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Abstract
Advances in Water Resources has been a prime archival source for implementation of averaging
theories in changing the scale at which processes of importance in environmental modeling are
described. Thus in celebration of the 35th year of this journal, it seems appropriate to assess what
has been learned about these theories and about their utility in describing systems of interest. We
review advances in understanding and use of averaging theories to describe porous medium flow
and transport at the macroscale, an averaged scale that models spatial variability, and at the
megascale, an integral scale that only considers time variation of system properties. We detail
physical insights gained from the development and application of averaging theory for flow
through porous medium systems and for the behavior of solids at the macroscale. We show the
relationship between standard models that are typically applied and more rigorous models that are
derived using modern averaging theory. We discuss how the results derived from averaging theory
that are available can be built upon and applied broadly within the community. We highlight
opportunities and needs that exist for collaborations among theorists, numerical analysts, and
experimentalists to advance the new classes of models that have been derived. Lastly, we
comment on averaging developments for rivers, estuaries, and watersheds.
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1 Introduction
From the first issue of its 35 years of its existence, Advances in Water Resources (AWR)
has served as a primary outlet for publication of manuscripts dealing with methods for
facilitating a change in scale at which a problem of interest is formulated [14]. In particular,
a significant body of literature has been published that deals with an initial formulation of a
problem at a small scale, application of an averaging method that transforms that initial
formulation to a larger scale, and development of procedures for closing the resultant
equations to obtain a problem description. Reports of research results in this area of inquiry
are not limited to AWR, as advances dealing with this topic have been published in many
other journals. Additionally, some of the work that has appeared in the literature, although
an “advance” at the time of publication, has since been superseded by subsequent
developments. Such a situation is typical of all fields of scientific inquiry that are subjected
to thought, testing, validation, application to ever more complicated scenarios, and
development of ancillary experimental, theoretical, and computational investigative tools.
Unfortunately, another typical characteristic is a reluctance to leave behind what is
comfortably understood as “common knowledge” in favor of an improved understanding
with its concomitant challenges and data requirements.

In discussing the use of averaging theory, we will make reference to three different length
scales. The smallest is the microscale, which is a continuum scale at which flow variability
within the pore space can be described. The microscale is also referred to as the pore scale.
The next larger scale is the macroscale with a characteristic length much larger than the
microscale, on the order of tens to hundreds of pore diameters, or larger. At the macroscale,
spatial variability of functions is modeled, but high frequency variations, on the order of
fractions of a pore diameter are filtered out. It may be helpful to recognize that at the
microscale, a porous medium system is modeled as composed of juxtaposed phases with
well-defined boundaries while at the macroscale, the phases are modeled as overlapping
continua that each occupy fractions of space. The largest scale considered is referred to as
the megascale. This is the system scale. Models at the system scale do not account for
variations of functional values over space but rather make use of averages over the system
length scale. A more detailed exposition of the properties of these three scales can be found
in [113].

The purpose of this contribution is to serve as a basis from which future understanding of
averaging theory and its applications can develop. We will focus primarily on the use of
averaging theory applied to conservation and thermodynamic equations, supplemented by an
entropy inequality, as a basis for obtaining closed models. This method is called the
thermodynamically constrained averaging theory (TCAT). It differs from older methods in
that averaging is applied to microscale thermodynamic expressions, and mathematical
theorems are used to derive evolution equations needed for closure in some systems. We
will highlight the insights gained from this method and point out how this method can be
applied further to enhance understanding. We note that the theoretical developments are on
the cusp of being implemented for analysis of practical and realistic problems such that
abundant opportunities for collaborative advancement exist. We also note that recent
theoretical advances in averaging theory resolve several deficiencies present in previous
theories and thus form a firm foundation for future advancement. It is our hope that this
manuscript will serve as a helpful contribution to those who will be leading the way in
developing models that will be important scientific contributions to the community through
publication in AWR, and elsewhere, over the next 35 years.
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2 Background
Modeling of water resources problems is typically based upon mechanistic representations
of the system of concern. These mechanistic representations are often related to conservation
principles of conserved quantities, such as mass, momentum, angular momentum, and
energy. While such mechanistic representations are well established for single-phase
systems based upon conservation over volumes at the microscale where an individual point
represents an average over a large number of molecules, the appropriate mechanistic
representations are less obvious at the macroscale where an individual point represents some
average behavior over a region that includes multiple phases. Averaging theory can be used
to derive such mechanistic representations, although traditional, accepted models are often
posed directly at the macroscale with forms inspired by experimental observations.

As an example, consider a seemingly simple classical example: the problem of describing
single-fluid-phase flow through a porous medium. The initiation of efforts to describe flow
quantitatively had its origin in a correlation between flow and head loss over a
homogeneously packed column based on the experimental work of Henry Darcy in 1856
[22, 39, 40, 152]. The head loss measured by Darcy was the drop over the full length of the
column with no measurements taken within the column. From this data, the form of Darcy’s
law obtained is an algebraic relation with the flow rate found to be linearly proportional to
the head difference in the form

(1)

where q is the volumetric flow per cross-sectional area, K̂ is a proportionality constant, and
h2 − h1 is the head loss over the column of length L. The form of this equation suggests that
one might consider its implications as the column becomes shorter or longer. This led to
postulation that in the limit of a very short column segment, the flow rate is proportional to
the gradient in head. Integration of this expression over the column length returns the
algebraic form of Darcy’s law over the entire column and a linear variation of head through
the column. It is interesting that within the column, in the midst of the porous material, head
and flow measurements are not taken. Despite this absence of data, minimal faith is required
to conclude that the mathematical result indicating a linear variation in head along the
column axis is reasonable for the conditions of Darcy’s experiment. However, if one is
interested in heterogeneous columns, columns in which the volume fractions are not
constant, or flow of multiple fluids, the leap of faith required to accept applicability of the
usual differential form of Darcy’s law is much greater [78, 149]. Nevertheless, this is the
usual approach to applying a flow equation for porous media. Any deviation from a linear
proportionality between the flow and the head gradient is buried in a non-constant
proportionality coefficient. An interest in putting the formulation of flow equations for
porous media on a firmer theoretical ground led to efforts to derive Darcy’s law from
conservation of momentum principles [e.g., 13, 64, 122, 148, 163, 164].

One of the shortcomings of these efforts is that Darcy’s law is considered to be a “given”
correct expression that is a targeted result sought from the alternative approaches
considered. In these instances, the analyses do not provide much additional insight but rather
are considered valid because they produce the expected answer. A better approach is to
develop a method that will provide flow equations at the scale of interest, equations that are
not the target of the procedure but rather are the result of the analysis. Then situations can be
identified where the Darcy formulation is appropriate and situations where more complex
results of the analysis must be employed. Hubbert [82] commented on the fact that Eq. (1)
became known as Darcy’s law. He then stated: “Subsequently many separate attempts have
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been made to give Darcy’s empirical expression a more general physical formulation, with
the result that so many mutually inconsistent expressions of what is purported to be Darcy’s
law have appeared in published literature that sight has often been lost of Darcy’s own work
and of its significance.” In the 55 intervening years since Hubbert’s observation, the efforts
to provide a general physical formulation have expanded beyond flow to include transport of
heat and mass. It is fair to say that the pool of inconsistent expressions has increased.
Ferreting out these inconsistencies is hindered by the need to fight through complex
mathematical analyses, consider physics involved, and to determine if results that may look
acceptable are actually grounded in a consistent physical problem description. Thus it seems
appropriate to consider what we have learned in both the 35 years of AWR and the 155
years since Darcy’s landmark experiment.

The scope of this article is the use of theories that involve averaging of small scale equations
to obtain equations at a larger scale. These methods share the feature that they typically
assume a separation of length scales and make use of averaging theorems for phases [4, 108,
155, 162]. From this common basis, the methods diverge.

One of the scale change procedures is commonly known as the method of volume averaging
(MVA). This procedure has been advanced primarily by Whitaker and co-workers [e.g., 136,
139, 164–166]. The objectives of this method are to obtain spatially smoothed equations, to
derive closure problems for the differences between microscale and macroscale quantities,
and to compare theory with experiment [e.g. 19, 166]. Features of the method include the
fact that the microscale equations are closed before they are averaged; a closure problem is
often formulated for a periodic unit cell, which is a model microscale description of a
representative region of the porous medium with a spatially periodic structure, that enables
macroscale closure parameters to be derived conveniently [e.g., 34, 138, 139, 166]; the solid
phase is typically fixed; hierarchies of averages can be employed [136, 166]; interface
dynamics associated with common curve movement in multiple fluid phase systems are
typically neglected [165]; and a focus on comparisons to experimental observations has been
considered an important part of the method [166]. It should be noted that a periodic unit cell
is not strictly required by MVA, and recent work has focused on developing MVA models
based upon local and non-local microscale structures, including those based upon statistical
measures of the subscale media [169].

The strength of MVA is the production of a closed macroscale model that can be compared
to experimental observations and macroscale parameters that can be predicted based upon a
representation of the microscale structure. When macroscale closure relations are developed
with MVA and a suitable unit cell, no adjustable parameters, beyond those that enter in the
microscopic closure, arise with the change in scale. Under such conditions, MVA models
can be predictive in nature [166]. These predictions will be reliable if the unit cell is a
sufficiently accurate representation of the underlying structure, compared to the sensitivity
of the results to the differences that exist between the assumed structure and the real
structure of the medium of concern.

While extremely convenient when applicable, the reliance on a periodic unit cell for the
derivation of MVA-based models imposes at least three important limitations. First, the real
system of concern in a macroscale model must be describable by a periodic structure of the
porous medium at the microscale. This means that the microscale distribution of phases in a
system one wishes to model at the macroscale must be understood in sufficient detail to
determine if a periodic unit cell description is a reasonable representation. Second, when
analyzing systems, imposition of a periodic structure on the analysis precludes discovery of
physical behavior that could be manifest in non-periodic systems. An example of such a case
is the derivation of a pressure form of Darcy’s law using MVA [164, 166], which, as we will
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show, is incomplete in some situations. Third, not only is the reliance upon a periodic unit
cell that is fixed in time convenient for analysis when using MVA, such a cell is generally
essential if one is to produce a solution that uncouples the scales and allows macroscale
simulation without the solution of a coupled microscale problem.

Many systems do not admit such temporally fixed unit cells, including multiple fluid phase
flow problems that involve displacement phenomena and hence dynamic common curves.
Such multiphase flow problems are of high complexity. The interfaces and common curves
evolve with time, are non-periodic in nature, and their essential physics must be described
well to model the system rigorously. Efforts to derive macroscale models of multiphase
systems have yielded formulations that are essentially identical with the classical two-phase
flow models [137, 164]. These models do not account for the evolution of interfacial areas
and common curves, and they do not resolve the known dynamics with attainment of
capillary pressure equilibrium. The equations obtained from MVA are also dependent on
assumptions made regarding the forms selected for deviations, the actual form of the closed
microscale equations that are averaged, and the development of deviation equations.
Depending on how these three items are handled, the results of MVA can be different [12].

A second method that has been used frequently is averaging of conservation equations with
rational thermodynamics (ACRT). This method averages conservation equations for phases,
as well as for interfaces between phases before they have been closed. Thus the closure
procedure occurs only at the scale of modeling. Guidance for the closure procedure is
provided by the second law of thermodynamics, which states that dissipative processes will
produce entropy. Inherent in ACRT is the need to make use of a thermodynamic framework
that provides constraints on system behavior and incorporates intensive variables into the
modeling system. The ACRT approach was first applied to single-fluid-phase flow [72–74].
Subsequently, averaging theorems for interfaces [52] and common curves [67] were
developed so that the dynamic conservation equations for these entities could be
incorporated into a model.

The drawback of the ACRT approach is that the thermodynamics are postulated at the
macroscale such that the connection between smaller scale and larger scale properties is lost
[e.g., as in 18, 74, 75, 120]. This disconnect between classically defined thermodynamic
variables—such as pressure, temperature, entropy, and chemical potential [7, 27]—and their
independently defined macroscale counterparts provides mathematical equations that
resemble what might be expected; but the variables that are symbolized in those equations
are not related well to physical variables that can be measured either directly or by some sort
of averaging of small scale variables. The consequence of this shortcoming is that
multiphase ACRT models are mathematical equation sets with limitations in application
because the symbols in the equations do not relate directly to physical quantities. Among the
erroneous elements that are inherent in ACRT models are a 50% overestimation of the trace
of the fluid-fluid surface stress tensor (see correct forms based on microscale considerations
[93] and TCAT approach for isotropic and anisotropic systems [56, 85] vs. overestimated
surface stress tensor based on ACRT that cannot account for average directional properties
of interfaces [e.g., in 75, 123, 127]); the quantity defined to be the capillary pressure is not
actually related to the essence of capillarity interfacial tension and curvature; the stress
exerted on the solid phase surface by fluid pressures is incorrectly found to be a weighted
sum of pressures averaged over the phases; and temperature is ill-defined. Additional
conceptual confusion exists in distinguishing between the movement of material in an
interface and the movement of the interface itself as well as in obtaining equations that
describe the evolution of interfaces between phases. Despite these undesirable features,
which range in severity from “drawbacks” to “insurmountable errors,” ACRT served as a
worthy effort to capture multiphase porous media flow physics at the macroscale. What it
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lacks is a systematic thermodynamic framework that not only seems consistent at the larger
scale but also is related to microscale thermodynamics and to classical definitions of
thermodynamic variables.

As a needed growth step in the employment of averaging methods to derive models of flow
and transport phenomena in porous medium systems, the TCAT approach has been
employed. This method has a set of characteristics that make it especially well suited as
basis for model formulation including flexibility in selecting the details of modeling and in
incorporating various thermodynamic frameworks that are consistent across scales. We will
thus elucidate aspects of this method prior to providing some of the results obtained from
this theory in comparison to those from alternative averaging approaches.

3 Features of the TCAT Approach
The TCAT approach has a number of attractive attributes that do not exist in other methods
employed for changing the scale of conservation and thermodynamic equations. One off-
putting aspect of the TCAT method is that the mathematics can appear complex. These
mathematical details are intrinsic to the objective of developing a mechanistically rigorous
macroscale or megascale model. In an effort to cut through the notation and manipulations,
in this section we will focus on a conceptual description of the components of the approach
rather than the mathematical details that are available in the literature [54–61, 85, 113, 114].

Fig. 1 depicts schematically the components of TCAT models. Essentially, this figure is
composed of five different types of elements, as indicated by the five different colors in the
boxes. Although some elements of all the boxes are unique to the TCAT approach, blue is
used either within a box or outlining a box to indicate those essential and unique features of
the TCAT approach that particularly distinguish it from other methods developed to date.

The yellow boxes represent the starting point of the analysis. Standard microscale
conservation equations of mass, momentum, and energy are postulated for the entities of
interest. These entities include fluid and solid phases, the interfaces between these phases,
common curves where three phases meet, and common points where four phases meet.
Additionally, microscale thermodynamic equations for each of these entities must be
formulated. Any consistent formulation of microscale thermodynamics can be selected, such
as classical irreversible thermodynamics (CIT) [41], extended irreversible thermodynamics
(EIT) [89, 90, 102], or the theory of internal variables (TIV) [104]. Although microscale
rational thermodynamics (RT) could be employed in the formalism, it is not recommended
because it is primarily a mathematical framework that lacks physical background and loses
touch with experimental observations [101, 103, 110, 161, 170, 171].

For TCAT work performed to date, the simplest thermodynamic formulation of CIT for
fluids, solids, interfaces, and common curves has proven to be of utility. Microscale thermal
and mechanical equilibrium conditions consistent with the thermodynamic framework
employed are generated using variational techniques [24, 26]. By obtaining microscale
equilibrium conditions, we have precursors that ensure macroscopic groupings obtained as
averages of these conditions will also provide equilibrium conditions. The microscale
description of the problem, including conservation equations and thermodynamic relations,
is then averaged using a well-defined set of averaging theorems [67, 113], a subset of which
also have been previously employed in other averaging approaches [e.g., 6, 15, 52, 53, 72,
108, 109, 155, 162]. These theorems facilitate a change in scale from the microscale to
either a macroscale form or directly to a megascale, or entire system, form. The larger scale
conservation equations that result describe phase behavior that is similar to a mixture but
actually is built on well-described variables and parameters. Most importantly, the precise
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definition of larger scale variables as averages of microscale variables is explicit, such that
ambiguity about the physical meaning of a mathematical symbol is avoided.

The result of the use of the averaging theorems is five types of larger scale equations in the
maroon boxes. The first type is the conservation equations. These are expressions for
conservation of mass, momentum, and energy within phases, interfaces, common curves,
and common points. The equations may be species based, such as the common practice of
using an equation of conservation of chemical constituent to describe mass transport, or
entity based, such as the common practice to describe momentum and energy transport for
the aggregated species that comprise the entity. A more general development leading to
species-based momentum equations within all entities has been presented [58]. Additionally,
a larger scale entropy inequality is obtained as a sum of the averaged equations for each of
the entities. Summation over the entities eliminates inter-entity entropy exchange terms and
provides an expression that can be used to assist in the development of closure relations.

The remaining maroon boxes outlined in blue deserve particular attention as they are crucial
to the TCAT character and process. When the scale of the conservation equations is
increased in a multiphase system, new quantities appear that account for a changed
description of the system configuration. At the microscale, phases are juxtaposed and
separated by interfaces. The locations of the interfaces must be specified as boundary
conditions for the phase equations, which are applied at those interfaces such that phase
behavior can be modeled. At the averaged scale, phases are modeled as being co-located
with each phase occupying a fraction of the space. These fractions are specified using
measures such as porosity, volume fraction, and saturation, all of which are indicators of
volumetric densities. Additionally, the amount of area (common curve length) per volume
enters the formulation in the larger scale equations for conservation of area (common curve)
properties. These properties are functions of time as one phase displaces another phase and
interfacial areas between phases evolve. Because these properties do not exist from a
microscale perspective, their appearance in the conservation equations creates an equation
deficit. This deficit can most flexibly be overcome by developing equations or expressions
for evolution of the geometric densities that are based on differential geometry. The need for
evolution equations as independent expressions describing the geometric densities was
recognized prior to the TCAT formalism [3, 68, 93, 117]. An approach for approximating
these equations from averaging theorems for both interfacial areas and common curves has
been presented [61].

The larger-scale conservation equations are supplemented by larger-scale thermodynamic
and equilibrium equations developed in TCAT by applying averaging theorems to
microscopic thermodynamic expressions. This approach to integrating thermodynamics into
the modeling formalism is unique to TCAT and is an essential component needed to ensure
that quantities are well defined and models are consistent across scales. These larger scale
thermodynamic equations provide a connection between terms arising in the entropy balance
and conservation of mass, momentum, and energy equations.

The final maroon element is the larger-scale equilibrium conditions. These are obtained as
averages of microscale equilibrium conditions and therefore are completely consistent with
the microscale perspective. By averaging microscale forms, TCAT ensures that the
information in the equations that result is consistent between equations and across scales.
This eliminates the procedure of introducing ad hoc definitions of quantities [98, 129] that,
while seemingly offering some advantage for the study of one aspect of a problem, actually
introduce inconsistencies elsewhere. Knowledge of larger scale equilibrium conditions also
serves as an aid in rearranging entropy producing terms in an entropy inequality into force-
flux pairs.
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At the point where all the expressions in the burgundy colored boxes are derived, one has a
full problem description based on the entities comprising the system of interest and the
processes occurring in those entities. However, the averaging process exacerbates the
standard problem of continuum mechanics in that the number of physical equations is many
fewer than the number of unknowns that appear in the upscaled equations. Even with the
derived evolution equations for geometric densities, the number of unknowns grows because
inter-entity transfer terms now appear as intrinsic parts of the conservation equations rather
than as boundary conditions. The excess in variables must be overcome by postulating
relations among the variables that appear in the equations; this is the closure problem.
Regardless of averaging procedure used to derive a model, this problem always arises. With
the TCAT approach [see overview in 55], insight into the variables that need to be
postulated and the dependence of those variables on other problem variables is gleaned
from, and constrained by, the second law of thermodynamics.

The important model-building components that result directly from the TCAT approach that
contribute to completing the closure of a problem of interest are indicated as the blue boxes.
One makes use of the full set of conservation equations and thermodynamic equalities as
constraints on the entropy inequality. This formal stipulation employs Lagrange multipliers
to provide an exact equation referred to as the constrained entropy inequality (CEI).
Manipulations are performed to simplify the CEI toward a force-flux form as guided by the
equilibrium conditions; however some non-force-flux terms remain. The CEI is an important
equation because of its exact nature. While a significant amount of manipulation is involved
with deriving a CEI, once such an expression is derived for a particular class of model it can
be used to derive a hierarchy of closed models for specific instances that are some subset of
the original formulation. This makes the CEI an important equation for archival purposes
and provides an entry point for model developers and those wishing to apply TCAT without
the burden of performing a relatively complex ab initio development. CEI expressions have
been derived for single-fluid-phase flow [56], single-fluid-phase flow and transport of non-
dilute solutes [58], two-fluid-phase flow [85], and megascale transition regions involving
two-fluid-phase flow and species transport [86]. These available expressions provide a
foundation upon which models for a wide variety of specific porous medium systems and
applications can be built.

Because the CEI is not uniformly in a force-flux form, further manipulations are needed and
some assumptions are introduced to obtain this essential form, referred to as a simplified
entropy inequality (SEI). The manipulations needed to derive an SEI are based upon a
combination of restrictions to the original more general CEI (such as specification of the
entity properties that are to be modeled) and approximations needed (commonly in regard to
evaluation of averages of products of microscale properties) to bring non-conforming terms
into force-flux form. TCAT requires that these restrictions and approximations be annotated
so that they can later either be verified as reasonable or modified if found to be
inappropriate. These approximations are based on expected behavior of the system as
inferred from microscale or larger scale experimental observations or order of magnitude
arguments. Because the SEI obtained will depend on the approximations employed, the path
to an SEI as well as the final form are not unique. Put another way an exact CEI can be used
as a basis to derive several different SEI’s depending upon the simplifying restrictions and
approximations applied. If few restrictions are made and good approximations are used to
derive an SEI, the resultant expression will be general and of use for a range of specific
applications. For this reason, the SEI derived for a given system can have significant
archival value and be of use for deriving a hierarchy of closed models for any system that is
a subset of the restricted form upon which the SEI is based. Because some manipulations are
required to derive an SEI from a CEI, this archival use is important and allows an entry
point for deriving and applying TCAT models that precludes repetition of the vast majority

Gray et al. Page 8

Adv Water Resour. Author manuscript; available in PMC 2014 January 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



of the manipulations needed to derive a TCAT model from scratch. TCAT-based SEI’s have
been derived for a similarly broad set of systems as the CEI’s previously noted [56, 58, 59,
85, 86].

Once an SEI has been formulated, the final piece of the analysis is to develop relations
between forces and fluxes (e.g., potential gradients driving flow, thermal gradients driving
heat conduction) in light of the known equilibrium conditions and the constraint of the
second law of thermodynamics. These relations are the closure relations, or constitutive
relations, that parameterize terms in the conservation equations to produce a closed, solvable
model. These closure relations are not unique. Rather the SEI provides a basis for deriving
sets of closure relations that are consistent with known properties of the system at
equilibrium and the second law of thermodynamics. Choices exist regarding the coupling of
individual fluxes by selection of the set of forces producing the flux, and the order of the
approximation employed. Because of this, a particular SEI can be used as a basis to derive a
hierarchy of closed models depending upon the specific closure relations developed from the
SEI.

The resultant hierarchy of closed, parameterized models, indicated in the grey box, is the
objective of the TCAT procedure. The specific forms and system-dependent values of the
parameters that result from TCAT analysis must be quantified. This can be accomplished
with the assistance of subscale modeling and experimental observations, accounted for in the
green box in Fig. 1, such as lattice Boltzmann [80, 112, 133], high resolution
microtomographic imaging of media [35, 36, 111, 118, 119, 132, 134, 135, 159, 167, 168],
pore network models [9, 21, 38, 43, 46, 79, 88, 95, 130, 140], and fabrication and analysis of
micromodels [29, 30, 156]. However, we emphasize that if information collected at one
scale is to be employed to support models at another scale, there must be an explicit relation
between variables at the two scales. Furthermore, it is essential when working at a single
scale that the variables designated be the same physical quantities as employed in the model
equations. TCAT ensures that both of these conditions are met.

In the sections that follow we consider insights gained from the use of TCAT, compare the
TCAT results derived to results obtained with alternative approaches, and discuss how
TCAT results can be further developed most efficiently.

4 Insights Gained from TCAT for Porous Media Flow
The TCAT method has been applied to a variety of environmental problems at both the
macroscale and the megascale. Results obtained in some instances represent extensions in
understanding gained from earlier methods. Making use of those extensions in proceeding
forward can circumvent problems encountered when working with or trying to parameterize
a faulty theoretical model. Here we will present some of these results, which have been
derived elsewhere, and indicate why they should be a part of a consistent approach to
modeling particular systems of interest.

4.1 Darcy’s Law for Single-phase Flow
In its original form as given in Eq. (1), Darcy’s law is a one-dimensional megascopic
expression. Thus, it does not provide information on the variability within a system. Rather
it provides a flow rate through a packed column saturated with a single fluid as it relates to
the change in head between the two ends of the column. Derivation of an equation of this
sort is properly accomplished by integrating directly from the microscale, the scale of
intergranular flow, to the megascale, the scale of the system. No macroscale version of the
equation is needed. If a macroscale approach were used, it would require information about
macroscale parameter variability within the system. The change in scale of the conservation
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and thermodynamic equations is accomplished using theorems from the [n, (0, 0), 3] family
[67] where n is a dimensionality of the entity at the microscale equal to 3 for a phase, 2 for
an interface, and 1 for a common curve. For a system consistent with Darcy’s apparatus, a
straight column with uniform openings at both ends, and experimental conditions of slow
flow, the megascale single-phase flow equation derived in [60] simplifies to a form identical
to Eq. (1) where the flow rate q is defined explicitly as [63]

(2)

where vw is the microscale velocity of the fluid, ρw is the microscale fluid density, and Λ is
the unit vector tangent to the column axis coordinate. The volumetric flow rate per unit area,
q, is thus the density weighted velocity averaged over the entire pore space in the column
multiplied by the fraction of column volume occupied by the fluid. The averaging operator
in Eq. (2) is described briefly in the notation section and in more detail elsewhere [113]. The
head on each end of the column is defined as

(3)

such that hi, the head at end i, with i =1 or 2, is equal to the density weighted average of the
microscale chemical potential, μw, plus the microscale gravitational potential, ψw where the
averages are taken over the inlet and outlet of the column occupied by the fluid phase; and g
is the scalar acceleration of gravity. Eq. (1) then is written in the form

(4)

where the superscript  indicates a density weighted average of the w phase potentials at
end i of the column. The proportionality constant, K̂, accounts for the permeability of the
column as a whole to flow and does not require homogeneity of the column packing.

Although some sources state that Darcy’s law is based on a linear relation between flow and
a pressure difference or gradient [e.g., 8, 44], TCAT analysis shows that the most general
driving force involves the chemical plus gravitational potential [63]. For the conditions of
Darcy’s experiment including a homogeneous solid-phase distribution, isotropy, and
constant fluid density, one can obtain an algebraic form in terms of pressure as

(5)

where pwei is the average pressure of the fluid over end i defined explicitly as

(6)

and ez is a macroscale vector aligned with the vertical direction.

Eq. (4) suggests that an extension to a three-dimensional macroscale form for an isotropic
system would be
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(7)

where K̂w has spatial dependence and μw̄ and ψw̄ are the density-weighted volume averages.
By use of the TCAT procedure and with the usual assumption of slow flow, this equation
has been derived from basic principles [56].

Based on Eq. (5), one might presume that the macroscale form of Darcy’s law for an
isotropic system with constant density in terms of pressure would be

(8)

where pw is the volume average pressure over an averaging volume. However consideration
of systems where the volume fraction is not constant [54] and derivation based on the TCAT
approach [56] indicates that the actual form that results which is consistent with averaged
microscale thermodynamics is [62]

(9)

The additional term in this expression in comparison to Eq. (8) primarily accounts for the
facts that the microscale pressure need not vary linearly in the phase and that a gradient in
volume fraction will cause a deviation from the usual expression of the hydrostatic pressure
condition at the macroscale. At the microscale, the hydrostatic condition is ∇pw − ρwg = 0.
Based on this, one might try to identify some macroscale measure of pressure, denoted as

, that allows the hydrostatic condition in terms of macroscale variables to be expressed as

(10)

It should be obvious that for the case considered here, at least, with reference to Eq. (9)
where ρwg is constant, Eq. (10) will be satisfied if we can define

(11)

which may be simplified to

(12)

Note that in theory since pw exists, the right side of Eq. (12) can be calculated. Then, with an

appropriate boundary condition, the macroscale equation can be solved for . However, a

route to direct calculation of  as an average of some collection of microscale properties is
not provided. Thus, although the mathematics is consistent, one cannot see that the function

, implemented on the basis of the aesthetics of the macroscale hydrostatic condition, is a
thermodynamic quantity that is useful in describing material properties in a way that is
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independent of the system being studied. Thus the actual use of  to designate pressure,
while providing an appearance that is “comforting” to those with a preconceived notion of
what the hydrostatic condition looks like, is theoretically problematic. Indeed, a definition of

 as in Eq. (11) provides Eq. (10) as an expected result and simplifies Eq. (9) so that it

resembles Eq. (8) with pw replace by . When 〈∇(pw − pw)〉Ωw, Ωw is negligible compared
to ∇pw, the extra term in Eq. (9) can be neglected, and the usual form of Eq. (8) is
recovered.

An alternative approach, that we introduce here, is to propose that the extra term arising in
the TCAT approach be a function of some system variables. In an effort to gain insight, we
note that from the averaging theorems, the identity may be obtained that

(13)

This expression converts an integral over the w phase to an integral over the surface
bounding the w phase. Consideration of these alternative expressions suggests that when the
pressure is constant, this term will be zero. Also, when the pressure is linear, this expression
will be zero if the gradient of volume fraction of the w phase, ∇εw, is zero. The magnitude
of this correction will also be related to the size of the averaging volume. Therefore, we can
propose a functional dependence of this term as, for example

(14)

where l is an averaging length scale. Then dimensional analysis provides

(15)

When the vector function H is zero, the extra term in Eq. (9) can be neglected. When the
velocity is small, as with the majority of porous media flows, the quantity involving qq will
be small and can be neglected. Thus the proposed functional form simplifies to

(16)

We can speculate, based on the analysis, that when l∇εw approaches zero because the
macroscopic length scale is small relative to the length scale of changes in porosity, H2
approaches zero. For example, if the system scale is denoted as L and if over this length εw

varies slowly and monotonically, |∇εw| = O(1/L). In this case, |l∇εw| = O(l/L), which
becomes vanishingly small when l ≪ L, as is often the case. A linearized approximation of
Eq. (16) is

(17)

where k ̂ε is a second order tensor. In this instance, a generalized form of Darcy’s equation in
terms of averaged pressure will be
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(18)

When the last term is negligible, the usual form of Darcy’s law in terms of volume averaged
pressure is recovered.

Darcy’s experiments were carried out under very restrictive conditions of single phase flow
in a homogeneous porous medium. The form of the equation has become virtually
ubiquitous for description of a much broader range of porous media flows. Indeed a desire to
make use of an equation that looks the same as Eq. (8), even for conditions outside the
conditions Darcy employed, has motivated some investigators to propose arbitrary, rather
than thermodynamic, definitions of “pressure” [e.g. 128]. Indeed, it has been even claimed
that there is a single “correct” definition of macroscale pressure [98]. This claim is based on
the desire to have some form of a microscale condition of equilibrium be mimicked at the
macroscale. However, the result is a definition of pressure that is not thermodynamically
based but is tailored to reproduce one expected equation form at the expense of consistency.
The fact is that methods of averaging intensive thermodynamic variables are not unique [45,
97, 121]. However, any proposed method for averaging intensive thermodynamic variables
such as temperature and pressure indeed leads to average values; but the interpretation of the
physical meaning of these average when the intensive variable being averaged is not
constant is difficult.

Consider the microscale enthalpy per volume, Hw, and the microscale internal energy per
volume, Ew, of a w phase. These are related by the standard thermodynamic relation

(19)

If we average these over a representative volume of the w phase, we obtain the macroscale
relation

(20)

Thus it is shown directly that the macroscale volume average pressure is the difference
between macroscale enthalpy per volume and macroscale internal energy per volume. Based
on this result, it is seen that the volume average pressure is very convenient when
considering this energy relation but, as was shown in the last paragraph, may be less
convenient, or perhaps less expected to appear, when considering momentum transport. The
important issues are to know what the relations are between microscale and macroscale
variables and to ensure that the macroscale forms employed ensure that equalities are
maintained for the equations in which they appear.

It has been pointed out in discussing temperature, but equally applicable to pressure and
other intensive thermodynamic variables, the fact that there is an infinite number of
mathematically legitimate options for averaging [45, 71]. The challenge in averaging is to
make sure that consistency is maintained between microscale variables and their averages,
however they are calculated. This consistency must span thermodynamics and all the
conservation equations employed and must provide a procedure to measure experimentally
or to compute values of quantities that can be used as measures of those variables. Arbitrary
alteration of definitions is a strategy that will certainly lead to frustration and then failure in
parameterization of the resultant equations. Thus, even for simple applications, such as
modeling of single-phase flow in porous media, it is important to derive equations that
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preserve the needed consistency and lead to larger scale equations that describe the
processes of interest. It is foolhardy to alternatively designate some classical or desired form
of an equation as “the” form that must arise from rigorous theoretical analysis and then
contort a systematic procedure into arbitrariness that nonetheless provides that result.
Darcy’s law was developed based on careful and appropriate examination of data produced
by some excellent experimental work on particular systems. Extension of the form of this
law beyond the range of conditions employed when it was developed is speculative
business, and one should not necessarily expect the same equation form to properly capture
the system physics.

4.2 Two-fluid Flow in Porous Media: Classical Description
Macroscale modeling of two-fluid-phase flow in a porous medium is typically based on
Darcy-like equations for flow of each phase solved in conjunction with mass conservation
equations. Our goal here is to highlight some important features of this approach as part of a
discussion of a simplified model. When the fluids are considered immiscible and the solid
motion can be neglected, the mass conservation and flow equations to be solved are,
respectively [e.g., 85]

(21)

and

(22)

where the parameters K̂α and k̂εα must be specified for each phase. The last term in Eq. (22)
does not appear in standard formulations and can be neglected here if the purely classical
form in terms of pressure is desired. However it was shown in the previous section to be a
possible extension when the momentum equation is expressed at the macroscale in terms of
a gradient in the fluid pressure. Since Eq. (22) is a vector equation with three components,
the pair of equations listed provides eight equalities for the two phases. The sixteen variables
appearing in these equations are

(23)

In this listing, εα, α ∈ {w, n}, is not included since εα is related directly to variables that are
listed with εα = sαε. Because there are only eight conservation equations, a deficit of eight
equations exists. Four of these are managed by specifying the porosity, ε, and the three
components of the gravitational vector, g. Additionally, the condition that the sum of the
saturations must equal one, sw + sn = 1, eliminates one of the saturations as an independent
variable. The two densities are typically expressed by equations of state that relate density to
pressure, ρα = ρα (pα), for isothermal cases in which changes in composition are not
important. Thus a total of seven auxiliary conditions are employed, which leaves a deficit of
one equation. The final condition imposed is a heuristic relation that stipulates the difference
in pressures can be expressed as a function of saturation in the form

(24)
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Typically, the function f is claimed to be the capillary pressure. However, this view of the
problem is incomplete. In fact, if one performs a careful analysis based on TCAT making
use of only phase equations and thereby implicitly considering the properties of interfaces to
be negligible, the result derived is that f (sw) must equal zero. This is a reasonable result
when interface properties are negligible. This result also confirms the fact that a correct
description of the physics of multiphase flow requires proper accounting for the properties
of interfaces [see 57, for further discussion of this point]. To produce a model of some
utility, traditional approaches define many-valued relations in which the saturation depends
upon the temporal history of the fluid pressures [e.g., 115]. These hysteretic relations are a
tell-tale sign that the physics of the situation have not been described adequately.

4.3 Two-fluid Flow in Porous Media: TCAT Description
Of particular importance for gaining understanding of proper incorporation of capillary
pressure into the description of multiphase flow is the fact that capillary pressure is defined
at the microscale, not directly as a pressure difference, but as

(25)

where γwn is the interfacial tension of the interface between the fluid phases and Jw is the
curvature of the interface. It is crucial to note that in performing the analysis leading to this
definition [25, 57], it is necessary to explicitly include conservation (for the dynamic case)
and thermodynamic equations accounting for properties of the interface as part of the
formulation. Additionally, if the system is at equilibrium, microscale capillary pressure
defined as in Eq. (25) is related to the phase pressures according to

(26)

One item of particular importance is the fact that the pressures in Eq. (26) are evaluated at
the interface. Thus, the difference in the pressures at a point on the interface is related to the
capillary pressure at that point at equilibrium. An additional feature of equilibrium Eq. (26)
is the presence of a gravitational term. This term accounts for a contribution to a
discontinuity in phase pressures across the interface when the interfacial mass density is
non-zero and the normal to the interface is not orthogonal to gravity.

A general formulation of the macroscale problem requires use of thermodynamic and
conservation equations for the fluid and solid phases as well as the interface between those
phases. We can take a simplified look at this situation by neglecting the properties of solid
surface interfaces with the fluids and also neglecting any solid-phase motion. Additionally it
is assumed that mass transfer to the fluid-fluid interface will be accounted for by some
constitutive relation. Thus, we will supplement the fluid-phase mass and momentum
conservation equations with corresponding equations for the wn interface. Thus for the three
entities being considered, a total of twelve conservation equations is employed. In including
the macroscale forms of these interface equations, we will also add the following six
variables to the sixteen in Eq. (23)

(27)

The total of twenty-two variables are described by twelve conservation equations, the seven
auxiliary conditions noted following Eq. (23), and an equation of state for the interface of
the form ρwn = ρwn (γwn). Thus, a deficit of two equations remains.
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One supplementary condition can be developed for the evolution of the interfacial area
between the fluids, εwn, as a function of time. A form for this condition has been obtained
based on the averaging theorems and consideration of differential geometry principles [61].
Recognition of the need for an expression for interfacial area evolution can be found in a
porous medium context [3, 49, 68, 93] and in bubbly flows without the presence of a solid
phase [83, 84, 94]. It is important to emphasize that the evolution equation for the interfacial
area is an equation independent of the mass conservation equation for the interface, an
equation which has already been considered in assuring equality of equations and unknowns.
This fact has been neglected in some formulations that describe area evolution based on
mass conservation [2, 87, 123–126], which overlooks the difference between flow in the
interface and movement of the interface and which is also unable to account for massless
interfaces or interfaces whose mass density changes with time and space.

The second supplementary condition is obtained from the entropy inequality in the TCAT
formulation [62]. This equation is a dynamic condition on capillary pressure. For the case
where the solid does not deform or move, the resultant equation is

(28)

where  and  are microscale pressure averaged over the wn interface,  is the
interface density weighted average unit normal outward from the w phase at the interface,

and  is the equilibrium interfacial area per unit volume. Eq. (28) has a number of
interesting features that require discussion.

First is the fact that in proposing Eq. (28) to close the equation set based on the TCAT SEI,

we have encountered five new independent variables, , and  that must
be accounted for. Although this might seem to be burdensome, the fact that explicit
accounting for the variables is employed actually sheds light on how capillary pressure is
correctly incorporated into the model. In fact, the term on the right side of Eq. (28) is the
actual average of the microscale condition for capillary pressure equilibrium. Nevertheless,
we do need to make some reasonable approximations that can be evaluated by subsequent
analysis.

The quantity  can be considered negligible because the average of the vertical
component of nw within an averaging volume will be small and the interfacial density is
small in most cases. Thus, this term is neglected. It seems reasonable that in many cases the
average of the pressures over the interfaces will be approximately equal to their volume
averages. This is not the case in regions of high gradients of saturation, but is a first
approximation that can be employed. Thus, let us consider a simplified form of Eq. (28)

(29)

With reference to Eq. (25), it can be seen that  is the macroscale average of the
microscale capillary pressure. By the standard approximation, this quantity is proposed to be
a function of saturation. However, from the TCAT analysis, we see that what we need is
some approximate measure of the average of interfacial curvature as a function of
macroscale parameters. We note that making this expression a function of sw only is
typically inadequate as it fails to account for the way the fluid is distributed within the
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averaging volume [e.g. 100]. In other words, for a fixed saturation, there can be a range of
values of average interfacial curvature. Admitting that some information is lost in going
from the microscale to the macroscale, we nevertheless suggest that inclusion of εwn as an
additional independent variable improves the chance of having a good macroscale surrogate
for the macroscale interfacial curvature. Thus we propose

(30)

Experiments [28, 35, 133, 134] have shown that the inclusion of interfacial area in the
proposed functional form for macroscale capillary pressure significantly reduces hysteresis.
A functional form is also needed for the equilibrium interfacial area. At equilibrium, pc = pn

− pw so we propose that

(31)

Note that the form of Eq. (31) can be obtained as an inversion of Eq. (30).

As a last point concerning Eq. (29), it is important to recognize the second term in brackets
on the left side. This additional term accounts for the fact that even for a process occurring
at constant saturation, a reshaping of the interface due to fluid redistribution must be
evidenced in disequilibrium between pw − pn and pc. This effect is not accounted for when
the disequilibrium is taken to be proportional only to the rate of change of saturation [10,
157]. This extra redistribution term is also not obtained when the ACRT approach is
employed and saturation is arbitrarily added as an independent variable in expressing the
functional dependence of macroscale energy per mass [75].

Although disequilibrium due to the rate of change of saturation is part of the story, the
TCAT approach also provides the additional important dynamic feature of relaxation of
interfaces to a final configuration after a saturation change has been accomplished. The

incompleteness of Eq. (29) with  is suggested by the fact that efforts to parameterize
τ̂A have shown a wide range of variability and produced unsatisfying results [42, 76, 116,
147, 160].

5 Geomechanics Considerations from the TCAT Approach
In geomechanics in general, and in soil mechanics in particular, the solid can be treated
under static loading or steady state conditions as a single-phase material because the
behavior of the solid skeleton and the interstitial fluid(s) are decoupled. However under
consolidation or dynamic situations, there is strong coupling between the solid and the fluid
phases that cannot be ignored if the system behavior is to be modeled correctly. Indeed, the
phenomena of weakening and of “liquefaction” in solids subjected to cyclical loading, such
as occurs in earthquakes, can only be explained by considering the action of the fluid phases
and the solids simultaneously. Quantitative analysis and prediction of real behavior can only
be achieved by sophisticated computation [173]. However, if the computational effort is to
be worthwhile, it is essential that the equations describing the system physics properly
describe the phase interactions, especially the inter- and intra-phase phenomena. The
coupling of phases is introduced in the momentum balance equations through the concept of
effective stress and in the mass balance equation of the fluid(s) through the rate of the
volumetric strain in the accumulation term. There are further situations, such as drying of
geomaterials [48], where the effective stress concept is important for a correct simulation of
the phenomenon. Hence the so-called effective stress principle plays a major role in
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multiphase geomaterial mechanics. Derivation of the effective stress principle in the context
of TCAT provides improved representation of this stress in comparison to other methods.

The effective stress principle is based on some form of the split of the total stress tensor
acting on the multiphase system [20, 47, 69]. It is traditionally defined in the case of a
ternary mixture composed of a solid phase s, a wetting phase w and a non-wetting phase n as

the weighted sum of the partial stress tensors  of the phases only

(32)

This tensor is usually split to the form

(33)

where  is the effective stress tensor,  is some measure of the pressure acting on the
system, α̂ is a weighting coefficient usually called the Biot coefficient, and I is the identity

tensor. The solid-phase stress tensor that appears in Eq. (32)  is given

(34)

where  expresses a macroscale measure of the pressure acting on the solid phase, which is

not necessarily the same as . A thermostatic approach in the context of ACRT was

employed [50, 65] to obtain an explicit form of  as

(35)

where  is the fraction of solid surface in contact with water, known as the Bishop

parameter,  and  are the macroscale RT measures of interfacial tensions between the
wetting phase and the solid and the non-wetting phase and the solid, respectively, and 
and  are the macroscale average curvatures of the solid surface obtained by integration of
the microscale curvature over the ws and ns interfaces, respectively. Unfortunately, because
this expression is based on an ACRT approach, the relation of the macroscale pressures to
microscale pressures was not obtained and some extended fundamental dependence of
thermodynamic energy functions on independent variables had to be assumed. The lack of
interscale consistency between macroscale variables in Eq. (35) and microscale variables
makes it difficult to determine what should be or is being measured or simulated if this
equation is employed.

In the literature there are several forms of the split between effective stress and a pressure
term to account for the total stress [69]. TCAT has permitted some of the aspects connected

with this split to be clarified. In particular consistent, well-defined forms for  and  have
been derived. These forms incorporate the contribution of the interfaces, definitions for the
fluid pressures and interfacial tensions as averages of microscale variables, explicit

definition of the elements of the solid stress tensor , and a mathematical expression of the
Biot coefficient α̂. Additionally, a more complete form of the stress measure in Eq. (32) is
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obtained that also properly accounts for the contribution of the interfacial and common
curve stresses to the total stress.

The TCAT formalism has led to the conclusion that the total stress acting on the solid must
generally include contributions due to the curvature of the solid surface. Thus the total stress
tensor is written with surface and common curve contributions as [66]

(36)

The split of this general form between effective stress and a pressure term is expressed
similarly to Eq. (33) as

(37)

Note, however, that in posing this split of total stress, TCAT provides not only the
definitions of the stress tensors and effective stress but also the definition of the Biot

coefficient and . The proposed split of Eq. (37) is traditionally known as the Skempton

stress [154] when  is taken to be some weighted average of the fluid pressures. The TCAT
formalism provides the requirements when this split will be thermodynamically correct.
Prior to the development of the TCAT approach for geomechanical applications, it had been
stated that no continuum theory of thermodynamics had shown the validity of the Skempton
effective stress [23]. The stress equations provided by TCAT for use in computation of
fluid-solid interactions provide thermodynamic consistency that cannot be achieved by
positing the macroscale thermodynamics directly at the macroscale as in the ACRT
approach [151].

The application of TCAT has produced the definition of the Biot coefficient α̂ as [69]

(38)

where K̂T is the bulk modulus of the solid phase; es is the macroscale average strain tensor
(infinitesimal strains); and 〈ns·ts·ns〉Ωss, Ωss is the averaged normal stress at the surface of
the solid grains. It has also been shown [69] that

(39)

When the terms accounting for interfacial and common curve contributions to the solid
surface stress are neglected, evaluation of the averaging operator on the right side of Eq.
(39) yields

(40)

Eq. (40) shows that the thermodynamically consistent form makes use of the fluid pressures
averaged over the appropriate solid surface with weighting parameters equal to the fractions
of the surface area in contact with each fluid. This is in contrast to the use of volume
averaged pressures weighted by their respective saturations that might be heuristically
proposed. Incorporation of Eq. (40) into Eq. (37), with α̂ = 1 allows formal recovery of the
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Bishop stress [20]. Substitution of the equality produced by eliminating  between Eqs.

(39) and (40) into Eq. (38) gives the expression for the Biot coefficient. Use of α̂ and 
given by Eq. (38) in Eq. (37) gives the Skempton stress. The TCAT derivation makes it clear
that the pressures that should appear in the expressions for the Bishop and Skempton
stresses are actually surface averages rather than volume averages. This is the main change
from the traditional forms. Terms that arise from the surface curvature that contribute to the
stress have also been identified above and can be retained, if desired or if they are found to
be important, so that a more complete expression for the stress is obtained.

The TCAT procedure shows that the solid pressure in Eq. (34) is given by the form [69]

(41)

The solid stress tensor has its classical form, obtained as an average of the microscale solid
stress tensor and is related to the second Piola-Kirchhoff stress tensor

(42)

where js is the microscale solid phase jacobian. This evaluation of the macroscale stress-
strain pair has been shown to be consistent with the Hill-Mandel condition [69], i.e. the total
work done in the system based on microscale quantities is the same as the total work based
on macroscale conditions [77, 107]. The resulting expressions of the solid stress tensor
obtained using TCAT are more complex than those appearing typically in the literature
because the distinction between averages of pressure over surfaces and phase regions is
incorporated into the model. Additionally, the relation between microscale and macroscale
pressures is explicit. The Bishop-like parameters are not assumed but dependences on both
volume fractions and solid surface fractional areas are retained, and the influence of the
interfacial tensions on system behavior is included in the model.

TCAT analysis has facilitated an improvement in standard analyses of work input for
unsaturated porous media [81, 172]. This is useful for the choice of the appropriate stress
variables in the investigation of the mechanical and hydric behavior of multiphase porous
media. It is also useful for the identification of the strains that are work conjugate to the
chosen stresses. For a three phase medium the work input has been derived in the form [70]

(43)

where the following restrictions have been imposed: the interfaces and common curve have

negligible mass; the common curve lineal tension is negligible such that  ; mass
exchange between entities is negligible; the solid deformations are considered infinitesimal;
and the gradient in the areas per volume is negligible.

Gray et al. Page 20

Adv Water Resour. Author manuscript; available in PMC 2014 January 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



We show now a practical advantage in adopting the split employed in the Skempton stress
(Eqs. (37) and (38)) based on the TCAT definition of the terms and the expression for work
input. In geomaterials changes of the relative humidity produce a load on the solid phase
related to the evolution of the capillary pressure. This additional load produces a
macroscopic deformation of the skeleton and may cause shrinkage or swelling. The
phenomenon can be properly described through the effective stress principle and appropriate
stress-strain relationships. As an example shown in Fig 2, a concrete sample has been
exposed to a drying process down to very low degrees of relative humidity; and the ensuing
volumetric strains (shrinkage) have been measured. The process has then been simulated
with two different effective stress formulations. One form is that proposed by Coussy [32,
33], which makes use of a differential expression such that

(44)

Implementation of this form in a code requires that the differential form be properly
evaluated [150]. The Coussy form is based on RT ideas and proposes that the Helmholtz
free energy of the solid phase depends only on sw, temperature, and the Lagrangian strain
tensor [151]. A second form employed is the TCAT representation of the Skempton stress
where the capillary pressure is generalized to account for disjoining pressure. These two
expressions were used to simulate the behavior of concrete that is being dried down to a
very low degree of humidity. As demonstrated in Fig 2, both formulations model the
shrinkage strain well down to a humidity of about 30%. However, the data point at about
12% humidity is modeled much more effectively by the TCAT model of system variables
and parameters. This is so because the Coussy form includes an incomplete differential form
of the Helmholtz free energy and thus the resulting stress form is incomplete. This
difference is of primary importance at low relative humidity, which is consistent with the
data shown in the figure.

6 Megascale Modeling Based on Averaging
Averaging procedures can also be employed to facilitate transformation of equations and
problem descriptions to scales larger than the macroscale. In some cases, for example, it
may be useful to construct a model that ignores spatial variation in one or more dimensions.
Thus, in those dimensions averaging is performed over the system or a portion of the
system. Such an approach is common, for example, in developing shallow water equations
for surface water flow [96, 99, 105], in deriving equations for flow in groundwater aquifers
when the Dupuit assumption that flow is essentially horizontal applies [15, 131, 146], in
deriving the Saint Venant equations for river flow [1, 37, 92], and in vertically averaged
models for land subsidence due to sub-surface pumping [16, 17, 153]. The averaging need
not be performed over the entire megascale of a system but can include only a portion of the
region, as long as variation in the variables over that region in the direction of averaging is
not required [e.g., a multilayer flow model as in 5, 106, 158].

The most significant effort to apply averaging theory in conjunction with a thermodynamic
closure theory in the context of megascale systems is the work of Reggiani and co-workers
[141–145]. The idea of this work is to identify each element of a watershed (e.g., river
channel, aquifer, hillslope) as a megascale element. Then these elements are hooked together
by accounting for the fluxes between elements. This work was conducted using RT as the
thermodynamic formalism [142]. Use of RT in this context suffers from the issues
mentioned previously, but the shortcomings are even more problematic for large systems
where representative values are needed for variables that have significant microscale
variability. Since the average values of quantities such as pressure and temperature provide
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potentials for flow between elements, it is important that these be developed in an
appropriate form. Because of problems with the pressures obtained being used to drive flow,
a patching of the equations was performed to include the gravitational potential [143]. This
serves to make the appearance of the RT formalism seem satisfactory, but problems persist
about the physical interpretation of some of the symbols that arise and of the validity of the
closure relations. Work required to incorporate a better thermodynamic formalism into the
study of watersheds at the megascale is significant and has not been published.

The TCAT approach to megascale modeling has been advanced recently but is in its infancy.
One effort examined stream channel flow to determine the entropy production rate in
uniform flow and the minimum entropy production rate for gradually varied flow [51]. A
general procedure for employing TCAT in the megascale context with regard to porous
media has been presented and applied to single-fluid-phase-flow [60]. Results obtained
using this method have been applied to column flow for the purpose of confirming Darcy’s
experimentally based law and studying the validity of its extension to the macroscale
situation [63].

7 Discussion
During the years of existence of Advances in Water Resources a significant effort has been
made to put the formulation of larger scale models of environmental systems, particularly
porous media, on firm theoretical grounds. Averaging of the conservation equations has
been applied to equations describing interfaces between phases and common curves where
interfaces come together as well as to fluid and solid phases. Although the averaging of
these equations can be accomplished relatively easily using appropriate mathematical
theorems, the problem arises as to how to close these resultant equations. Because
conservation equations must not violate principles of thermodynamics, an implementation of
the method to exploit the entropy inequality [31] has been found useful.

One of the challenges in using this method has been the identification of a suitable
thermodynamic formalism. This problem arises even when one is performing microscale
closure analyses, and its resolution has led to the proposition of thermodynamic structures
that go beyond classical irreversible thermodynamics. The rational thermodynamic
approach, which allows for a memory effect and expands the set of independent variables on
which energy depends, has been used with some success at the microscale despite the fact
that it can be criticized because it does not retain the classical definitions of variables such
as temperature and entropy [103, 110]. RT is a mathematical, rather than a physical,
formalism. The physical disconnect between variables that arise at the macroscale or
megascale increases with length scale when the thermodynamics are proposed, using an RT
formalism, directly at that larger scale of interest. Because the phases and their properties
are distributed within the averaging region in ways that typically are non-uniform, the
representation of these properties, particularly intensive properties, is challenging. It is
particularly important to ensure that consistency exists across scales so that computations
and/or measurements made at a small scale can be systematically transformed to a larger
scale in a way that is consistent with their appearance in governing equations. Otherwise,
there can be no rigorous multiscale verification of models.

As a tool for overcoming the inadequacies of neglecting thermodynamic implications
altogether or of creating a disconnect between the microscale and the larger scale, the TCAT
approach has proven to be valuable. The most important characteristic of this method is that
a precise relationship is obtained between larger scale variables and their smaller scale
antecedents. This feature allows for the use of experimental and computational studies to be
employed to study the relations obtained. The important feature of TCAT that provides its
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robustness are the incorporation of microscale equilibrium and thermodynamic relations
directly into the formalism.

The TCAT approach has not only led to macroscale and megascale formulations that have
not been obtained previously, it has enabled shortcomings of the ACRT approach to be
identified. These include imprecise definitions of intensive variables, a lack of independent
equations, and incorrect formulations of the stress tensors, particularly in evaluating the
stress on a surface. The TCAT formalism adds a layer of complexity, partly seen in the
definitions of variables that arise (e.g., large scale pressures are obtained both as averages
over surfaces and averages over phases); but the ability of TCAT to differentiate among
these different averages and allow identification of the meaning of the larger scale variables
makes it robust.

As Advances in Water Resources looks forward to its next 35 years, much work remains in
allowing the methods for rigorous change in scale to reach their potential. The equations
obtained must become the forms which underlie stochastic analyses; the values and
importance of parameters that enter the equations must be obtained through interdisciplinary
work; the forms obtained must be incorporated into existing codes. TCAT has confirmed the
observation that “insofar as science is a body of knowledge, that body is provisional: much
of what we thought we knew in the past has turned out to be incomplete, or plain wrong.”
[91]. With an open-minded approach to what we think we know about modeling systems at
a larger scale, a willingness to question and confirm results, the flexibility to change course
when needed, and the humility to admit that some favored approaches have not panned out,
we can ensure a more effective future.
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Notation
Roman letters

d rate of strain tensor

d differential

Ew internal energy per volume of the w phase

e infinitesimal strain tensor

ez unit vector along the axis of a channel positive in the direction from end 1 to end 2

f constitutive function equal to pn − pw

g gravitational vector

g magnitude of the gravitational vector

H vector function equal to the difference between the average of the gradient of the
microscopic pressure and the gradient of volume averaged pressure

H enthalpy per volume

h hydraulic head

I identity tensor

index set of fluid phases, {w, n}
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index set of interfaces, {wn, ws, ns}

Jw surface curvature of the boundary of phase w defined as the surface divergence of
the outward normal from entity w

js microscale solid phase jacobian

K̂ proportionality constant

K̂T bulk modulus

k̂ε tensor coefficient

modified generation rate coefficient for wn interfacial area

L column length

l averaging length scale

M an arbitrary weighting function used in defining larger-scale averages

nα unit vector positive outward from phase α on its boundary

a measure of total system pressure

p pressure

macroscale measure of the pressure of the α phase, α ∈ {w, n, s}, whose definition
must be provided or derived

pressure of the α phase averaged over the αβ interface that forms a portion of the
boundary of the α phase

q volumetric flow rate per cross-sectional area in one-dimensional flow

q volumetric flow rate per unit volume vector

sα saturation of fluid phase α where α ∈ {w, n}

t stress tensor

t time

Vm a vector consisting of m scalar variables

v velocity

W work input

X reference configuration of the solid phase

x position vector in the solid phase

Greek letters

α qualifier used to indicate a phase, interface, or common curve such that here α may
be specified to take on the values w, n, s, wn, ws, ns, or wns

α̂ Biot coefficient

αβ qualifier typically referring to an interface between phases, αβ ∈ wn, ws, ns

β qualifier, or part of a qualifier, typically taking on values referring to a phase, β ∈
{w, n, s}

γ interfacial tension

ε porosity, = 1 − εs
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εα volume fraction of phase α when α ∈ {w, n, s}

εαβ area of αβ interface per unit volume where αβ ∈ {wn, ws, ns }

εwns common curve length of wns common curve per unit volume

Λ unit vector tangent to the axis of a cylindrical column

μ chemical potential

ρ mass density

σ solid-phase Lagrangian stress tensor

effective stress tensor divided by the solid phase volume fraction

τ̂A coefficient in linearized force-flux relation for capillary pressure dynamics

fraction of the solid surface in contact with the α phase forming an αs interface
where α ∈ {w, n}

ψ gravitational potential

Ω spatial domain

Subscripts (for microscale) and superscripts (for macroscale)

c capillary pressure

eq equilibrium value

i designates ends i = 1 and i = 2 of a column

n non-wetting-phase qualifier

ns qualifier for interface formed between non-wetting and solid phases

s solid-phase qualifier

ss solid surface qualifier

Total total stress tensor

trad traditional form of the total stress tensor

w wetting-phase qualifier

wei wetting phase at end i of a column

wn qualifier for interface formed between wetting and non-wetting phases

wns qualifier for common curve formed where the wetting, non-wetting, and solid
phases meet

ws qualifier for interface formed between wetting and solid phases

ww qualifier indicating the total surface bounding the w phase

α entity qualifier

αβ entity qualifier indicating an αβ interface

Symbols

∇ gradient operator

∇′ surface gradient operator
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– above a superscript refers to a density weighted macroscale average

= above a superscript refers to a larger scale quantity whose relation to a
microscale quantity is unknown in RT or is a uniquely defined larger scale
quantity in terms of averages of microscale quantities using TCAT

〈Fα〉Ωβ,Ωγ,M

, general average of microscale property F of
entity α obtained as a weighted average over domain Ωβ where M is the
weighting function, normalized by the weighting function integrated over
domain Ωγ. When M = 1 it may be omitted in the expression.

〈Fα〉Ωα,Ωα,ρα

, density weighted average of a microscale
property F of an entity over that entity

〈Fα〉Ωα,Ωα

, volume average of a microscale α phase
(interface) property F over the phase (interface)

〈Fα〉Ωαβ,Ωαβ, average of a microscale property F of phase α over the αβ
interface

Abbreviations and Acronyms

ACRT averaging of conservation equations with rational thermodynamics

AWR Advances in Water Resources

CEI constrained entropy inequality

CIT classical irreversible thermodynamics

EIT extended irreversible thermodynamics

MVA method of volume averaging

RT rational thermodynamics

SEI simplified entropy inequality

TCAT thermodynamically constrained averaging theory

TIV theory of internal variables
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Highlights

• use of thermodynamically constrained averaging theory (TCAT) in upscaling.

• discusses advantages of TCAT relative to other averaging approaches.

• Indicates key features of the TCAT approach in modeling multiphase systems.

• Clarifies misconceptions about developing meaningful physical upscaled
variables.

• Defines capillary pressure for multiphase flow and stress tensor in
geomechanics.
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Fig. 1.
Elements of the TCAT approach.
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Fig. 2.
Comparison of results for shrinkage strain obtained by assuming respectively the Skempton
effective stress and the Coussy effective stress, with experimental data from Baroghel-
Bouny et al. [11]. Redrawn from [151].
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