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Hepatocellular adenomas (HCAs) are benign tumors developed in normal liver most frequently in women before menopause.
HCAs lead to diagnostic pitfalls and several difficulties to assess the risk of malignant transformation in these young patients.
Recent advances in basic knowledge have revealed a molecular classi�cation related to risk factors, pathological features, and
risk of transformation in hepatocellular carcinoma. ree ma�or molecular pathways have been identi�ed altered in speci�c HCA
subgroups that are de�ned by either (1) inactivation of hepatocyte nuclear factor 1A (HNF1A) transcription factor, (2) activation
of the WNT/𝛽𝛽-catenin by CTNNB1mutations, or (3) activation of the IL6/STAT3 pathway by somatic mutation of IL6ST, GNAS,
or STAT3. Here, we will review the different molecular classes of HCA.

1. Introduction

Hepatocellular tumors deriving from monoclonal prolifer-
ation of hepatocytes are classically divided in benign hep-
atocellular adenoma (HCA) and malignant hepatocellular
carcinoma (HCC). HCAs are rare tumors most frequently-
developed in women before menoaupose and aer a long-
term use of oral contraception [1]. Other risk factors such
as glycogen storage diseases and androgen intake are also
classically associated with HCA development. HCA could be
complicated frequently by hemorrhage and more rarely by
malignant transformation in HCC [2, 3]. For a long time,
HCAwas considered as a benignmonoclonal proliferation of
hepatocytes driven by oestrogen exposition [4, 5]. However,
molecular classi�cation has redrawn the physiopathological
and clinical landscape of HCA [6]. is new classi�cation
linked speci�c risk factor, clinical history, and histological
features to each molecular subgroup of HCA [6–9]. In
addition, this genotype/phenotype classi�cation has been
validated by several groups worldwide demonstrating its
robustness and its wide reproductibility in clinical practice
[10–15]. In this paper we aimed to describe how genomic
analyses enabled us to identify the different HCA molecular
subgroups and their speci�c molecular defects.

2. �olecular Classi�cation o�
Hepatocellular Adenomas

2.1. Adenomas Inactivated for HNF1A (H-HCA). In 2002,
we identi�ed HNF1A, as the �rst driver gene inactivated by
mutation in hepatocellular adenomas [16]. HNF1A codes
for the hepatocyte nuclear factor 1 A, a transcription factor
involved in hepatocyte differentiation and metabolism con-
trol [17]. Previously, in 1996, Yamagata and collaborators had
identi�ed germline mutations of HNF1A as the causal alter-
ation of the speci�c diabetes named MODY 3 for maturity
onset diabetes of the young type 3. In MODY3 patients, one
allele of HNF1A is inactivated in all cells of the organism
showing the pivotal role of HNF1A partial inactivation in
glucose homeostasis dysregulation [18]. In HCA tumor cells,
we described complete HNF1A inactivation by mutation of
both alleles in 35% to 45% of the cases (Table 1) [16]. In
most of the cases, bothmutations occurred in tumor cells and
were of somatic origin. However, in 10% of HCA inactivated
for HNF1A, one mutation was germline, and consequently,
we identi�ed MODY3 patients developing HCA [19, 20].
ese patients could also have adenomatosis, a rare condition
de�ned of more than 10 adenomas in the liver [21, 22].
In this line, these results have revealed for the �rst time
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HNF1A as a tumor suppressor gene in addition to its role
in metabolism regulation. We further showed that HNF1A
inactivation induces in hepatocyte dramatic alteration in
metabolic pathways and epithelial-mesenchymal transition
that can participate to tumor development [23, 24].

In addition the of environmental factor and germline
HNF1A-mutations, others genetic features could predispose
to the occurrence of HNF1Amutated adenomas. In this line,
we identi�ed heterozygous germline mutations of CYP1B1
in a subset of patients with H-HCA [25]. All patients with
these mutations have a decrease enzymatic activity of the
cytochrome p450 CYP1B1. Because CYP1B1 is involved in
the metabolism of estrogens, it suggests that development of
H-HCA could be promoted by a defect in this pathway in
relation with exposure to oral contraception.

At the pathological level, HCA with HNF1A biallelic
mutations exhibited typical features. ey are characterized
by diffuse steatosis in tumor hepatocytes [6]. We further
showed that the homogeneous accumulation of lipids in
tumor hepatocytes was related to an increase of fatty acid
synthesis induced by HNF1A inactivation [26]. H-HCA can
be easily diagnosed using pathological examination because
these adenomas are characterized by a constant and speci�c
lack of FABP1 expression in the tumor hepatocytes [12, 27].

2.2. 𝛽𝛽-Catenin Activated Adenomas (𝛽𝛽-HCA). e Wnt/
catenin pathway is a pivotal oncogenic pathway involved
in solid and haematopoietic tumors. CTNNB1, the gene
coding for 𝛽𝛽-catenin, is activated by somatic mutation
in a large number of different tumor types like medul-
loblastoma or breast cancer [28]. Moreover, it is the most
frequently mutated oncogene in hepatocellular carcinoma
(from 20 to 40% of the cases) [29]. CTNNB1-activating
mutations target few serine and threonine amino acids in
𝛽𝛽-catenin, residues that are physiologically phosphorylated
by the APC/GSK3/axin complex inducing degradation of 𝛽𝛽-
catenin by the proteasome. CTNNB1mutations impaired the
phosphorylation by the APC/GSK3B/AXIN complex and led
to the translocation of 𝛽𝛽-catenin into the nucleus [28, 30]. In
this condition, the oncogenic effect of 𝛽𝛽-catenin is fully active
[31, 32].

Mutations activating 𝛽𝛽-catenin are described in 10 to
15% of HCA (Table 1) [6, 33]. Male are overrepresented in
this subgroup of HCA [34]. Furthermore, 𝛽𝛽-HCA are oen
characterized by pseudoglandular formation, cell atypia, and
cholestasis at the pathological level. Using immunochem-
istry, we showed that 𝛽𝛽-HCAs are characterized by a strong
cytoplasmic expression of glutamine synthase and nuclear
expression of 𝛽𝛽-catenin in tumor hepatocytes. However,
despite a good speci�city, these markers have a lack of
sensitivity for the diagnosis of 𝛽𝛽-HCAs and HCA should be
screened for CTNNB1 mutations [12, 27, 35, 36], when glu-
tamine synthase and 𝛽𝛽-catenin markers are not informative.

Importantly, we showed that HCA with activating muta-
tions of 𝛽𝛽-catenin have a high risk of malignant transforma-
tion in HCC [6, 36, 37]. Moreover, distinguishing HCA from
well-differentiated HCC developed on normal liver could be
challenging. Consequently, all HCA harboring a mutation

of 𝛽𝛽-catenin should be surgically resected in order to avoid
the risk of malignant transformation. In this context, the
performance of immunohistochemical marker developed to
discriminate high-grade dysplastic nodules from very early
HCC (like glutamine synthase, glypican 3 or hsp70) on
cirrhosis remains poorly explored to differentiate HCA from
very well differenciated HCC on normal liver and should be
used with caution [38]. A recent study has shown that the
combination of glypican 3 and HSP70 has a good speci�city
(100%) but an insufficient sensitivity (43%) to distinguish
HCA from well-differenciated HCC [38, 39]. However, the
small numbers of tumors analyzed preclude the generaliza-
tion of these markers in clinical practice and required addi-
tional studies. Another concept is that some hepatocellular
tumors will remain borderline tumors between HCA and
HCC despite histological analysis by an expert pathologist. In
this grey zone, CTNNB1 mutations are also overrepresented
[6, 34].

In this line, screening for CTNNB1 mutation should be
mandatory to detect HCA with a potent risk of malignant
transformation and borderline lesion between HCA and
HCC that should be resected.

2.�. In�ammato�� Adenomas (IHCAs). In the physiological
point of view, themost important breakthrough has been per-
formed by the identi�cation of the so-called “in�ammatory
HCA” and dissection of IL6/JAK/STAT pathway [40, 41].

IHCAs are characterized by the activation of JAK/STAT
and interferon I and II pathway [40, 42]. is subtype of ade-
nomas exhibited strong pathological hallmark� in�ammatory
in�ltrates, dystrophic arteries, and sinusoidal dilatation [43].
Immunohistochemical marker could be used as diagnostic
tool for this subtype of HCA. In�ammatory HCA exhibited a
cytoplasmic overexpression of SAA and CRP, two proteins of
the acute phase of in�ammation, in the tumor hepatocytes
(Table 1) [12, 15]. Sometimes, IHCAs are associated with
in�ammatory syndrome and related anemia [44]. Peripheral
in�ammatory syndrome can regress aer resection of the
tumor, and it could be considered as a “paraneoplastic
syndrome” [45, 46]. IHCA occurred more frequently in
patients with high alcohol consumption and obesity, two
conditions associated with chronic cytokine production [6,
46]. We also described an IHCA transformed in HCC
mutated for both gp130 (IL6ST) and 𝛽𝛽-catenin (CTNNB1)
and developed on the background of Castleman disease
[47]. In this rare disease, a chronic IL6 systemic secretion
is produced by a lymphoproliferative disorder. It under-
lined again the possible role of chronic cytokine production
(obesity, high alcohol consumption, and Castleman disease)
as a predisposing factor to in�ammatory HCA occurrence.
Recently, we deciphered the molecular alterations leading
to the activation of in�ammatory pathway in the tumor
hepatocytes.

We described the oncogenes that explain the hepatocytes
proliferation and the in�ammatory phenotype (“oncogene-
induced in�ammation”). e most preeminent oncogene
identi�ed was gp130 (IL6ST) [42]. 65% of in�ammatory
HCAs exhibit a somatic activating mutation of gp130. Gp130
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is the coreceptor of IL6R. Activating mutations of gp130 led
to the constitutive activation of the JAK/STAT pathway in the
absence of the IL6 ligand [42, 48]. A small subset of HCC
exhibited both gp130 and 𝛽𝛽-catenin-activating mutations.
Interestingly, these HCC are developed in normal liver and
could be derived from HCA.

We also described for the �rst time in human tumors
somatic mutations activating STAT3 [49]. ese mutations
explained the uncontrolled activation of JAK/STAT path-
way and the observed phenotype in 6% of the IHCA.
Finally, we discovered GNAS-activating mutations in 5%
of in�ammatory HCA [50]. GNAS gene coded for alpha
subunit of Gs protein and is a well-known oncogene in
pituitary and thyroid adenomas. Mutations of GNAS gene
impaired the GTPase activity of alpha subunit and led to its
permanent activation by an unregulated binding of GTP. As
a consequence, cyclic Amp accumulates in the cells [51]. In
adenoma, we described a crosstalk between cyclic Amp and
JAK/STAT pathway that explained the mild in�ammatory
phenotype in GNAS-mutated HCA [50]. In this line, we also
described HCA in patients with McCune Albright syndrome
[52]. McCune-Albright syndrome is an orphan disease due
to somatic postzygotic mosaic GNAS mutation. is genetic
disorder is characterized by pituitary and thyroid adenomas,
�brous bone dysplasia, and “caf� au lait” skin macula [51].
Consequently, McCune Albright syndrome also predisposed
to HCA development.

���� ����������� A�������� Finally, 10% of HCAs have no
known genetic alterations or speci�c histological phenotype
(Table 1) [34]. e molecular drivers of this subtype of HCA
remain to be determined.

3. Mechanism of Development of
Hepatocellular Adenomas: A Contribution of
Different Genes with a Genotoxic Signature

In the canonical point of view, malignant hepatocellular
tumors (HCC) arise on chronic liver disease, mainly cir-
rhosis or chronic HBV infection, whereas hepatocellular
benign tumors are developed on normal liver. However,
several clinical, pathological, and molecular observations
have challenged these dogmas. First, HCC could develop on
normal liver, and predisposing genetic factor and genetic
drivers involved in tumor initiation remain poorly described
[53]. A simple clinical observation supports the fact that
HCA is not a stochastic and isolated tumorgenic event:
40% of patients with HCA have multiple HCA in the liver
suggesting an individual predisposition to develop this rare
disease [34]. Also, several genetic disease and environmental
factors favored hepatocytes proliferation and benign tumors
initiation. Moreover, since several decades, the major HCA
risk factors, oestrogen and androgen consumptions, have
been identi�ed as classical genotoxins [54–56]. Association
between estrogen exposure and HCA occurrence was �rst
described in the seventies when oral contraception was
of widespread use in western countries [4, 55, 57]. In
addition, tumor regressions aer estrogen withdrawal have

been reported [56]. It underlined that HCA is a hormonal-
driven benign tumor. Nevertheless, estrogen exposure due
to oral contraception is frequent, but HCA occurrence is
rare (around 3/100,000) [55]. It seems that others genetic
and/or environmental factors are required to promote HCA
development. More recently, the use of a third generation of
oral contraceptive with lower dose of estrogen could have
modi�ed the epidemiology of HCA [58]. However, robust
epidemiological data comparing these two periods in western
countries are lacking. In addition, the incidence of HCA in
eastern countries, where oral contraception is not frequently
used, remains to be evaluated. Differences in incidence and
molecular subtypes of HCA between eastern and western
countries could help to understand the role of estrogen
exposure and other risk factors like obesity and alcohol
consumption in the development of benign liver tumors [46,
59].When we analyzed the spectrum of mutations ofHNF1A
in HCA, we also showed that HNF1A somatic mutations
were frequently caused by G to T transversion suggesting a
genotoxic exposure at the origin of themutations [60]. Causes
of this genotoxic signature remain to be elucidated, and the
role of oestrogen exposition in this genotoxic damage should
be further analyzed. A hypothesis is that HCA development
could be favored by both a genetic predisposition in combi-
nation with an exposure to different genotoxic agents.

In this line, predisposing genetic factors like HNF1A
germline mutation related to MODY3 diabetes and GNAS
mosaic somatic mutations related to McCune Albright dis-
ease are strong risk factors of adenomas occurrence [19,
50]. Moreover, patients with glycogenosis type IA de�ned
by germline inactivating mutation of glucose-6 phosphatase
have a huge risk to develop multiple HCA during their
followup [61–63]. All these data underlined that hepato-
cellular benign tumors are oen developed on a predis-
posing abnormal liver background. is hypothesis could
be called “benign tumorigenic �eld effect” as a mirror of
the “carcinogenic �eld effect” described for HCC developed
on cirrhosis. e “benign tumorigenic �eld effect” is a
conjunction between genetic (HNF1A germline mutation,
GNAS mosaic postzygotic mutation, and others unknown
modi�er genes) and environmental factors (oestrogen and
androgen expositions) [20, 56, 57, 60, 64]. In addition, we
showed a role of CYP1B1, a cytochrome p450 unit involved
in detoxi�cation of catechol estrogens, in the occurrence of
HCA [25]. We identi�ed a germline CYP1B1-inactivating
mutation in 12.5% of patients developingHNF1A-inactivated
HCA. Moreover, when analyzing the spectrum of somatic
mutations in HNF1A, we identi�ed a genotoxic signature
typical of molecule inducing adduct to DNA at guanine [60].
us, a combined genetic predisposition and genotoxic effect
could explain the frequent occurrence of multiple HCA in
the same patient, and despite that the surrounding nontumor
liver appears to be mainly “histologically (sub)normal,” the
liver is tumorigenic.

4. Conclusion

A long path has been walked in the area of hepatocellular
benign tumors since Edmonson described the association



International Journal of Hepatology 5

betweenHCA and oral contraception [4]. Now, the discovery
of genetic drivers of HCA has re�ned our knowledge of the
life history of HCA from risk factors and clinical features
to the risk of malignant transformation. However, several
goals are still unmeet. First, the risk factors leading to
HCA development are partially understood. Most of the
patients have no known genetic factors predisposing to HCA
occurrence. Moreover, all patients with genetic alterations
predisposing to HCA will not develop tumors. So, additional
genetics and environmental factors remain to be discovered.
us, in addition to activating mutations of 𝛽𝛽-catenin, other
genetic alterations leading to full malignant transformation
have to be deciphered. Finally, several driver genes of benign
tumorigenesis are still unknown, especially in the group of
in�ammatory HCA without known driver mutations and
unclassi�ed HCA. Ultimately, these genetic alterations will
constitute therapeutic target for biotherapy that will be used
in unresectable HCA or in other malignancies harboring the
same genetic events.
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