

before being mounted on slides in Vectashield (Vector Laborato-

ries, Burlingame, CA).

Dimethyl Sulfoxide and Other Organic Solvent
Treatments

To determine the concentration at which DMSO has a

synergistic effect with cisplatin, DMSO was added to 1 mM

cisplatin in embryo medium at concentrations of 0.001%, 0.005%,

0.01%, 0.05%, 0.1%, and 0.5%; 1 mM cisplatin was chosen

because this dose effectively kills ,50% of neuromast hair cells.

We chose 0.5% DMSO as our highest concentration since it was

the final concentration used with cell death inhibitors during

preliminary experiments. Following the four-hour incubation, fish

were fixed, processed, and imaged.

Three additional solvents, 0.75% ethanol (Pharmco-AAPER,

Brookfield, CT), 0.75% methanol (Sigma) and 0.75% polyethylene

glycol 400 (PEG 400; Sigma) were individually added to 1 mM

cisplatin to also test for synergistic effects. We chose 0.75% ethanol

since doses greater than 0.75% can cause teratogenic effects on the

embryo or on sensory hair cells (i.e. fetal alcohol syndrome; data

not shown) [22]. After the four-hour incubation, the transgenic

larvae were fixed, processed, and imaged.

Texas Red-cisplatin Treatment
Cisplatin tagged with the fluorophore Texas Red was conceived

at Oregon Health & Science University and the synthesis was

designed and carried out at Portland State University, adapting

the method of Safaei et al. [23] by substituting fluorescein with

Texas Red-X succinimidyl ester (mixed isomers; Life Technolo-

gies). Preliminary analysis of cisplatin-Texas Red (DDP-TR)

uptake in the murine cochlea and cochlear hair cells in vivo has

been reported elsewhere [24]. Each vial of lyophilized DDP-TR
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was stored at 220uC and, when needed, dissolved in methanol or

DMSO to make a 1 mg/mL stock solution. The DDP-TR stock

solution was pipetted vigorously for 2–3 minutes and then

sonicated for an additional 5 minutes to completely dissolve the

conjugate. The stock solution was diluted with embryo medium to

make a final 2 mg/mL working solution. Similarly for the control,

unconjugated Texas Red (Life Technologies) was dissolved in

either DMSO or methanol to make a 1 mg/mL stock solution and

then a 2 mg/mL working solution. In all cases, the final solvent

concentration was 0.5%. Embryos were treated with 2 mg/mL

DDP-TR or unconjugated Texas Red for 2, 6, 12, 24, or 48

minutes, protected from light exposure, fixed, and co-labeled with

TO-PRO-3.

HPLC and LC/MS Analysis
To determine if DMSO modified the structure of DDP-TR,

reversed phase HPLC and LC/MS analysis was performed.

Reversed phase HPLC was carried out using a 1525 binary

delivery system and a 2996 Photodiode array detector (Waters,

MA). LC/MS positive mode analysis was conducted at the

Portland State University BioAnalytical Mass Spectrometry

Facility, on a ThermoElectron LTQ-Orbitrap Discovery high-

resolution mass spectrometer with a dedicated Accela HPLC

system.

DDP-TR (0.12 mg) was dissolved in 50 mL of anhydrous

methanol. The solution was stirred for four hours at room

temperature. Cold diethyl ether (Et2O) was added until precipi-

tation occurred. The mixture was centrifuged for five minutes at

4500 rpm, the resulting precipitate was washed with cold Et2O

(462 ml) and dried under vacuum. The resulting precipitate was

dissolved in anhydrous methanol and analyzed by reversed phase

HPLC and LC/MS positive mode using an analytical Discovery

C18 column (25062.1 mm, 5 mm); a solvent gradient water:-

acetonitrile 95:5 to 5:95 in 30 minutes. The wavelength detection

was set at 580 nm for the reversed phase HPLC analysis. DDP-

TR (0.34 mg) was also dissolved in 100 mL of anhydrous DMSO,

and the solution stirred for four hours at room temperature,

processed and analyzed by reversed phase HPLC as described

above.

Neomycin Treatment
We treated 5 dpf larvae with DMSO and the aminoglycoside

antibiotic neomycin, which kills zebrafish lateral line hair cells

[6,20,25–28]. Five-day post-fertilization larvae were divided into

four treatment groups: untreated control, 100 mM neomycin

sulfate (Sigma), 0.5% DMSO, and 100 mM neomycin/0.5%

DMSO. Additionally, 50 mM neomycin and 50 mM neomycin/

0.5% DMSO doses were tested to determine if any synergy was

concentration dependent. The dose and duration of neomycin

exposure were chosen from a previous study that induced similar

hair cell death rates to the cisplatin protocol used in this

experiment [25]. In contrast to 1 mM cisplatin treatment for four

hours, larvae were treated with neomycin for one hour, washed

three times in embryo medium, and allowed to recover in embryo

medium for three hours before being fixed with 4% paraformal-

dehyde, rinsed with PBS, labeled with phalloidin, mounted, and

imaged.

Imaging and Analysis
All zebrafish specimens were whole-mounted in either Vecta-

shield or glycerol and PBS (9:1) and imaged. Images of lateral line

neuromasts were obtained using a Leica TCS SP confocal laser-

scanning microscope (Leica Microsystems, Heidelberg, Germany)

or a Nikon-C1-SI confocal microscope (Nikon Instruments Inc.,

Melville, NY). Single images and compressed z-series were

collected with Leica Software (Leica Microsystems) or EZ-C1

software (Nikon Instruments). Cell counts were performed at the

time of imaging by viewing the image slices sequentially. Both the

O2 and Mi1 neuromasts were imaged for all of the experiments.

These neuromasts were studied since they are easily identifiable

and have been used in a previous study [25]. The entire neuromast

can be observed in one field of view when the larval zebrafish is

mounted on its side. Images were scaled and cropped using Adobe

Photoshop (Adobe Systems, San Jose, CA), ImageJ (National

Institutes of Health, Bethesda, MD), or EZ-C1 software. Figures

were prepared using Adobe Photoshop.

For each set of Texas Red experiments, all specimens in each

group of experimental and control tissues were imaged at the same

laser intensity and gain settings. Images from each experiment

were identically prepared using Adobe Photoshop. Intercellular

and extraneous tissue pixels were removed using Photoshop [29].

Fluorescence intensity values in hair cells were obtained from

sections by using the pixel histogram function [29].

Statistics
Quantitative data from hair cell count experiments were

subjected to either t-tests for two samples assuming unequal

variance (MS Excel, Microsoft Corporation, Redmond, WA) or a

one-factorial or two-factorial analysis of variance (ANOVA) using

SPSS 12 software (SPSS Inc., Chicago, IL) or VassarStats (Vassar

College, Poughkeepsie, NY). Post-hoc comparisons, when appro-

priate, used the Tukey-Kramer test or Tukey HSD test.

Mann-Whitney nonparametric tests or paired t-tests, depending

upon experimental design, were performed between methanol/

DDP-TR and DMSO/DDP-TR to identify any statistically

significant effect of DMSO on the fluorescent intensity of cellular

drug uptake.

Results

Brn3c-GFP Transgenic Zebrafish
A transgenic zebrafish line expressing membrane-targeted green

fluorescent protein (GFP) under the control of the Brn3c

promoter/enhancer was used to visualize neuromast hair cells

that were clearly distinguishable at low magnification at 5 days

post-fertilization (dpf; Fig. 1, arrows). Since zebrafish larvae are

relatively transparent, inner ear structures could also be identified

using either fluorescence or confocal microscopy (Fig. 1, arrow-

head).

Initially, Brn3c-GFP fish were co-labeled with Alexa Fluor 594-

conjugated phalloidin (that binds to F-actin abundantly present in

stereocilia bundles) to ensure that the GFP-labeled hair cell

membranes provided accurate hair cell counts. We counted the

number of sensory hair cells in the otic 2 (O2) and middle 1 (MI1)

neuromasts [30] since they have been used to investigate

aminoglycoside-induced sensory hair cell death [25] and are easily

identifiable. The number of phalloidin-labeled hair cells per

neuromast was identical to the GFP-labeled neuromasts (n = 22

GFP and phalloidin counts for both O2 and Mi1 neuromasts),

similar to previously published data [25]. Thus, using the Brn3c-

GFP transgenic zebrafish eliminated the need for phalloidin

labeling for F-actin in subsequent experiments.

Exposure to Cisplatin Causes Dose-dependent Hair Cell
Death

Zebrafish neuromast hair cells are susceptible to cisplatin-

induced hair cell cytotoxicity (Fig. 2). Zebrafish larvae were treated

with cisplatin (0.25 mM–1.5 mM) for four hours [16], fixed and
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the surviving GFP-labeled hair cells were imaged and counted. At

5 dpf, control zebrafish contained an average of 10.161.7 hair

cells in the O2 neuromast. More sensory hair cells were present in

untreated controls (Fig. 2A, 2C) than in cisplatin-treated larvae

(Fig. 2B, 2C, n = 9216 for each treatment group). Within four

hours, the higher concentrations of cisplatin (0.75 mM, 1 mM,

and 1.5 mM) had significantly reduced the number of hair cells in

the O2 neuromast (p,0.001). Similar results were obtained for the

Mi1 neuromast (data not shown). Therefore, all further experi-

ments were performed using 1 mM cisplatin since that concen-

tration killed roughly 50% of the hair cells in both the O2 and Mi1

neuromasts.

To further document the toxic effects of cisplatin, the DNA-

specific label TO-PRO-3 was used to visualize nuclei (Figs. 2, 3).

Pyknotic nuclei appeared smaller and more intense than

surrounding nuclei (data not shown). The GFP signal helped

determine whether the pyknotic nuclei belonged to hair cells or to

the surrounding non-sensory cells. Very few pyknotic nuclei

(0.1360.34) were detected in the O2 neuromast of untreated

control larvae. The average number of pyknotic nuclei in GFP-

labeled cells increased in a dose-dependent manner when treated

with cisplatin. This ranged from 0.55 pyknotic nuclei per

neuromast for 0.25 mM cisplatin to 3.27 for 1.5 mM cisplatin

(n = 10216). There was a ten-fold increase in the number of

pyknotic nuclei in larvae treated with .0.75 mM cisplatin, which

was statistically significant (p,0.05).

DMSO Increases the Toxicity of Cisplatin
A previous study had shown that a cell death inhibitor was

protective against aminoglycoside-induced hair cell death [20].

Interestingly, when cell death inhibitors were used in conjunction

with cisplatin, there was increased sensory hair cell death than

with cisplatin alone (data not shown). Because cell death inhibitors

were dissolved in dimethyl sulfoxide (DMSO), we investigated the

possible role of DMSO in cisplatin-induced hair cell death. We

chose to use 0.5% DMSO since it was the final concentration used

with cell death inhibitors during preliminary experiments.

Hair cells in untreated controls appeared normal (Fig. 3A).

Fewer hair cells were present in cisplatin-treated neuromasts

(Fig. 3B) but when DMSO was combined with cisplatin, an

increase in cell fragmentation and neuromast disorganization was

observed (Fig. 3C). Fewer hair cells were present in DMSO/

cisplatin-treated larvae, at both 0.5 mM (p,0.001) and 1 mM

cisplatin concentrations (p,0.001, n = 13251 per treatment

group). A post-hoc Tukey test revealed 0.5 mM cisplatin plus

0.5% DMSO killed more hair cells than 0.5 mM cisplatin alone,

and 1 mM cisplatin plus 0.5% DMSO killed more hair cells than

the 1 mM cisplatin alone (Fig. 3C). At the 0.5 mM cisplatin

Figure 1. Location of neuromasts on Brn3c-GFP transgenic zebrafish. (A) Lateral view of a 5 days post-fertilization transgenic zebrafish
showing GFP expression in neuromasts that are found along the head and the body (bright dots) of the animal. (B) Higher magnification of the head
region, with neuromasts containing brightly GFP-labeled hair cells (white arrows) and inner ear organs (white arrowheads) easily identifiable. The otic
2 (O2) and middle 1 (Mi1) neuromasts are highlighted as these are the two neuromasts from which data for this study were obtained. The zebrafish
optic tectum (T) is another structure that is also labeled with GFP.
doi:10.1371/journal.pone.0055359.g001
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concentration, 5.764.8 (DMSO/cisplatin) vs. 8.463.0 (cisplatin

alone) O2 hair cells remained. At the 1 mM cisplatin concentra-

tion, 1.861.7 (DMSO/cisplatin) vs. 7.262.8 (cisplatin alone) O2

hair cells remained (Fig. 3D). Similar results were obtained for the

Mi1 neuromast (data not shown).

When the concentration of DMSO was varied (0.001% to

0.5%) with a concentration of 1 mM cisplatin, we found that the

synergistic effect of DMSO appeared at 0.01% (Fig. 4, n = 18231

per treatment group). DMSO concentrations greater than 0.01%

resulted in significantly fewer O2 hair cells when compared to

Figure 2. Dose response curve following cisplatin treatment.
Five-days post-fertilization Brn3c-GFP transgenic zebrafish were ex-
posed to varying doses of cisplatin for four hours to determine at which
dose approximately 50% of the hair cells die. The larvae were fixed, co-
labeled with the nuclear dye TO-PRO-3 (blue), and the GFP-tagged hair
cells (green) in the O2 neuromast were imaged using confocal
microscopy. (A–B) Z-stack projections of two O2 neuromasts under
different treatment conditions showing the entire neuromast structure.
(C–D) Slices from the same neuromasts as in A, B demonstrating the
membrane-bound GFP label surrounding the nuclear dye. (A, C) Hair
cells appear normal in untreated controls. (B, D) Noticeably fewer hair
cells are found in larvae treated with 1 mM cisplatin. (E) The mean
number of hair cells per O2 neuromast (6 SD) decreased as the dose of
cisplatin increased when compared to untreated controls. n = 9231
neuromasts for each treatment group. ***p,0.001 when individual
treatments are compared to untreated controls.
doi:10.1371/journal.pone.0055359.g002

Figure 3. Co-treatment with DMSO and cisplatin compromises
hair cell morphology and kills hair cells. Zebrafish were treated
with embryo medium (control), 0.5% DMSO, two different concentra-
tions of cisplatin (0.5 mM or 1 mM), or cisplatin (0.5 mM or 1 mM) with
0.5% DMSO. Representative images of (A) control neuromasts, (B)
neuromasts exposed to 1 mM cisplatin, and (C) neuromasts exposed to
1 mM cisplatin and 0.5% DMSO. When compared to a control O2
neuromast (A), fewer hair cells were present in the O2 neuromast of a
1 mM cisplatin-treated larva (B). When cisplatin is co-incubated with
0.5% DMSO (C), even fewer hair cells remain within the neuromast. (D)
When larvae were treated with 0.5% DMSO in conjunction with
cisplatin, there was a significant reduction in the number of hair cells
when compared to cisplatin treatment alone indicating a synergistic
effect of DMSO and cisplatin. Results are the mean values 6 SD.
n = 13251 neuromasts for each treatment group. ***p,0.001.
doi:10.1371/journal.pone.0055359.g003
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1 mM cisplatin alone (p,0.05). Similar results were observed in

the Mi1 neuromast (data not shown).

When DMSO was used alone, even at higher concentrations

(0.25% to 2%), with increased exposure (72 hours), DMSO was

not toxic to lateral line hair cells. DMSO by itself did not

noticeably change the morphology of the hair cells (data not

shown). There were no differences in the number of neuromast

hair cells in DMSO-treated larvae compared to untreated controls

(data not shown).

Other Organic Solvents do not Exacerbate the Toxic
Effect of Cisplatin

We treated 5 dpf larvae with 1 mM cisplatin and either 0.75%

ethanol, 0.75% methanol, or 0.75% polyethylene glycol 400 (PEG

400) to determine if other commonly used organic compounds

could exacerbate the toxic effect of cisplatin. Concentrations

greater than 0.75% for the PEG 400 were lethal to the larval

zebrafish during the four-hour incubation period. There was

almost no difference in the number of hair cells in the cisplatin-

treated larvae and those treated with cisplatin/ethanol, cisplatin/

methanol and cisplatin/PEG 400 (Fig. 5, p.0.5, n = 14242

neuromasts per treatment). Moreover, there were similar numbers

of neuromast hair cells in larvae treated only with ethanol,

methanol, or PEG 400 as with untreated controls.

More DDP-TR Fluorescence in Hair Cells Co-treated with
DMSO than with Methanol

In order to quantify the levels of cisplatin within lateral line hair

cells, we treated the zebrafish with fluorescently tagged cisplatin

(DDP-TR; 2 mg/ml) in the presence of either DMSO or methanol

for two to forty eight minutes (n = 152125 individual hair cells per

time point per treatment) prior to fixation (Fig. 6). The neuromasts

were imaged using identical parameters and fluorescence intensity

levels were measured. Methanol/DDP-TR-treated larvae had

Texas Red fluorescence (Fig. 6A) in the hair cells, but noticeably

more intense Texas Red fluorescence was observed in DMSO/

DDP-TR-treated larvae (Fig. 6B). At every time point tested, there

was significantly more DDP-TR fluorescence localized in the O2

hair cells of DMSO-treated larvae than in the methanol-treated

larvae (p,0.01; Fig. 6C). Similar results were obtained with hair

cells in Mi1 neuromasts (data not shown).

As a control experiment, unconjugated Texas Red was used in

place of DDP-TR. Zebrafish were treated for 48 minutes with

unconjugated Texas Red dissolved with either DMSO or

methanol, fixed, and the neuromasts were imaged (data not

Figure 4. Varying the concentration of DMSO with a constant
level of cisplatin affects the number of surviving hair cells
present in the neuromast. Brn3c-GFP larvae were treated with either
0.5% DMSO, 1 mM cisplatin or 1 mM cisplatin plus a dose range of
DMSO (0.001%–0.5%), fixed, and surviving hair cells in O2 neuromasts
were imaged and counted. Increasing the concentration of DMSO
reduced the number of O2 sensory hair cells. Larvae treated with 1 mM
cisplatin and plus a DMSO dose greater than 0.01% had significantly
fewer hair cells than larvae treated with 1 mM cisplatin alone. Results
are the mean values 6 SD. n = 18231 neuromasts for each treatment
group. **p,0.01 when individual treatments are compared to
untreated controls.
doi:10.1371/journal.pone.0055359.g004

Figure 5. Other organic solvents do not exacerbate the
ototoxic effects of cisplatin. Brn3c-GFP zebrafish were treated with
0.75% ethanol (EtOH), 0.75% methanol (MeOH), or 0.75% polyethylene
glycol 400 (PEG 400) in the presence or absence of 1 mM cisplatin for
four hours. The larvae were then fixed, mounted, and imaged. None of
the solvents alone killed hair cells and were similar to control numbers.
There was no statistical difference (NS) in the number of surviving hair
cells when larvae were treated with 1 mM cisplatin with or without
different organic solvents. There was, however, a statistically significant
difference (p,0.05) between untreated or solvent-only-treated controls
and cisplatin with or without organic solvents. Results are the mean
values 6 SD. n = 14242 neuromasts for each treatment group.
doi:10.1371/journal.pone.0055359.g005
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shown). When using the unconjugated Texas Red, there was no

statistical difference (p.0.65) between the fluorescence levels

between DMSO-treated zebrafish and methanol-treated zebrafish

in hair cells found in both neuromasts (n = 37247 individual hair

cells per time point per treatment). The Texas Red fluorescence

levels in these fish were negligible when compared to DDP-TR-

treated fish.

Reversed phase HPLC analysis of DDP-TR incubated in

methanol for four hours at room temperature demonstrated two

isomers of DDP-TR with retention times of 18.7 and 20.4 minutes

(Fig. 7A), as expected due to the two isomers of Texas Red present

in the conjugation reaction (data not shown). Analysis of DDP-TR

after incubation in DMSO for four hours revealed two additional

eluting components with retention times of 14.68 and 16.01

minutes (Fig. 7B) in addition to those eluting at 18.7 and 20.4

minutes. Incubation of DDP-TR in DMSO for 18 hours results in

almost total conversion of DDP-TR to the components eluting at

14.68 and 16.01 minutes. To determine the molecular identity of

the eluting components, LC/LR-ESI-MS in positive mode

analysis was conducted. The data in Table 1 indicate that the

components eluting at retention times of 19.4 and 22.3 minutes

correspond to DDP-TR with the characteristic isotopic pattern of

Pt complexes (Fig. 8). Only traces of the DDP-TR-methanol

adduct were found. The new components eluting at 14.8 and

16 min observed for DDP-TR incubated in DMSO correspond to

the m/z of the DDP-TR-DMSO adduct [31,32]. It is notable that

the DDP-TR-DMSO adducts are more polar (with shorter

retention/elution times) than DDP-TR.

DMSO does not Increase the Toxicity of the
Aminoglycoside Antibiotic Neomycin

To ascertain whether DMSO exacerbated the effects of another

commonly used ototoxic drug, we treated 5 dpf larvae with 0.5%

DMSO and 100 mM neomycin since many zebrafish studies have

used this concentration of neomycin [6,25–28]. Neomycin

treatment resulted in a significant decrease in the number of hair

cells in both neuromasts of the neomycin and neomycin/DMSO-

treated larvae when compared to untreated controls (Fig. 9;

p,0.05, n = 10212 per treatment). Similar numbers of hair cells

were found in the neomycin-treated larvae and the neomycin/

DMSO-treated larvae (Fig. 9) indicating that DMSO does not act

synergistically with neomycin to kill hair cells. Additionally,

embryos were exposed to either 50 mM neomycin or 50 mM

neomycin/0.5% DMSO to demonstrate that synergy does not

exist at a lower dose with no statistically significant difference in

the number of hair cells observed (p.0.5, n = 11214).

Discussion

Cisplatin killed lateral line hair cells in a dose-dependent

manner. Dimethyl sulfoxide (DMSO) combined with cisplatin,

however, increased the loss of hair cells beyond that of cisplatin

alone; yet DMSO alone did not kill hair cells. Other organic

solvents such as methanol, ethanol, and polyethylene glycol 400

did not increase the degree of hair cell death when combined with

cisplatin. Finally, DMSO facilitated increased fluorescently-tagged

cisplatin (DDP-TR) entry into the hair cells when compared to

methanol.

Cisplatin Toxicity
The dose response curves generated in this study confirm that

cisplatin causes hair cell death in a dose-dependant manner. TO-

PRO-3 labeling revealed more pyknotic or condensed nuclei in

hair cells after cisplatin treatment, consistent with apoptotic-like

cell death processes [13]. This supports a previous study, using

transmission electron microscopy, that cisplatin induces morpho-

logical changes consistent with apoptosis including condensation of

the nuclear chromatin in both inner ear and lateral line hair cells

of zebrafish [15].

Synergistic Effect of DMSO
We investigated the role of DMSO in increasing the toxicity of

cisplatin. DMSO is a commonly-used solvent for polar and

nonpolar compounds (,1,000 daltons), carbohydrates, polymers,

peptides, inorganic salts, and gases [33]. DMSO has such excellent

solvating power that cisplatin is three orders of magnitude more

soluble in DMSO than in water (Sigma).

DMSO could enhance cisplatin’s cytotoxicity by facilitating

cisplatin’s entry into hair cells, increasing its intracellular

concentration and likelihood of binding to DNA. Little is known

about the mechanism of cisplatin uptake by hair cells. Cisplatin

entry into hair cells might be increased by an excellent solvent

carrier, like DMSO, over endogenous transport alone. Moreover,

DMSO reacts with and binds to both cisplatin [31] and DDP-TR.

DMSO adducts in cisplatin are formed by substitution with a

Figure 6. More Texas Red fluorescence in hair cells when DDP-
TR is solubilized in DMSO than in methanol. Brn3c-GFP zebrafish
were treated with 2 mg/mL DDP-TR dissolved in either methanol or
0.1% DMSO for two to forty-eight minutes and then fixed and imaged.
(A) Low levels of DDP-TR fluorescence (red) were found in the O2 hair
cells of methanol-treated zebrafish after two minutes. (B) More DDP-TR
fluorescence was present in the hair cells of 0.1% DMSO-treated animals
after two minutes. (C) DMSO increased levels of DDP-TR fluorescence
into neuromast hair cells over time compared to DDP-TR plus
methanol-treated fish. Results are the mean values 6 SD. n = 152125
individual hair cells per time point per treatment. **p,0.01.
doi:10.1371/journal.pone.0055359.g006
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Table 1. Summary of LC/LR-ESI-MS analysis for DDP-TR-Cl2 after incubation for 18 hours in methanol (MeOH) and dimethyl
sulfoxide (DMSO).

Entry
Incubation
Solvent Isomer 1 Isomer 2

m/z
[M+]
calc.

tr
(min)

m/z
[M+]
obs.

tr
(min)

m/z
[M+]
obs.

1 None 19.42 1057.17 21.22 1056.17 DDP-TR; C40H50Cl2N6O7PtS2; 1055.22

2 MeOH 19.45 1057.17 21.23 1057.17 DDP-TR-Cl2; C40H50Cl2N6O7PtS2; 1055.22

3 DMSO 14.88 1099.17 16.16 1099.17 DDP-TR-Cl-DMSO; C42H56ClN6O8PtS3; 1098.26

19.51 1056.17 21.35 1056.17 DDP-TR-Cl2; C40H50Cl2N6O7PtS2; 1055.22

doi:10.1371/journal.pone.0055359.t001

Figure 7. DDP-TR solvated with DMSO has additional elution peaks compared to DDP-TR solvated in methanol. HPLC traces for
elution times of DDP-TR-Cl2 incubated with (A) methanol or (B) DMSO for four hours at room temperature. Note the two new major peaks at 14.88
and 16.01 minutes in B. HPLC conditions: reversed phase Discovery C18 column (250 6 2.1 mm, 5 mm); flow rate: 200 mL, sample volume: 5 mL,
water:MeCN. Solvent gradient 95:5 to 5:95 in 30 minutes, wavelength detection; 580 nm.
doi:10.1371/journal.pone.0055359.g007
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single chlorine group, forming cis-[Pt(NH3)2(Me2SO)Cl]Cl(1-Cl)

and trans-[Pt(NH3)2(Me2SO)Cl]Cl(2-Cl) [31], with a similar

reaction for DDP-TR, increasing the polarity of each compound.

The greater uptake of DMSO/DDP-TR by neuromast hair cells

was only observed at early time points. This is likely due to the

limited time exposure to DMSO (and hence adduct formation)

prior to treatment of hair cells. Thus, DDP-TR with DMSO-

adducts could be taken up faster until depleted, compared to the

slower uptake of the relatively more abundant DDP-TR, allowing

for the convergence of the fluorescence intensities in the two

groups at later time points.

DMSO may also bind to cisplatin after hair cell entry. Cisplatin-

DMSO adducts have greater affinity for DNA, potentially

increasing its cytotoxicity [31]. DMSO’s effect as a carrier of

cisplatin has been studied in various cancer types in vitro but the

toxic effects of their interaction on hair cells has not yet been

shown [33,34]. Our data show an increased cytotoxicity of

cisplatin when using DMSO as a carrier in hair cells of the lateral

line. This synergy occurs in a DMSO dose-dependent manner and

is unique to DMSO, and was not seen with other solvents. Based

on our data showing increased infiltration of DMSO/DDP-TR

into the cell, we propose that DMSO facilitates entry of cisplatin

into the cell. In contrast, Fischer et al. reported that cisplatin

Figure 8. DDP-TR solvated with DMSO has altered spectral peaks compared to DDP-TR solvated in methanol. LR ESI-MS spectra of
compounds eluting at (A) 14.88 min corresponding to DDP-TR-Cl-DMSO (i.e., with a DMSO adduct); (B) 16.1 minutes corresponding to DDP-TR-Cl-
DMSO; (C) 19.5 minutes corresponding to DDP-TR-Cl2, and (D) 21.2 minutes corresponding to DDP-TR-Cl2. [M+] and [M+Na+] ions are observed. M+,
molecular ion of target compound; M+Na+, molecular ion of target compound plus sodium.
doi:10.1371/journal.pone.0055359.g008
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rapidly reacts with DMSO to form a DMSO adduct with reduced

DNA binding and reduced cytotoxicity in cancer cells in vitro [32].

Decreased tumor toxicity and increased ototoxicity would lessen

the practicality of using DMSO for clinical applications.

Contrary to our results, a recent study documented the

cytotoxic effect of DMSO, by itself, on hair cells [35]. DMSO

caused little or no damage to the hair cells of postnatal rat cochlear

organotypic culture that were treated at 0.1% and 0.25% for 24

hours. DMSO concentrations of 0.50% and higher, however,

resulted in stereocilia damage, hair cell swelling, and a dose-

dependent loss of hair cells. The hair cells exposed to these DMSO

concentrations stained positive for TUNEL, caspase-3, caspase-8,

and caspase-9, suggestive of apoptotic death. Nevertheless, the

authors acknowledged a need for future in vivo studies to further

assess the possible toxicity of DMSO [35]. The zebrafish in vivo

experiments reported here provide contrary results to the in vitro

cochlear organotypic culture study. DMSO treatment alone did

not cause hair cell loss or any morphological changes in zebrafish.

The combination of DMSO and neomycin did not cause

greater amounts of hair cell death when compared to the group

that was treated with neomycin alone. The larvae were not pre-

incubated in DMSO as in trials with other inhibitors. While the

time course of this experiment differed from the cisplatin

experiments, the amount of hair cell death caused by the

neomycin was comparable. It is possible that an hour is insufficient

for DMSO to facilitate greater levels of neomycin-induced hair cell

cytotoxicity.

The experiments presented here lay the groundwork for further

studies of cisplatin-induced hair cell death using the Brn3c-GFP

transgenic zebrafish. A number of studies have used different

candidate therapeutics to inhibit the progression of aminoglyco-

side-induced hair cell death or accelerate the rate of hair cell

regeneration [3,5–8,10,11] and one study used the same drugs to

screen for cisplatin-induced ototoxicity [9]. Most of these

compounds are dissolved in DMSO. Therefore, precautions

should be taken if similar screens are used to investigate the

signaling mechanisms underlying cisplatin-induced hair cell death

since the use of DMSO may increase the likelihood of false

negative data. Other studies are needed to determine if these

findings involving DMSO and cisplatin are applicable to other

animal models.
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