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The classic tumor clonal evolution theory postulates that cancers change over time to produce unique
molecular subclones within a parent neoplasm, presumably including regional differences in gene
expression. More recently, however, this notion has been challenged by studies showing that tumors
maintain a relatively stable transcript profile. To examine these competing hypotheses, we micro-
dissected discrete subregions containing approximately 3000 to 8000 cells (500 to 1500 pm in
diameter) from ex vivo esophageal squamous cell carcinoma (ESCC) specimens and analyzed tran-
scriptomes throughout three-dimensional tumor space. Overall mRNA profiles were highly similar in all
59 intratumor comparisons, in distinct contrast to the markedly different global expression patterns
observed in other dissected cell populations. For example, normal esophageal basal cells contained
1918 and 624 differentially expressed genes at a greater than twofold level (95% confidence level of
<5% false positives), compared with normal differentiated esophageal cells and ESCC, respectively. In
contrast, intratumor regions had only zero to four gene changes at a greater than twofold level, with
most tumor comparisons showing none. The present data indicate that, when analyzed using a standard
array-based method at this level of histological resolution, ESCC contains little regional mRNA

heterogeneity.(Am J Pathol 2013, 182: 529—539; http://dx.doi.org/10.1016/].ajpath.2012.10.028)

Esophageal squamous cell carcinoma (ESCC) is the predom-
inant histological subtype of esophageal cancer, ranking as the
eighth most common neoplasm in the world, with the sixth
highest mortality.'* Detection at a late stage and a paucity of
effective chemotherapeutic and other clinical modalities make
ESCC difficult to treat, and overall survival is poor. Today,
only 19% of patients live for 5 years or longer after diagnosis.’
Better understanding of the molecular etiology of this type of
cancer is needed, both to identify detection markers for early
diagnosis and to identify new therapeutic targets for advanced
disease. Moreover, given that ESCC shares several histo-
pathological and molecular features with other SCCs (eg, head
and neck, and lung), greater understanding of ESCC may
improve our overall understanding of SCCs, the class that
results in the largest number of cancer deaths worldwide.*®

Copyright © 2013 American Society for Investigative Pathology.
Published by Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.ajpath.2012.10.028

ESCC contains extensive genomic alterations.” '® At
present, however, little is known about the amount of tran-
scriptomic heterogeneity that exists within this tumor type.
One theory of cancer progression postulates that molecular
heterogeneity is a dominant mechanism of tumor develop-
ment, with unique subclones differentiating from the parent
neoplasm in three-dimensional space over time, producing
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a heterogeneous collection of spatially distinct tumor
subfields that differ in molecular profile.'' In this model,
clonal evolution based on molecular status is an important
process that underlies the progression of tumors into aggres-
sive, faster-growing forms, ultimately conferring metastatic
capability on certain subclones within the tumor that then
disseminate via the bloodstream or lymphatic system.

An alternative view of mRNA profiles in tumor pro-
gression is that tumors arise de novo with their tran-
scriptome more or less intact, including the key changes that
mediate metastasis.'>"!” In this model, tumor cells share
essentially the same transcript profile throughout the three-
dimensional space of a neoplasm, and the rise of hetero-
geneous regional subclones with altered transcript profiles is
not a fundamental feature of cancer progression. To date,
studies examining gene expression patterns in cancer have
tended to support the latter view, that there is only a limited
amount of intratumor transcript profile variation.'*!”

To address the issue of mRNA heterogeneity in ESCC, we
measured global gene expression levels in microdissected
tumor cell populations from discrete three-dimensional
microanatomical regions. Two separate analyses were per-
formed: the central region of tumors versus the peripheral
area, and a three-dimensional comparison of multiple subre-
gions throughout tumors.

Materials and Methods

Tissue Specimens

All cases and samples were obtained from subjects residing in
the Taithang Mountain region of north-central China, and the
study was approved by the Institutional Review Boards of the
collaborating institutions [Shanxi Cancer Hospital and Institute,
Taiyuan, Shanxi Province, China (Single Project Assurance no.
S-12118-01) and the National Cancer Institute, NIH, Bethesda,
Maryland]. After informed consent was obtained, patients were
interviewed to obtain information on demographics, cancer risk
factors (smoking, alcohol drinking, and detailed family history
of cancer), and clinical information (Supplemental Table S1).
None of the patients had prior therapy, and none of the ESCC
cases were from patients with a family history of the disease.
Using accepted inclusion criteria, '® nine cases having sufficient
tumor and matched normal epithelium were evaluated and
selected by a pathologist (J.R.-C). Resected specimens were
fresh frozen, optimal cutting temperature media embedded and
stored in liquid nitrogen according to standard practices19 until
assays could be performed.

Tissue Processing

Immediately before use, the paired normal and tumor
samples were cut into sections (8 pum thick) using a cryostat
(Leica Microsystems, Wetzlar, Germany), placed onto glass
slides, and stored for <2 weeks at —80°C. Before dissec-
tion, each section was individually removed from storage
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and immediately stained and dehydrated using an H&E
protocol designed for microdissection.?

Laser Capture Microdissection

The peripheral and central tumor regions from each of the
nine cases were morphologically selected and dissected by
laser capture microdissection with a PixCell Ile system
(Arcturus Engineering, Mountain View, CA) using 4000
medium-sized laser shots (laser spot size, 15 pum; approxi-
mately two cells per laser pulse), procuring approximately
8000 cells in total (Supplemental Table S2). Because
molecular comparison between the regions was a critical
aspect of the study, overlapping dissection of the two areas
was avoided (Figure 1A). In addition, three-dimensional
microdissections were performed on tumor regions from
five of the same cases (Figure 1B). Approximately 3000
cells were procured from each dissection using large-sized
laser shots (laser spot size, 30 um; approximately three
cells per laser pulse) and two to four serial recut slides per
case (Supplemental Table S2).

RNA Isolation and Assessment

The time from slide removal from the freezer to completion
of laser capture microdissection did not exceed 30 minutes.
After laser capture microdissection, RNA was isolated using
a PicoPure RNA isolation kit (Arcturus Engineering) and
digested with DNase. The quantity and quality of the RNA
was measured as described previously,”®** using a Bio-
analyzer 2100 (Agilent Technologies, Palo Alto, CA) and
a NanoDrop ND-100 spectrophotometer (Thermo Scientific,
Wilmington, DE), respectively.

RNA Amplification and Microarray Hybridization

Total RNA was used as the template for amplification,
because of bias reduction compared with using mRNA
alone.”> To ensure that all samples contained a similar
overall representation of transcriptome, 50 ng of total RNA
was used for each sample. Two rounds of linear amplifi-
cation were performed by combining reagents supplied in
the Ambion MessageAmp II biotin-enhanced, single-round
a(ntisense)RNA amplification kit (AM1791; Life Technol-
ogies, Foster City, CA) and the Ambion MessageAmp II
aRNA amplification kit (AM1751; Life Technologies),
resulting in biotin-labeled antisense complimentary (c)
RNA.** For each sample 15 pg of biotin-labeled cRNA
sample was fragmented and processed for hybridization to
a GeneChip human genome U133A 2.0 array (Affymetrix,
Santa Clara, CA) according to the expression kit user
manual. Arrays were washed and stained using the Midi
euk2v3 protocol (version 4) on a GeneChip Fluidics Station
450 (Affymetrix). The fluorescent intensity emitted by the
labeled target was measured using a GeneChip 3000 7G
scanner (Affymetrix). The microarray gene expression data
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Microdissection design. A: H&E staining showing an ESCC focus before and after dissection of the tumor periphery and center. B: Three-

dimensional microdissection design and definition of the tumor cluster and normal area. Dissected areas are outlined in green. C: Histology of normal

esophageal epithelium compartment before and after microdissection.

discussed in this publication have been deposited in the
NCBI Gene Expression Omnibus (http://www.ncbi.nlm.nih.
gov/geo; accession number GSE33426).

For Affymetrix GeneChip studies, a single-round linear
amplification is the gold standard for processing labeled
aRNA.? In earlier experiments, we compared various quality
metrics after one round of amplification (using 1 pg total
RNA) versus lower RNA concentrations using two and even
three rounds of amplification. These data suggest that integ-
rity and the detection percentage of genes were similar to one
round of amplification, down to concentrations as low as 1 ng
(Supplemental Table S3). The overall signal intensity (ie,
scaling factors) was closely related, and the gene-present
percentage varied by only approximately 8% to 9%. More-
over, scatter-plot analysis of the samples showed significant
correlation in probe-set signaling (Supplemental Figure S1).

Data Analysis and Statistics

Microarray Data Quality Control, Preprocessing, and Gene
Filtering

Quality assessment of each microarray was done using
probe-level, model-based quality statistics: developed by
Richard Simon and the BRB-ArrayTools Development

The American Journal of Pathology m ajp.amjpathol.org

Team; (NUSE) and relative log expression (RLE).26’27 Arrays
with their respective median NUSE and RLE values
exceeding the upper control limits were considered as poor
quality and excluded from analysis. Robust multiarray anal-
ysis with quantile normalization was completed for the good-
quality arrays, using the Bioconductor suite of array analysis
tools (http://www.bioconductor.org) under R version 2.8.0
(http://www.r-project.org). Different probe-set filtering
criteria were applied to the two analyses. For the comparison
of gene expression between different cell types (central tumor,
peripheral tumor, normal basal, and normal differentiated
cells), probe sets showing minimal variation across the arrays
were excluded from the analysis. Probe sets were selected if
their expression differed by >1.5-fold from the median in
>20% of the arrays. Overall, 10,725 probe sets were retained
and used for the analysis. Because the goal was to assess the
homogeneity in expression among the three-dimensional
samples, no filtering criterion was applied for the three-
dimensional comparison of tumor subregions.

Class Comparison

For the analysis of gene expression from different cell types,
because a large number of differentially expressed genes
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between tumor and normal cells were expected, a stringent
multiple testing procedure was used to identify differentially
expressed genes while controlling for the proportion of false
positives. Specifically, a multivariate permutation test*®*°
was used to provide a false positive proportion of <5%
with 95% confidence. The test statistics used were paired -
statistics for each probe set. Although paired #-statistics were
used, the multivariate permutation test is nonparametric and
does not require the assumption of normal distributions for
gene expression measurements. For the analysis of
comparing gene expression among tumor three-dimensional
samples, because a much smaller number of differentially
expressed genes were expected, and to allow for higher
false positive rate, probe sets with expression difference at
P < 0.001 based on the paired #-test were identified. The
multivariate permutation test was performed using BRB-
ArrayTools version 3.8.0 software (http://linus.nci.nih.gov/
BRB-ArrayTools.html).

Multidimensional Scaling

Multidimensional scaling (MDS) was used to evaluate gene
expression profiles of specimens in three dimensions. The
data points were generated based on the principal coordinate
analysis, using one minus the correlation coefficient (1 — r)
as the distance metric.

Pathway Analysis

Genes identified by class comparison as described above
were used for network and gene ontology analyses. Data
were analyzed through the use of IPA (Ingenuity Systems,
Redwood City, CA). Gene accession numbers were im-
ported into the Ingenuity Pathways Analysis system, and
networks were algorithmically generated based on their
connectivity. Biochemical pathway analysis was performed
using the ratio of the number of molecules in a given
pathway to the total number of molecules that make up that
pathway, to generate networks in which the differentially
regulated genes are related to known associations between
genes or proteins but are independent of established
canonical pathways.

Intratumor and Intertumor Correlation Coefficients
Analysis

Intratumor versus intertumor variability for microarray gene
expression data can be assessed in two ways: one assesses
the Pearson correlation coefficient across all genes on
different arrays and the other assesses the intratumor
heterogeneity on a gene-by-gene basis by one minus the
intraclass correlation coefficient (1 — ICC). The ICC is
calculated by fitting a variance component model for each
gene. Two variance components were estimated: variance
between cases (ie, intertumor variance, denoted by B) and
variance within a case (ie, intratumor variance, denoted by W).
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The ICC is defined as B/(W + B), and intratumor hetero-
geneity is defined as 1 — ICC = W/(W + B). For the
variance component analysis, gene expression data of tumor
specimens in both experiments were filtered to remove
genes that were invariant (<20% of the arrays with
expression differing from median by >1.5-fold).

Using these analytic and statistical methods, we have
previously demonstrated reproducible and valid gene
expression array and quantitative RT-PCR measurements
with microdissected specimens.?-*%*

Results

Technical Parameters

A total of 74 microdissected samples from nine patients
were generated: 18 samples were procured from the tumor
center (TC) or tumor periphery (TP) of a neoplastic focus
(Figure 1A), 44 came from a set of dissections performed as
three-dimensional tumor maps (Figure 1B), and 12 samples
were from a control three-dimensional map of normal
squamous epithelium (Figure 1B). The recovered RNA had
a preamplification mean RNA integrity number of 6.1
(range, 3.6 to 8.6) (Supplemental Table S2). One of the 74
samples did not generate enough cRNA after two rounds of
linear amplification, and two samples failed NUSE and RLE
array quality testing (Supplemental Figure S2); however, the
remaining 71 samples were of sufficient quality for analysis.

Tumor Heterogeneity

Central versus Peripheral Regions

We first analyzed the expression profiles of cells located in
the TC versus those at the TP (Figure 1A and Supplemental
Table S4). On average, the microdissected TC was 660 pm
in diameter, whereas the TP was two to four cell layers thick
(40 to 80 wm) and was in direct contact with the surrounding
stroma.

Striking similarity in global transcript levels was observed
between the two tumor areas (Supplemental Table S4);
thrombospondin 2 (THBS2) was the only differentially
expressed gene, with a 2.4-fold increase in the TP. As
a metric for determining relative transcriptome heteroge-
neity, we compared and contrasted the present TC and TP
data with those from normal squamous epithelium and cancer
from a previous study.*® That analysis showed that expres-
sion profiles of microdissected normal basal (NB) squamous
epithelium, adjacent normal differentiated (ND) cells, and
ESCC cells from the same patient were significantly different
from each other, with a large number of differentially
expressed genes. For example, comparison of dissected NB
cells versus adjacent ND cells (Figure 1C) revealed 4994
gene alterations at false positive < 5% with 95% confidence
level, including 1918 with fold change > 2 and 202 with fold
change > 4 (Supplemental Table S4). Similarly, comparison
of both TP versus NB cells and TC versus ND cells showed
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large numbers of differentially expressed genes, in sharp
contrast to the single differentially expressed gene in the TP
versus TC analysis (Supplemental Table S4).

The data from the dissected cell populations are illustrated
in both hierarchical (Figure 2) and graphical (Supplemental
Figure S3) format. The dendrogram (Figure 2) illustrates
the separation of the three different cell types (NB, ND, and
ESCCO) into distinct groups after unsupervised clustering. In
contrast, the TC and TP samples were closely aligned,
because of the similarity of their transcript profiles. This
dendrogram also shows that the intrapatient TC and TP
profiles were more closely aligned than the patient—patient
comparisons, which were less than the distance between
normal and tumor cells. This same pattern is seen with MDS
(Supplemental Figure S3), in which the two sets of intra-
tumor dissections are admixed but are distinct from the NB
and ND cells.

Three-Dimensional Mapping

We next analyzed tumor transcriptome heterogeneity by
microdissecting multiple regions throughout the three-
dimensional anatomical field of five neoplasms. In each
tumor, four regions were dissected in the x—y plane and,
depending on the thickness of the tissue block, in two or
three levels in the z dimension (Figure 1B). For each x—y
dissection, the tumor areas were selected according to the
following criteria: T1-1 and TI1-2 were located within
a single tumor focus and were dissected as two separate but
closely associated areas; T2 was an independent tumor
region, separated from T1 by stroma; T3 was an indepen-
dent cluster, located as far from the T-1 and T-2 regions
as possible. The same three-dimensional microdissection

procedure was performed on a specimen of normal esoph-
ageal epithelium from one case in the study, which served as
a normal tissue comparator.

The number of differentially expressed genes varied
among the several tumor subregions (Table 1). As with the
TC versus TP measurements, three-dimensional tran-
scriptome mapping identified relatively little heterogeneity
in ESCC. At the P < 0.001 level, the number of genes was
slightly under 20 per comparison (range, 2 to 54; false
discovery proportion, 24.7% to 100%), whereas at the
twofold level or greater there were only a few differentially
expressed genes, with most comparisons showing none.

The expression profiles are illustrated using both hierar-
chical clustering (Figure 3) and MDS (Supplemental
Figure S4). Again, as with the TC versus TP comparison,
the case-to-case heterogeneity was greater than the intratumor
heterogeneity, which showed little difference across the three-
dimensional field. The normal case also exhibited minimal
heterogeneity among the three-dimensional dissections of
esophageal squamous epithelium (Supplemental Figure S4).

We next compared the three-dimensional ESCC data with
microdissected normal and tumor prostate cells from
a previous study,”* as a technical assessment of relative
transcriptome heterogeneity. The 1 — r average linkage
distance of prostate cells versus esophageal cells was
approximately an order of magnitude greater than that of the
largest inter-ESCC comparison (Supplemental Figure S5),
indicating that the methodological approach used in the
study was capable of detecting large differences present in
transcriptome profiles.

Overall, the expression data from both the TC versus TP
analysis and the three-dimensional mapping measurements
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Figure 2
bar presents one case.
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Differential gene expression comparisons of TP/TC (blue/green) versus NB/ND (orange/red) in nine cases by hierarchical cluster analysis. Each
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Table 1  Class Comparisons of Three-Dimensional Microdissected Intratumor Subregions
Differentially expressed genes (No.)
Comparison Comparison definition* P < 0.001 Fold change >2
X-Y dimension
Al T1-1 vs T1-2 at level A 24 1
A2 (T1-1 + T1-2) vs T2 at level A 10 0
A3 (T1-1 4 T1-2) vs T3 at level A 5 0
A4 T2 vs T3 at level A 3 0
C1 T1-1 vs T1-2 at level C 2 0
C2 (T1-1 4 T1-2) vs T2 at level C 30 0
C3 (T1-1 4 T1-2) vs T3 at level C 33 0
C4 T2 vs T3 at level C 21 0
AC1 T1-1 vs T1-2 across level A and B 7 0
AC2 (T1-1 + T1-2) vs T2 across level A and B 19 0
AC3 (T1-1 4 T1-2) vs T3 across level A and B 24 0
AC4 T2 vs T3 across level A and B 10 0
Z dimension
Vi1 T1-1 at level A vs T1-1 at level C 32 2
V1.2 T1-2 at level A vs T1-2 at level C 10 0
V2 T2 at level A vs T2 at level C 54 4
V3 T3 at level A vs T3 at level C 27 0
Overall difference between level A and level C 93 0

*Tumor subregions (T) and levels (A—C) are as shown in Figure 1B.

showed that a relatively stable transcriptome is present in
ESCC. We found little evidence of a significant departure
from this profile with respect to the number of expression

Intratumor and Intertumor Correlation Coefficients
The intratumor versus intertumor variability of microarray
gene expression data were assessed in two different ways.

We first determined the Pearson correlation coefficient
across all genes on the arrays and found a higher correlation
between intratumor specimens than intertumor specimens,

differences in any tumor subregion, in contrast to the rela-
tively large number of differentially expressed mRNAs that
characterized other dissected cell populations.

Figure 3

average linkage
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Differential gene expression comparisons of three-dimensional-microdissected ESCC in five cases by hierarchical cluster analysis. Each bar

represents one dissection (including normal epithelium for case 5). Microdissection was performed as shown in Figure 1B.
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implying low intratumor heterogeneity. The intratumor
heterogeneity was less than the intertumor heterogeneity
(Figures 2 and 3). All of the intratumor specimens clustered
together, and the distance as measured by 1 — r was shorter
between the intratumor specimens than between the inter-
tumor specimens.

We then assessed intratumor heterogeneity on a gene-
by-gene basis, using 1 — ICC. For one set of experiments
(nine TP and nine TC specimens, taken from nine cases),
10,301 probe sets were included for the variance
component analysis. For the second set of experiments (41
three-dimensional specimens taken from five cases), 9834
probe sets were included. For both analyses, the histogram
of intratumor heterogeneity was plotted (Supplemental
Figure S6). Intratumor heterogeneity was less than inter-
tumor heterogeneity in 97% of the genes, with a median
intratumor heterogeneity of 0.13 (ICC = 0.87). Thus, for
almost all genes, there was a greater variation between
tumors (cases) than within a tumor. In the second analysis,
intratumor heterogeneity was less than intertumor het-
erogeneity in approximately two thirds of the genes
(67.2%), with a median intratumor heterogeneity of 0.37
(ICC = 0.63). Overall, both analyses demonstrated
that intratumor heterogeneity was less than intertumor
heterogeneity.

Individual Genes and Pathways

To determine whether there were small but biologically
consequential expression changes among the intratumor
regions, we examined expression of individual genes and
the status of specific biochemical pathways. Thrombo-
spondin 2 (THBS2) was the only gene significantly differ-
entially expressed in TP versus TC comparison. Transcripts
that were altered in one or more of the three-dimensional
mapping comparisons are listed in Table 2. Seven genes
(CEP55, CDK5RI1, RGS5, GGH, DICERI, SET, and

Table 2

MAPA4K3) showed fold change > 2 in 1 of the 16 subregion
comparisons, and six genes (YYI, RYBP, LAXI, PGGTIB,
CDC42EP4, and LARS?2) were differentially expressed (fold
change > 2) in 2 of the 16 subregions (Table 2). However,
no one individual mRNA was altered in more than two
comparisons. Thus, the individual gene-level measurements
mirrored the transcriptome overall, in that little intratumor
heterogeneity was observed.

The biochemical pathway analysis also showed minimal
differences among the three-dimensional intratumor compar-
isons. Only two pathways, the mitochondrial dysfunction
pathway and the valine, leucine, and isoleucine biosynthesis
pathway, showed an alteration in any tumor subregion, and
they were identified in only 1 or 2 of the 16 comparisons
(Table 3). Moreover, the top networks from the 16 compari-
sons typically had a score of 2 (Supplemental Table S5). In
contrast, the scores of the top networks in other dissected cell
populations, including normal versus tumor, and NB versus
ND, ranged from 10 to 28 (data not shown), much larger than
the intratumor comparisons.

Discussion

ESCC was selected as a tumor type to evaluate tran-
scriptome heterogeneity in patients, in part because of the
high degree of genomic alterations that are present,” '°
potentially providing fertile ground for finding any asso-
ciated mRNA heterogeneity. However, little evidence of
regional intratumor heterogeneity at the mRNA level was
observed in ESCC, at least at the dissection resolution used
here (3000 to 8000 cells), suggesting that clonal evolution
that significantly affects transcriptomes is not a predomi-
nant mechanism in this cancer type and that a relatively
stable expression profile is maintained throughout three-
dimensional tumor space.

Individual Genes Differentially Expressed within the Three-Dimensional Intratumor Comparisons

Chromosomal
Gene symbol UniGene ID Probeset location Gene name Comparison*
Fold change > 2 in 1 of the 16 subregion comparisons
CEP55 Hs.14559  218542_at 10g23.33 Centrosomal protein 55kDa Al
(DK5R1 Hs.93597  204995_at 17q11.2 Cyclin-dependent kinase 5, regulatory subunit 1 (p35) V1.1
RGS5 Hs.24950  209071_s_at 1g23.1 Regulator of G-protein signaling 5 V1.1
GGH Hs.78619  203560_at 8q12.3 Gamma-glutamyl hydrolase (conjugase, folylpolygammaglutamyl V2
hydrolase)
DICER1 Hs.87889  206061_s_at 14q32.13 Dicer 1, ribonuclease type III V2
SET Hs.436687 213047_x_at 9qg34 SET nuclear oncogene V2
MAP4K3 Hs.655750 218311_at 2p22.1 Mitogen-activated protein kinase kinase kinase kinase 3 V2

Fold change > 2 in 2 of the 16 subregion comparisons

YY1 Hs.388927 200047_s_at 14q YY1 transcription factor A2, AC2
RYBP Hs.7910 201844_s_at 3p13 RING1 and YY1 binding protein AC3, V2
LAX1 Hs.272794 207734_at 1g32.1 Lymphocyte transmembrane adaptor 1 A2, AC2
PGGT1B Hs.254006 216288 _at 5q22.3 Protein geranylgeranyltransferase type I, beta subunit AC2, V1.2
(DC42EP4  Hs.3903 218063_s_at 17q24~q25 (DC42 effector protein (Rho GTPase binding) 4 AC3, C4
LARS2 Hs.526975 34764_at 3p21.3 Leucyl-tRNA synthetase 2, mitochondrial V1.2, V3
*Comparisons are as defined in Table 1.
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Table 3 Pathway Analysis of Three-Dimensional Intratumor
Comparisons
Top canonical pathways Comparison* P value
Mitochondrial dysfunction A1, C3 0.0151,
0.0337
RAN signaling Al 0.0285
Wnt/B-catenin signaling Al 0.0302
cAMP-mediated signaling Al 0.0463
Cell cycle control of chromosomal A2 0.0229
replication
Semaphorin signaling in neurons A2 0.0395
Glioma invasiveness signaling A2 0.0445
DNA methylation and transcriptional A3 0.00683
repression signaling
Glycine, serine, and threonine A3 0.0223
metabolism
Tyrosine metabolism A3 0.0230
Melatonin signaling A3 0.0245
Phospholipid degradation A3 0.0249
FXR/RXR activation C2 0.0117
Taurine and hypotaurine metabolism ~ C2 0.0187
DNA double-strand break repair by C2 0.0269
homologous recombination
Pyrimidine metabolism c2 0.0269
BMP signaling pathway (o} 0.0159
TGF-B signaling 3 0.0171
Oxidative phosphorylation C3 0.0354
AMPK signaling 3 0.0455
T helper cell differentiation C4 0.00477
IL-10 signaling C4 0.00556
RhoA signaling C4 0.0106
mTOR signaling C4 0.0201
Corticotropin releasing hormone V1.1 0.00264
signaling
CDK5 signaling V1.1 0.0181
Neuregulin signaling V1.1 0.0208
Rac signaling Vi1 0.0272
Valine, leucine, and isoleucine V1.2, V3 0.00910,
biosynthesis 0.0271
Ascorbate and aldarate metabolism V1.2 0.0129
Aminoacyl-tRNA biosynthesis V1.2 0.0248
Histidine metabolism V1.2 0.0323
Regulation of actin-based motility V2 0.0377
by Rho
Estrogen receptor signaling V3 0.0303
Aryl hydrocarbon receptor signaling V3 0.0312
Folate biosynthesis V3 0.0337
C21-steroid hormone metabolism V3 0.0381

*Comparisons are as defined in Table 1.

To assess heterogeneity, we examined mRNA levels in
several ways: tumor center versus tumor periphery, three-
dimensional mapping, overall transcriptome profiles, indi-
vidual gene differences, and biochemical pathways. None of
the comparisons identified any pronounced intratumor
expression differences (which is consistent with the findings
from six of seven previous studies that have examined this
question in cancer'>~'7*!"), thus challenging the theory that
cancer progression produces subclones with significantly
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different mRNA profiles'' and supporting the alternative
view that ESCC arises with and then maintains an intact and
relatively stable transcriptome.’>

Analysis of heterogeneity of DNA mutations and gene
expression in nonmicrodissected samples represents the
majority of the intratumor heterogeneity literature to
date."*'73273% In contrast to the heterogeneity observed
in DNA, multiple RNA samples from a single patient
tumor have demonstrated low intratumor heterogeneity,
irrespective of organ type, irrespective of whether the RNA
was procured from core needle biopsies or samples as large
as 1-cm? tissue chunks, and irrespective of whether RNA
amplification was performed before hybridization.'~'” To
further investigate this apparent discrepancy of genomic
variability but transcriptional stability, more powerful
molecular discovery tools for analyzing small numbers of
cells need to be used. For example, once next-generation
deep-sequencing technologies are validated for use with
small quantities of DNA and RNA from dissected cells,
these technologies should allow for the combined in-
depth analysis of genomic and transcriptomic intratumor
heterogeneity necessary to examine this issue in more
detail.

The 14 genes identified as differentially expressed in 1 or
2 of the 16 ESCC three-dimensional comparisons have been
reported in previous gene expression profiling studies of
ESCC and other tumors. Although none are known to be
influenced by genomic instability,” a new mechanism
involving the SEII/SET/NM23H1 pathway in ESCC has
been identified. In this pathway, SEI1 is able to up-regulate
SET expression and promote translocation of NM23H1 to
the nucleus from the cytoplasm.>® In three-dimensional
peripheral zone analysis of our ESCC samples, THBS2
was significantly up-regulated, which may indicate that cells
in the tumor periphery were under the transcriptional
influence of endogenous angiogenesis and tumor growth
inhibitor signaling.’” In an analysis of two-dimensional
peripheral and core specimens from leiomyosarcoma,
minimal intratumor heterogeneity was observed, with only
13 genes differentially expressed between the two zones.'®
Comparison of these genes with those altered in ESCC
identified RGS5 as common to both tumor types. The RGS5
protein is a member of the regulator of G-protein signaling
group, and its expression has been associated with clinical
outcome in renal cell carcinoma®® and with chemoresistance
in ovarian cancer.” Recent global gene expression profiling
of ESCC demonstrated that CEP55 was significantly up-
regulated in tumor compared with normal tissue.** CEP55
expression has also been shown to be related to tumor
progression in head and neck SCC.*' Although we do not
have human papillomavirus infection data on the ESCC
cases used in the current study, it is interesting to note the
differential expression of transcription factor YYI, which is
known to bind to human papillomavirus in head and neck
SCC* and is highly correlated with human papillomavirus
infection in cervical cancers.*’
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Zonal gene expression heterogeneity was observed in
a microdissected xenograft pancreatic carcinoma study.’’
However, other analyses of mRNA levels from clinical
specimens demonstrating minimal heterogeneity'>~'” have
not used microdissection, and thus these measurements
represent an aggregate profile from multiple different
cell types, including tumor, stroma, and inflammatory
cells.***** Our strategy for overcoming tissue heteroge-
neity and potential masking of tumor specific profiles was to
use microdissection®*® of discrete tumor areas. This is
particularly important, because previous microdissection-
based studies by our research group showed that tumor
cells and adjacent tumor stroma have opposite changes in
the directionality of gene expression, with tumor cells
decreasing the number of differentially expressed genes and
stroma increasing them; this characteristic of the tumor
microenvironment is missed in bulk specimen analysis,
which can mask important biological phenomena.”**° Thus,
to ensure that we were accurately and fully measuring tumor
cell heterogeneity, we procured and analyzed carefully
dissected samples.

Five caveats to the current study require brief mention.
First, the question of what constitutes heterogeneity versus
homogeneity is somewhat arbitrary. Indeed, the intratumor
comparisons were not identical, but were judged to be
relatively similar, compared with other dissected cell pop-
ulations. Second, the microdissection process was per-
formed blindly, in that the tumor cells were procured based
only on spatial location and not on either a priori knowledge
of molecular status or on phenotypic features of the targeted
cells. Thus, it is possible that one or more hidden tumor
regions with a significantly altered transcriptome were
present but were missed during the dissection process;
however, the marked similarity of more than 50 individual
tumor areas analyzed to date does not provide evidence for
this phenomenon. In future studies, it will be possible to
address this question in more detail by using molecularly
targeted laser dissection methods (eg, expression microdis-
section®’ or immunoguided laser capture microdissection®)
to prescreen for and then dissect tumor regions that are
markedly different from each other based on expression of
a target protein or transcript. Third, the study did not
examine heterogeneity at the level of a single cell or a few
cells; approximately 10,000 cells were procured in each
regional dissection to provide a deep and robust tran-
scriptome analysis. This issue also can be addressed in
future studies, as the reproducibility of single-cell mea-
surements improves. Fourth, we used standard bioin-
formatics tools in the present study, and it is possible these
methods were incapable of detecting subtle but important
mRNA-level heterogeneity. We hope that the publicly
available data sets from our work will be analyzed in unique
ways by other investigators to examine these results from
various perspectives.

Finally, we did not independently validate the present
results at the mRNA level, because we and others have
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previously shown that expression array technology provides
robust and reliable mRNA measurements from micro-
dissected tissue.”***4%4’ To date, the vast majority of
transcripts that we have evaluated by both array and quan-
titative RT-PCR have shown the same result, although the
expression differences are often less on the array, given the
complex nature of the hybridization reaction. We did
attempt to validate four differentially expressed genes at the
protein level, but we were not successful because of tech-
nical challenges. This is a frequent limitation of immuno-
histochemical staining of tissue, especially for proteins (and
these are a majority) that are not highly abundant in a given
cell type. The same difficulty has also been observed
previously in a larger cohort of ESCC cases.*’

The ESCC data have implications for molecular diagnos-
tics, because tumor heterogeneity can have important clinical
consequences. For example, DNA clonal diversity measures
are known to be strong predictors of cancer progression in
Barrett’s esophagus,”® and are used in guiding treatment
decisions.>*>!? Moreover, it has been demonstrated exper-
imentally that clonally heterogeneous tumors can either
inhibit or increase the therapeutic efficacy of cytotoxic
drugs®>>* and can contribute to drug resistance.”® In the
clinic, however, obtaining specimens from multiple regions
of a patient’s tumor to assess heterogeneity would be difficult
and in many cases impractical. Thus, the question of whether
a small core needle biopsy is representative of an entire tumor
is coming to the forefront of molecular diagnostics and
personalized medicine, such as with the clinical trial
Biomarker-Integrated Approaches of Targeted Therapy for
Lung Cancer Elimination (BATTLE).>® The feasibility of
making precise microarray-based predictions of clinical
outcome or tumorigenesis from a single core has been
demonstrated in breast (:ancer,13 but in cervical cancer the
number of cores necessary for obtaining reliable gene
expression estimates is dependent on the intratumor hetero-
geneity level for the probe sets or genes of interest.'* The
predominantly homogeneous transcriptomic expression data
from microdissected tumor epithelium in ESCC suggest that
molecular diagnostic transcriptomic profiles obtained from
clinical core needle biopsies will indeed be sufficient to
accurately represent a patient’s entire tumor, which supports
prior ESCC analysis of two-dimensional nonmicrodissected
tumor core needle biopsies.”®

In summary, global expression measurements of ESCC
indicate that regional mMRNA heterogeneity is not a prominent
feature, and that a relatively stable transcriptome is main-
tained throughout three-dimensional space, at least at a reso-
lution on the order of 500 to 1500 um in diameter. This finding
may extend to SCCs in other organs, which as a group produce
significant cancer morbidity and mortality worldwide. Future
studies that measure molecular profiles in smaller cell
numbers and in other geographic regions, and that include
DNA mutations and proteomic status, are needed to further
assess what degree of molecular heterogeneity exists in this
clinically aggressive histological class of tumors.
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