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Parallel photonic information processing
at gigabyte per second data rates using
transient states
Daniel Brunner1, Miguel C. Soriano1, Claudio R. Mirasso1 & Ingo Fischer1

The increasing demands on information processing require novel computational concepts and

true parallelism. Nevertheless, hardware realizations of unconventional computing approa-

ches never exceeded a marginal existence. While the application of optics in super-

computing receives reawakened interest, new concepts, partly neuro-inspired, are being

considered and developed. Here we experimentally demonstrate the potential of a simple

photonic architecture to process information at unprecedented data rates, implementing a

learning-based approach. A semiconductor laser subject to delayed self-feedback and optical

data injection is employed to solve computationally hard tasks. We demonstrate simulta-

neous spoken digit and speaker recognition and chaotic time-series prediction at data rates

beyond 1 Gbyte/s. We identify all digits with very low classification errors and perform

chaotic time-series prediction with 10% error. Our approach bridges the areas of photonic

information processing, cognitive and information science.
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T
he past century has seen an unprecedented increase in
information processing abilities. However, certain tasks are
not efficiently solved by standard computers. Unconven-

tional computation schemes and the inclusion of photonic
hardware could provide new opportunities1–5. Photonics might
extend and complement the repertoire of techniques for certain
information processing tasks, with far reaching consequences3.
Realizing learning-based computation by utilizing the nonlinear
transients of standard photonic components could lead to a
paradigm shift in the field of optical computing, away from
binary-logic based methods, towards machine learning-based
approaches using off-the-shelf, fast and power efficient devices.
In particular, semiconductor lasers exhibit nonlinear interaction
between the laser field and semiconductor medium, resulting in
complex behaviour when subjected to feedback, electrical
modulation or optical injection6. They are off-the-shelf, high
bandwidth, power efficient components, and form the backbone
of modern fibre communication.

In this article, we implement the computational concept of
reservoir computing (RC)4 in photonics, in particular realizing
the reservoir and information injection all-optically. At the same
time, we boost the bandwidth compared with previous
approaches by more than two orders of magnitude. We achieve
this by utilizing the analogue transient dynamics generated by a
semiconductor laser coupled to a fibre-optic feedback loop.
Following the RC concept, we generate nonlinear transient states
in the context of previous input responses. Consequently, the
system is capable of processing temporal sequences of
information.

Results
Computational concept. Our computational concept is sche-
matically illustrated in Fig. 1a (ref. 7). Following ideas introduced
in RC, we generate transient states for processing the information.
These transient states are generated by a central nonlinear
element, here a semiconductor laser, which is subjected to optical
feedback with delay tD, and to injection of the input information.
The input information is sampled in time, resulting in a discrete
sequence an, n¼ {0,1,y}. In the case of real-time processing, the
sampling rate should be chosen as T2

� 1¼ tD
� 1. For successful

information processing, a significant number of different
nonlinear transients is required. In the case of a scalar input,
we multiply an by a temporal mask sequence M(t), the duration of
which is equal to the sampling time T2. Each computational cycle
T2 is divided into N sub-intervals of duration T1¼T2/N. With
this procedure, we obtain N different, time-multiplexed transient
states xm(t), with m¼ 1yN and N typically chosen as
100rNr1,000. The resulting sequence injected into the laser
during one delay time is therefore given by un(t)¼ an �M(t). The
induced nonlinear transient states have to contain a maximum
amount of information about the injected input7. Therefore, we
keep the system sufficiently far from reaching a steady state
during its dynamical response. We achieve this by choosing
T1¼Y �T0, with Y¼ 0.2, where T0 is the characteristic time scale
of the laser’s relaxation oscillations (ROs). In the case of multiple
component input an, the information injected each T1 consists of
a random, linear combination of input components.

The final step in our computational process is based on the
summation of these induced transient states xm(t). This is done by
calculating a linear combination of the laser output intensities,
detected at a rate of T1

� 1. The coefficients of this linear
combination, called weights, are determined by a standard
machine learning training procedure, in which the difference
between the resulting readout value and its target is minimized.
Owing to the delay loop, the induced transients are the system’s

response to the currently injected information in the context of
the response to previous inputs. Theoretical8,9 and
experimental7,10–12 investigations show that our scheme can
indeed be interpreted as RC.

For successful and reproducible computation, the system has to
be capable of generating consistent transients, that is, for identical
or highly alike inputs the induced transients have to be equally
alike. This requirement corresponds to the approximation
property in machine learning4,7. Therefore, the rest state
(reservoir state in the absence of input) and the dynamical
properties have to be chosen appropriately. Hence, computational
performance benefits from a reservoir rest state corresponding to
steady state emission of the laser. In the experiment, this can be
achieved by, for example, biasing the laser close to the threshold
current of the free running laser.

Our scheme combines photonics with the true parallel
computation properties of RC. First, the transients are induced
by injecting information from multiple sources simultaneously
into the laser. Second, as the transient states are not affected by
the training, in principle, an arbitrary amount of k scalar outputs
can be defined and trained, performing different computations.
Parallel data injection can be realized using a single optical fibre
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Figure 1 | Reservoir computing concept and experimental scheme.

(a) Schematic representation of computation using nonlinear transient

states generated by a single nonlinear element (NL) subject to delayed

feedback. The N transient states xm(t) used for computation are distributed

along the delay line with spacing Y. Here, u stands for the information

input, yk(t) for the value of the readout with index k. Panel (b) schematically

shows the experimental realization of all-optical computation, utilizing a

semiconductor laser diode as the nonlinear node. Information can be

injected optically (electrically), given by u(o) (u(e)). The feedback delay is

given by tD. The experimental setup comprises the laser diode, a tunable

laser source to optically inject the information, a Mach–Zehnder modulator

(MZM), a polarization controller, an attenuator, a circulator, splitters and a

fast photo diode (PD) for signal detection.
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without crosstalk between the individual input channels.
Although, at this stage, data preprocessing and readout are
carried out off-line, hardware implementations for a real-time
preprocessing are being discussed2. Additional information about
data injection and data readout can be found in the Methods
section.

Experimental scheme. A schematic representation of the
experimental setup is given in Fig. 1b. The emission of the
semiconductor laser diode (l¼ 1,542 nm) is collected by a stan-
dard single mode fibre. Feedback (with delay tD¼ 77.6 ns) is
realized via a fibre loop, comprising an optical circulator, two
fibre splitters, an optical attenuator and a polarization controller.
The optical attenuator and polarization controller facilitate the
control of the optical feedback conditions. Using T2¼ 77.6 ns and
N¼ 388, we obtain T1¼ 200 ps.

In our experiment, information can either be injected elec-
trically, via modulating the laser diode current, or optically by
injecting the modulated intensity of a tunable laser. Diode current
modulation was facilitated by directly connecting the diode to a
radio frequency cable using a 40O resistor. Combined with the
10O impedance of the laser diode, the system therefore was
impedance matched to the radio frequency electronics used for
electrical modulation. Following this approach, we achieved a
diode current modulation bandwidth exceeding 10 GHz. For
electrical modulation, the laser’s RO frequency acts as bandwidth
limiting factor. In our laser, the RO frequency changed from 1.4
to 5 GHz when changing the bias current from Ib¼ 9 mA to
Ib¼ 20 mA. The optical signal was injected via the optical fibres
forming the delayed feedback loop. In principle, efficient non-
linear interactions of optical signals in semiconductor lasers can
be achieved for frequencies up to several hundreds of gigahertz13.
So far, however, the signal source used for generating the input
information remains the bandwidth limiting factor in our
experiments.

We evaluated the performance of our system focusing on two
different, general classes of information processing tasks. Various
information-processing problems require classification of
information, associating different inputs to different classes. As
such, these tasks equally require discrete classes as classifier
targets, and a system response sufficiently diverse to allow for
clear separation. A second typical task in information processing
is based on nonlinear processing of dynamical information.
Accordingly, the classifier target values can be continuous.
Furthermore, the system has to provide memory to capture the
dynamical nature of the injected information. We selected two
computationally challenging tasks, each representing one of the
two introduced classes of information processing tasks, as
benchmark tests to evaluate the information processing
capability of our scheme: parallel spoken digit/speaker
recognition and chaotic time-series prediction. Both tasks are
standard to the machine learning community and allow for a
direct comparison between different approaches to information
processing7,10,11,14.

Spoken digit recognition. In Fig. 2a we show the experimental
results of spoken digit classification in terms of the classification
error as a function of the laser bias current (Ib). Results of optical
(electrical) information injection are given by the blue (red) data
set. Optical information was injected using a tunable laser, the
polarization of which was parallel to the laser emission, with the
optical injection power modulated between 15 nW ruo(t)r15
mW. In the absence of information, that is, the rest state, the
injected power corresponded to 15 nW. Electrical information
was injected by modulating the laser current between 0 mA

rue(t)r12 mA. The optical feedback was attenuated by 20 dB
and rotated in polarization. Under these conditions, we achieved
a very low classification error of (0.014þ 0.051/� 0.014)% for
Ib¼ 7.7 mA ((0.64±0.17)%, Ib¼ 7.6 mA) for optical (electrical)
injection at a laser bias current close to the laser threshold.
A classification error of 0.014% corresponds to one mis-
classification per B7,000 digits, with an uncertainty that was
limited by the size of the database. Our results present an
improvement in classification error by a factor of B3 and in speed
by a factor 260 when compared with previous, optoelectronic
implementations of this information processing scheme10,11.

We speculate that the improved error, as compared with earlier
experiments7,10,11,14, is related to the influence of the nonlinearity
on the classification performance. Such an influence has
been empirically identified in Larger et al.10 A thorough
understanding of the interplay of nonlinearity and specific task
performances is, however, still lacking. Even when compared with
software emulations of neural networks, our performance is highly
competitive. There, for the spoken digit recognition without the
influence of noise, classification errors reported for a system based
on hidden Markovian models were 0.168% (ref. 15), and 0.5% for
a reservoir computing system16. Further above threshold, our
system exhibits complex dynamics even in the absence of injected
information6, yielding a worse performance for the case of
electrical modulation (Fig. 2a). For the case of optical information
injection the performance dependence above threshold is less
intuitive. This might be due to the complex influence of the
injected light on the stability of the rest state17.

As an illustration of the parallel computation capabilities we
utilized the same transient responses to identify the speaker of a
digit. The results are shown in Fig. 2b. A (0.88±0.18)% speaker
classification error was obtained for a bias current of Ib¼ 7.91 mA.
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Figure 2 | Spoken digit classification with 5 GHz bandwidth. Blue (red)

data correspond to optical (electrical) information injection. The same

reservoir responses for identifying the digit (a) and the speaker

(b) demonstrate the potential of RC for true parallel computation. Best

performance is found for a laser diode current Ib close to threshold (grey

dotted line). A 20-fold cross-validation was repeated several times, with

the s.d. given by the error bars.
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At this point it is worth emphasizing the high speed of our setup,
which allows us to process about one word in 3.3ms,
corresponding to B300,000 spoken digits per second. Our
results represent the lowest spoken digit classification error as
well as the highest speed reported in the literature.

Chaotic time-series prediction. The time-series prediction task
requires a single point prediction of an experimentally obtained
chaotic time series, which was also used in the Santa Fe compe-
tition18. The performance, using optical data injection, is depicted
in Fig. 3. For time-series prediction, the classifier target value is a
nonlinear transformation of several, continuously distributed,
previous data points, and therefore is (quasi-) continuous.
Consequently, noise has a direct impact on the accuracy of the
classifier. In order to reduce noise, the range of optical modulation
was the same as before, however, an injection power of 7.5mW
was chosen, defining the rest state. The external laser therefore
additionally served as an injection locking source, increasing the
performance significantly by reducing the rest state noise. In our
experiment, we performed a one-time step prediction test, that is,
predicting a data-point one-time step ahead in the future. It is
worth mentioning that we processed one data-point per delay
time, and consequently no explicit memory was added at the data
injection stage, a preprocessing technique commonly used to
artificially introduce memory in machine learning techniques19.
The quasi-continuous nature of our classifier is caused by the
analogue-digital conversion in our experiment, which, in possible
future applications, could be avoided.

The prediction performance, depending on the bias current, is
depicted in Fig. 3a. The best performance is again obtained for Ib

close to the laser threshold, with a prediction error of 10.6%
(Ib¼ 7.62 mA, feedback attenuation 10 dB) at a prediction rate of
1.3� 107 points per second. When repeating the same input five
times and averaging the responses (keeping the 8 bit resolution),
the signal-to-noise ratio was improved, and an error of only 5.5%
was obtained. The signal averaging was executed directly at the
acquisition stage. Experimentally, this procedure could be
implemented by running five systems in parallel or by making a
trade-off between speed and performance. Time-series prediction
using machine learning techniques and realized in software,
achieved errors below 1% (refs 20,21). These approaches, however,
neglect the influence of noise and finite experimental precision
and, more importantly, add external memory in the data injection
procedure. Although these implementations, for now, offer
superior accuracy, hardware systems could offer advantages in
speed, integrability and energy efficiency. These points will be
discussed later in the manuscript.

The importance of the memory introduced by the feedback
loop can be seen in Fig. 3b. Owing to experimental constraints, the
lowest feedback attenuation that we achieved was 10 dB, for which
the best prediction performance was obtained. An increase by only
2 dB resulted in a prediction error exceeding 40%. We would like
to emphasize that the data point with the lowest error in Fig. 3b
does not stem from an individual measurement, but was
confirmed by several independent measurements. The s.d.
(±1.9%) of these measurements is given by the red error bars
in Fig. 3. Additional deviations arise from the cross-validation
procedure. The entire training and testing procedure was carried
out five times, using each data point for training and testing
according to a random selection. Prediction results showed small
deviations (B0.3%) for different partitions. This error is displayed
by the blue error bars in Fig. 3.

The direct influence of Ib on the transient responses can be seen
in Fig. 4. Panel (a) shows a part of the Santa Fe time series used in
the experiment, illustrating the sudden changes in amplitude,

which are characteristic to this data set. Time-series prediction in
the vicinity of these points is deemed particularly hard. Transients,
induced by data containing such a rapid amplitude change, are
displayed for three values of Ib in panel (b). Although for
Ib¼ 7.62 mA the dynamics is largely dominated by the system’s
response to the injected information, this correlation between
input and transient response reduces for larger Ib. For a bias
current of Ib¼ 10.78 mA, the characteristic amplitude change
within the injected data is no longer vivid in the induced
transients. The high quality of our time-series prediction is
illustrated in Fig. 4c, where we compare the target (black) with the
predicted (red) time series. The predicted time trace includes data
points in the vicinity to a rapid amplitude transition. Here, top
and bottom horizontal axes display the time step number in the
original target trace, and the temporal duration of the actual
experiment, respectively.

Discussion
Apart from the demonstrated highly competitive figures of merit,
our novel computational concept might offer significant energy
reduction for certain tasks. At this stage we can only provide a
conservative estimate. The calculated energy consumption for
spoken digit recognition using our all-optical transient computing

P
re

di
ct

io
n 

er
ro

r 
(%

)

100

50

0

−5 −10 −15 −20 −25 −30

5 6 7 8 9 10 11 12

P
re

di
ct

io
n 

er
ro

r 
(%

)

100

50

0

Feedback attenuation (dB)

Laser diode current (mA)

Figure 3 | Prediction error in a time-series prediction task.

(a) Dependence on laser diode current using 10 dB feedback attenuation.

(b) Dependence on feedback attenuation using Ib¼ 7.9 mA. The prediction

error increases dramatically for Ib48.9 mA, when the laser rest state

becomes unstable. The importance of memory for time-series prediction

can be seen in the lower panel, where the prediction error rapidly increases

for a reduced feedback strength. Red error bars give the s.d. between three

independent measurements. Blue error bars represent the s.d. for different

training/testing partitions of the data.
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scheme, including all-optical data input and readout hardware,
would be of the order of 10 mJ per digit, compared with 2 J per
digit required by a standard desktop computer. These numbers
demonstrate the great potential of our computational scheme
realized in hardware. Additional information about the energy
consumption can be found in the Methods sections.

Other hardware implementations of machine learning concepts
are based on field programmable gate arrays. There, the states
utilized for computation are realized based on digital electronics.
The speed of these implementations is measured in connections
per second, with the fastest systems typically achieving rates from
1� 109 to 5� 109 connections per second for a single field
programmable gate arrays22. It is worth noting that this number
refers to connections and not to the number of nodes of the
neural network, hence a more complex network structure will
inevitably decrease the global processing rates. Our scheme, with
the injection rate limited by our signal source, therefore allows for
identical or even superior processing speed.

In conclusion, we have experimentally demonstrated the
computational power of a single photonic device using nonlinear
transient laser responses. The reported results open new
perspectives for tackling certain tasks with analogue optical
computation. Instead of relying on complicated, power- and
space-consuming architectures, one can realize simple, yet

powerful implementations of optical information processing with
inherent memory and the possibility of true parallelism. Of major
consequence might be the large computational power achieved
with the nonlinearity of a laser diode. Similar computational
schemes could in the future be implemented, benefiting from the
vast variety of optical nonlinearities already available. As such,
implementations could span numerous areas, including ultra-fast
optical nonlinearities, some even on the femtosecond time scales,
as well as utilizing nano-and metamaterials.

We achieved excellent figures of merit in spoken digit
recognition, with the lowest reported error rate (0.014%) at
simultaneously highest data rate (1.1 Gbyte/s), and time-series
prediction with an error of only 10.6% with a prediction rate of
1.3� 107 data points per second. Especially for optical informa-
tion injection, the factor ultimately limiting the speed of this
scheme might not arise from the maximum bandwidth of the
photonic nonlinear element13, but from a decreasing signal-to-
noise ratio when going to higher bandwidths. Using a slightly
modified injection scheme, demonstrated in the time-series
prediction task, we have shown how these effects can, to some
degree, be compensated for.

We would like to point out that for all tasks, digit and speaker
recognition as well as time-series prediction, best performance
was achieved for laser bias currents close to threshold.
Consequently, the main parameter determining the performance
does not require a fine adjustment for executing different tasks.
For tasks requiring extended or multiple time scale memory, our
scheme can be expanded by utilizing several delay lines of
different length14 or by adding additional nonlinear nodes
(lasers).

Our results, reported for the two different tasks, indicate the
potential of our information processing schemes and open new
perspectives for future applications in photonics. Spoken digit
recognition is a classification task, and as such our excellent
figures of merit might be transferable to technological challenges
like all-optical routing23. However, tackling all-optical routing
with the implementation as presented would currently still be out
of reach becaus of the employed time multiplexing. A possible
extension includes the use of a multiple node reservoir, based on
semiconductor lasers. With such extended schemes, data rates of
tens of gigabit per second should be achievable. Furthermore,
based on the all-optical nonlinearity of laser diodes13, such
systems might even reach processing speeds of hundreds of
gigahertz. These numbers demonstrate the potential of RC based
on off-the-shelf photonic components for telecommunication
applications. However, many questions still need to be
investigated on the way. The fast speed and good performance
in time-series prediction equally demonstrate possible
applications in ultra-fast control system. Here, the increase to
tens of megahertz bandwidth could offer great opportunities for
fast control of photonic systems. In addition, the simplicity of our
scheme could allow technological implementations in distributed
networks and smart systems, enabling closed loop control of
individual elements.

Methods
Information injection and readout. In our experiment, the information to be
processed can be injected either electrically, via directly modulating the laser bias
current (u(t)(e)), or optically via modulating the optical intensity of an external
injection laser using a Mach–Zehnder modulator (u(t)(o)). In both cases, the
modulation rate is given by T1

� 1¼ (Y �T0)� 1. We chose Y such that a high
sensitivity of the induced transient states on the injected information is achieved,
which we find optimized for YB0.2. Larger Y values would allow the induced
transient to approach their steady state, while for too small Y values the system’s
inertia would result in a neglegible response to the injected information.

Input information for the nth input interval is described by the L-dimensional
data vector an. The data vector is created via sampling the input information in
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discrete time steps. For realizing parallel injection of the L-dimensional input,
we construct vector ũ with N dimensions according to

~un;m ¼
XL

l¼ 1

oi
m; lal ð1Þ

where oi is a connectivity matrix, defining connections between input dimensions
and the individual transients.

A large diversity of transient states is required in our computational scheme.
This is achieved by an additional multiplication of vector ũ with mask M(t).
According to this, mask M defines the temporal position m �T1 of vector com-
ponents un,m inside one clock cycle T2. The mask is defined as a sequence of N
values, randomly selected from discrete values. For the temporal interval, defined
by ([n �T2þ (m� 1) �T1]rto[n �T2þm �T1]), the information injected into the
reservoir is given by

un;m ¼ ~un;m �Mm ð2Þ

The resulting, u(t) is the information directly injected into the nonlinear node.
Following these data injection procedure, it is possible to inject L data values in
parallel into the nonlinearity during one computational time step T2.

For the training, standard methods from machine learning can be employed4.
In our computational scheme, the processed information is represented by scalar
values yk of the individual classifiers, indicated by k. Combined, these values
(dimensions) form the output vector y. Per time step T2 one computation is
executed, hence we normalize time according to s¼ t/T2. The output vector is given
by

yðsÞ¼or
res
� xðsÞþor

in
� uðsÞþor

bias
; ð3Þ

where the matrices or
xxx

contain a linear combination of the transient states,
generated by the information injected into the laser and a constant bias term,
respectively. For performing a certain information processing operation on readout
vector y, the linear weights or

xxx
are determined in a training procedure.

Information with known target values is injected into the system to optimize or
xxx

.
Consequently, the s.d. between y(s) and its target is minimized. During this
procedure, referred to as training, the readout weights or

xxx
are adjusted in an

off-line procedure.
For the case of an input with s time steps, we build a transient state matrix of

dimension N� s, containing all transient states at each time s. To account for a
constant offset in the target value, we additionally include a constant bias, resulting
in a state matrix T of dimension (Nþ 1)� s. Furthermore, we concatenate all
readout weights or

xxx
defining matrix Or . For a number of k individual readouts y,

the dimensionality of Or is k� (Nþ 1). We define a target output matrix y, given
the optimal output values at each time step (that is, dimension k� s). Using these
three matrices, the root mean square k Or T � y k can be minimized according to

Or ¼ðyTyÞT ð4Þ

Here, w denotes the Moore–Penrose pseudo-inverse, which allows to avoid
problems with ill-conditioned matrices.

Over-fitting of the training data is avoided by the noise inherently present in the
experiment, and by the Tikhonov regularization method (ridge regression).
Tikhonov regularization is included in the training procedure by minimizing

k OrT � y k þ k lO k ð5Þ

where the factor l acts as a penalizing factor, forcing the components of Or towards
smaller values.

Spoken digit recognition. The spoken digit data set consists of five female
speakers, uttering the numbers zero to nine with a tenfold repetition for statistics24.
Before injecting the information into the laser, we performed standard
preprocessing creating a cochleagram of each digit via the Lyon ear model25. For
simplicity, mask M and connectivity matrix oi were merged into a single matrix
(o). In this matrix, 98% of the elements were set to zero in order to realize a sparse
connectivity between cochleagram channels and transients. The remaining values
were randomly selected among (0.41,0.59). The preprocessing following the digit’s
chocleagram is illustrated in Fig. 5. After preprocessing, each cycle of length T2 data
of the cochleagram’s 86 frequency channels were injected into the system with 8 bit
resolution, corresponding to a rate of 1.1 Gbyte/s. One Byte here refers a unit of
injected information, which can comprise different numbers of bits. Out of the
entire body of spoken digits, we chose 20 random partitions of 25 samples each,
using 475 samples for training the readout weights, keeping the remaining 25 for
testing. Each random partition and each sample are used exactly once for testing
(20-fold cross-validation). Statistical information is provided by repeating this
procedure five times, creating different random combinations of testing and
training. At the two data points, where the system approaches 0% error, the cross-
validation procedure was repeated 100 times.

Time-series prediction. In the time-series prediction task the system was injected
with one data point per T2. The target of the classifier was to predict the value of
the respective next time step. By injecting information at a rate of 1 Byte per clock
cycle T2 (1 Byte¼ 8 bits), we could predict 1.3� 107 data points per second.
We evaluated the performance of our scheme using the chaotic time-series of the
Santa Fe time-series competition, data set A (ref. 18). The data set, created by a far-
infrared-laser operating in a chaotic state26, consists of 4,000 data points, from
which we used 80% for training and 20% for testing and five-fold cross-validation.

The input information for the time-series prediction task consisted of scalar
values only. Accordingly, input and transient states are fully connected. Time-series
prediction is very sensitive to the presence of noise. To evaluate the performance of
our system, we carried out numerical simulations, that showed that for an 8-bit
digital to analogue converter digitization noise would already limit the performance
of our system. A mask with a larger variety of values can reduce the performance
limiting influence of this factor to some extent27. Hence, for this task we employed
a six-valued mask, with a random selection from the values {� 1, � 0.6, � 0.2, 0.2,
0.6, 1}.

An additional positive effect of this injection scheme is that a single value of the
injected information is the origin of all N transient states during one delay. The
impact of noise is therefore reduced by averaging over the large number of states,
hence increasing prediction accuracy and robustness. It is worth noting that in our
experiments we aim at demonstrating time-series prediction utilizing only the
memory inherently present in the system. For this reason, we inject a single data
point per delay T2. Injecting multiple points within one delay time would result in
an artificial enlargement of the memory.

Energy efficiency estimation. The energy consumption for a system, entirely
realized in hardware, was calculated using off-the-shelf components. Masking of
the input and realizing the scalar multiplication factors in the readout classifier can,
due to the time multiplexing, be done via temporal amplitude modulation (for
example, with a Mach–Zehnder modulator). The readout additionally requires
integration for the duration of T2. This can be realized electronically with a gated
integrator28 or optically with an all-optical integrator29. Our calculations are based
on the gated integrator, for which we estimate a power consumption of 200 mW.
The temporal modulation sequence for the input and readout is provided by an
arbitrary waveform generator (AWG, Euvis AWG452), with a power consumption
of 13 W. One AWG for each input and output were used in our estimation which
gives an upper limit for the power consumption, with large potential for further
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reductions. We assumed the transformation by the Cochleagram to be carried out
in advance. As such, a system with 10 classifiers would consume roughly B150 W.
We included an additional 50 W for all other components like the laser diode
current source and temperature stabilizer, as well as the driver of the Mach–
Zehnder modulator. This number does not rely on any specifically designed
electronic hardware, and hence represents a highly conservative guess.

References
1. Crutchfield, J. P., William, L. D. & Sudeshna, S. Introduction to focus issue:

intrinsic and designed computation: information processing in dynamical
systems—beyond the digital hegemony. Chaos 20, 037101–037107 (2010).

2. Woods, D. & Naughton, T. J. Optical computing: photonic neural networks.
Nat. Phys. 8, 257–259 (2012).

3. Caulfield, H. J. & Dolev, S. Why future supercomputing requires optics. Nat.
Photon. 4, 261–263 (2010).

4. Jaeger, H. & Haas, H. Harnessing nonlinearity: predicting chaotic systems and
saving energy in wireless communication. Science 304, 78–80 (2004).

5. Modha, D. S. et al. Cognitive computing. Commun. ACM 54, 62–71 (2011).
6. Ohtsubo, J. Semiconductor Lasers: Stability, Instability and Chaos (Springer-

Verlag, 2008).
7. Appeltant, L. et al. Information processing using a single dynamical node as

complex system. Nat. Commun. 2, 468 (2011).
8. Rodan, A. & Tino, P. Minimum complexity echo state network. IEEE Trans.

Neural Networks 22, 131–144 (2011).
9. Dambre, J., Verstraeten, D., Schrauwen, B. & Massar, S. Information processing

capacity of dynamical systems. Sci. Rep. 2, 514 (2012).
10. Larger, L. et al. Photonic information processing beyond Turing: an

optoelectronic implementation of reservoir computing. Opt. Express 20,
3241–3249 (2012).

11. Paquot, Y. et al. Optoelectronic reservoir computing. Sci. Rep. 2, 287 (2012).
12. Duport, F., Schneider, B., Smerieri, A., Haelterman, M. & Massar, S. All-optical

reservoir computing. Opt. Express 20, 22783 (2012).
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