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Summary
Copy number variants (CNVs) are alternations of DNA of a genome that results in the cell having
a less or more than two copies of segments of the DNA. CNVs correspond to relatively large
regions of the genome, ranging from about one kilobase to several megabases, that are deleted or
duplicated. Motivated by CNV analysis based on next generation sequencing data, we consider the
problem of detecting and identifying sparse short segments hidden in a long linear sequence of
data with an unspecified noise distribution. We propose a computationally efficient method that
provides a robust and near-optimal solution for segment identification over a wide range of noise
distributions. We theoretically quantify the conditions for detecting the segment signals and show
that the method near-optimally estimates the signal segments whenever it is possible to detect their
existence. Simulation studies are carried out to demonstrate the efficiency of the method under
different noise distributions. We present results from a CNV analysis of a HapMap Yoruban
sample to further illustrate the theory and the methods.
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1. INTRODUCTION
Structural variants in the human genome (Sebat et al., 2004; Feuk et al., 2006), including
copy number variants (CNVs) and balanced rearrangements such as inversions and
translocations, play an important role in the genetics of complex disease. CNVs are
alternations of DNA of a genome that results in the cell having a less or more than two
copies of segments of the DNA. CNVs correspond to relatively large regions of the genome,
ranging from about one kilobase to several megabases, that are deleted or duplicated.
Analysis of CNVs in developmental and neuropsychiatric disorders (Feuk et al., 2006;
Walsh et al., 2008; Stefansson et al., 2008; Stone et al., 2008) and in cancer (Diskin et al.,
2009) has led to the identification of novel disease-causing mutations, thus contributing
important new insights into the genetics of these complex diseases. Changes in DNA copy
number have also been highly implicated in tumor genomes; most are due to somatic
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mutations that occur during the clonal development of the tumor. The copy number changes
in tumor genomes are often referred to as copy number aberrations (CNAs). In this paper,
we focus on the CNVs from the germline constitutional genome where most of the CNVs
are sparse and short (Zhang et al., 2009).

CNVs can be discovered by cytogenetic techniques, array comparative genomic
hybridization (Urban et al., 2006) and by single nucleotide polymorphism (SNP) arrays
(Redon et al., 2006). The emerging technologies of DNA sequencing have further enabled
the identification of CNVs by next-generation sequencing (NGS) in high resolution. NGS
can generate millions of short sequence reads along the whole human genome. When these
short reads are mapped to the reference genome, both distances of paired-end data and read-
depth (RD) data can reveal the possible structure variations of the target genome (for
reviews, see Medvedev et al. (2009) and Alkan et al. (2011)). The mapping distances
between pair-ends of reads provide better power to detect small- to medium size insertions/
deletions (indels) or CNVs (Medvedev et al., 2009; Alkan et al., 2011). In this approach, two
paired reads are generated at an approximately known distance in the donor genome and
pairs mapping at a distance that is substantially different from the expected length, or with
anomalous orientation, suggest structural variants. Methods based on the mapping distances
often involve finding the clusters of reads that show anomalous mapping (Chen et al., 2009).
Instead of mapping the short reads onto the reference genome, one can also perform whole
genome de novo assembly and align the de novo assemblies of two genomes in order to
identify gaps and segmental rearrangements in pair-wise alignments (Li et al., 2011).
However, this approach requires data from two genomes.

Another important source of information useful for inferring CNVs from reads alignment is
the read depth. The RD data are generated to count the number of reads that cover a
genomic location or a small bin along the genome which provide important information
about the CNVs that a given individual carries (Shendure and Ji, 2008; Medvedev et al.,
2009). When the genomic location or bin is within a deletion, one expects to observe a
smaller number of read counts or lower mapping density than the background read depth. In
contrast, when the genomic location or bin is within an insertion or duplication, one expects
to observe a larger number of read counts or higher mapping density. Therefore, these RDs
can be used to detect and identify the CNVs. The read-depth data provide more reliable
information for large CNVs and CNVs flanked by repeats, where accurate mapping reads is
difficult. The read depth data also provide information on CNVs based on the targeted
sequences where only targeted regions of the genome are sequenced (Nord et al., 2011).

In this paper, we consider the problem of CNV detection and identification based on the
read depth data from the next generation sequencing. Several methods have been developed
for such read depth data. Yoon et al. (2009) developed an algorithm for read depth data to
detect CNVs, where they convert the read count of a window into a Z-score by subtracting
the mean of all windows and dividing by the standard deviation and identify the CNVs by
computing upper-tail and lower-tail probabilities by using a normality assumption on the RD
data. The windows are then selected based on the extreme values of these probabilities
controlling for the genome-wide false-positive rates. Abyzov et al. (2011) developed an
approach to first partition the genome into a set of regions with different underlying copy
numbers using mean-shift technique and then merge signal and call CNVs by performing t-
tests. Xie and Tammi (2009), Chiang et al. (2009) and Kim et al. (2010) developed methods
for CNV detection based on read depth data when pairs of samples are available. The basic
idea underlying these two methods is to convert the counts data into ratios and then apply
existing copy number analysis methods developed for array CGH data such as the circular
binary segmentation (CBS) (Olshen et al., 2004) for CNV detection. Methods have also
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been developed for CNV detections in cancer cells (Ivakhno et al., 2010; Miller et al., 2011)
based on the RD data.

One common feature of these existing methods is to make a certain parametric distribution
assumption on the RD data. However, the distribution of the RD data is in general unknown
due to the complex process of sequencing. Some recent literature assumes a constant read
sampling rate across the genome and Poisson distribution or negative-binomial distribution
for the read counts data (Xie and Tammi, 2009; Cheung et al., 2011). However, due to GC
content, mappability of sequencing reads and regional biases, genomic sequences obtained
through high throughput sequencing are not uniformly distributed across the genome and
therefore the counts data are likely not to follow a Poisson distribution (Li et al., 2010;
Miller et al., 2011; Cheung et al., 2011). The feature of the NGS data also changes with the
advances of sequencing technologies. To analyze such data, classical parametric methods do
not work well. It is crucial for these methods to specify the distribution of their test statistics,
which depends on the data distribution. Misspecified data distribution can lead to a complete
failure of these methods. Although some data distributions can be estimated by
nonparametric methods, popular nonparametric methods such as permutation are often
computationally expensive and not feasible for ultra-high dimensional data. Therefore,
robust methods that are adaptive to unknown data distributions and computationally efficient
at the same time are greatly needed. The goal of the present paper is to develop such a robust
procedure for CNV identification based on NGS data and to study its properties.

In this paper, we assume that a long linear sequence of noisy data {Y1, …, Yn} is modeled
as

(1)

where q = qn is the number of signal segments, possibly increasing with n, I1, … Iq are
disjoint intervals representing signal segments, μ1,… μq are unknown constants, and ξ1, …,
ξn are i.i.d. random errors with median 0. Here positive μi implies duplication or insertion

and negative mean implies deletion. Let  denote the set of all segment intervals.
For the problem of CNV detection based on the NGS data, Yi is the guanine-cytosine (GC)
content-adjusted RD counts at genomic location or bin i, which can be regarded as
continuous when coverage of the genome is sufficiently high, for example greater than 20
(Yoon et al., 2009; Abyzov et al., 2011). This model describes the phenomenon that some
signal segments are hidden in the n noisy observations. The number, locations, mean values
of the segments, and the distribution of the random errors are unknown.

The problem of segment detection and identification can be separated into two steps. The
first step is to detect the existence of such signal segments, i.e. to test

and the second step is to identify the locations of the segments if there are any. A procedure
called the likelihood ratio selection (LRS) (Jeng et al., 2010) has recently been developed to
treat the above problem in the case of Gaussian noise. Under the Gaussian and certain
sparsity assumptions, the LRS has been shown to be optimal in the sense that it can separate
the signal segments from noise whenever the segments are identifiable. However, when the
noise distribution is heavy-tailed, the LRS may fail and provide a large number of
misidentifications. To tackle this difficulty, in the present paper we introduce a
computationally efficient method called robust segment identifier (RSI), which provides a

Cai et al. Page 3

J R Stat Soc Series B Stat Methodol. Author manuscript; available in PMC 2013 November 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



robust and near-optimal solution for segment identification over a wide range of noise
distributions. As an illustration, we generate 1000 observations based on Cauchy (0, 1), and
set the signal segment at [457 : 556] with a positive mean. Figure 1 compares the LRS with
the RSI. In this example, the LRS fails to work at all by identifying too many false
segments, while the RSI, on the other hand, provides a good estimate of the signal segment
even when the noise distribution is unknown and heavy-tailed.

A key step of the RSI is a local median transformation, where the original observations are
first divided into T small bins with m observations in each bin and then the median values of
the data in these bins are taken as a new data set. The central idea is that the new data set can
be well approximated by Gaussian random variables for a wide collection of error
distributions. After the local median transformation, existing detection and identification
methods that are designed for Gaussian noise can then be applied to the new data set. Brown
et al. (2008) and Cai and Zhou (2009) used local medians to turn the problem of
nonparametric regression with unknown noise distribution into a standard Gaussian
regression. Here we use the local median transformation for signal detection and
identification that is robust over a large collection of error distributions, including those that
are heavy-tailed. Local median transformations or other local smoothing procedures have
been applied in analysis of microarray data for data normalization (Quackenbush, 2002).

To elucidate the effect of data transformation in the simplest and cleanest way, we begin by
considering the detection part of our problem, which is to test H0 against H1. We propose a
robust segment detector (RSD), which applies the generalized likelihood ratio test (GLRT)
to the transformed data. Arias-Castro et al. (2005) shows that the GLRT is an optimal
procedure for detecting a single segment with constant length in the Gaussian noise setting.
We find here that the RSD is an near-optimal procedure for the transformed data when the
bin size m is properly chosen. The key condition for the RSD to be successful is that some

segment Ij has its mean and length roughly satisfying  and the
noise density satisfies the Lipschitz condition, where h(0) is the noise density at 0. Clearly, a
larger value of h(0), which corresponds to a more concentrated noise distribution, results in
a more relaxed condition. This result agrees with our intuition that detection of signal
segments should be easier if the noise distribution is more concentrated.

The RSD can detect the existence of signal segments with unknown noise distribution.
However, it does not tell where the signal segments are. For segment identification, we
propose a procedure called robust segment identifier (RSI), which first transforms the data
by binning and taking local medians, then applies the LRS procedure on the transformed
data. Unlike the RSD, which searches through all possible intervals after the data
transformation, the RSI utilizes the short segment structure and considers only short
intervals with length less than or equal to L, where L is some number much smaller than T.
Furthermore, the data transformation step significantly reduces the dimension from n to T.
These together make the RSI a computationally efficient method to handle ultra-high
dimensional data. It is shown that the RSI provides robust identification results for a large
collection of noise distributions, and it is a near-optimal procedure for the transformed data
when m and L are properly chosen.

The rest of the paper is organized as follows. Section 2 introduces the data transformation
technique and the robust segment detector (RSD). The robust segment identification
procedure RSI is proposed and its theoretical properties are studied in Section 3. Numerical
performance of RSI is investigated in Section 4 using simulations and is compared with the
performances of LRS and CBS. We then present results in Section 5 from an analysis of
sequence data of one individual from the 1000 Genomes Project (http://www.
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1000genomes.org/). We conclude with a discussion in Section 6. The proofs are detailed in
the Appendix.

2. Data Transformation and Robust Detection
In this section, we first introduce the local median transformation to tackle the problem of
unknown and possibly heavy-tailed noise distribution. After the transformation the data can
be well approximated by Gaussian random variables. A robust segment detection procedure
is then developed to reliably separate H0 from H1 over a wide range of noise distributions.

2.1. Local median transformation
Let Y1, … Yn be a sequence of observed data generated from Model (1) with an unknown
noise distribution. We assume there are q sparse and short signal segments in the observed
data and the number of observations n is very large. The goal is to detect and identify these q
segments. In order to do so, we first equally divide the n observations into T = Tn groups
with m = mn observations in each group. De ne the set of indices in the k-th group as Jk =
{i : (k − 1)m + 1 ≤ i ≤ km}, and generate the transformed dataset as

(2)

Set

(3)

then the medians Xk can be written as

(4)

where

After the local median transformation, the errors ξi in the original observations are re-
represented by ηk. The main idea is that ηk can be well approximated by Gaussian random
variable for a wide range of noise distributions. Specifically, we assume that the distribution
of ξi is symmetric about 0 with the density function h satisfying h(0) > 0 and

(5)

in an open neighborhood of 0. This assumption is satisfied, for example, by the Cauchy
distribution, the Laplace distribution, the t distributions, as well as the Gaussian distribution.
A similar assumption is introduced in Cai and Zhou (2009) in the context of nonparametric
function estimation. The distributions of ηk are approximately normal. This can be precisely
stated in the following lemma.

LEMMA 2.1. Assume (1), (5), and transformation (4), then ηk can be written as

(6)
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where  and ζk are independent and stochastically small random variables
satisfying Eζk = 0, and can be written as

with

(7)

(8)

for some a > 0 and C > 0, and all l > 0.

The proof of this lemma is similar to that of Proposition 1 in Brown et al. (2008) and that of
Proposition 2 in Cai and Zhou (2009), and is thus omitted. The key fact is that ηk can be

well approximated by , which follows N(0, 1/(4h2(0)m)), so that after the
data transformation in (4), existing methods for Gaussian noise can be applied to Xk, 1 ≤ k ≤
T. It will be shown that by properly choosing the bin size m, a robust procedure can be
constructed to reliably detect the signal segments. We note that the noise variance for the
transformed data, 1/(4h2(0)m), can be easily estimated and the estimation error does not
affect the theoretical results. So we shall assume h(0) to be known in the next section.
Estimation of h(0) is discussed in Section 3.

2.2. Robust segment detection
Our first goal is signal detection, i.e., we wish to test  against . When the
noise distribution is Gaussian, the GLRT, which applies a thresholding procedure on the
extreme value of the likelihood ratio statistics of all possible intervals, has been proved to be
an optimal procedure in Arias-Castro et al. (2005). However, the threshold used by the
GLRT may perform poorly on non-Gaussian data. We propose the RSD, which applies a
similar procedure to the transformed data, and we show that the RSD provides robust results
over a wide range of noise distributions satisfying (5). For simplicity of presentation, we
assume that μi > 0, for i = 1, …, q. When both positive and negative signal segments exist, a
simple modification is to replace the relevant quantities with their absolute values.

The RSD procedure can be described as follows. After the local median transformation,
define for any interval 

(9)

and threshold

(10)

The RSD rejects H0 when , where  is the collection of all possible
intervals in {1, …, T}.

Note that the threshold λn is chosen by analyzing the distribution of  under the null
hypothesis H0. By (6), we have
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(11)

were

Since ζk are stochastically small random variables according to Lemma 2.1, 

should be much smaller than  for large m. The following lemma provides the

asymptotic bounds for both  and .

LEMMA 2.2. Assume (1), (5), and transformation (4) with m = log1+b n for some b > 0. For the
collection  of all the possible intervals in {1, …, T}, we have

(12)

for some a > 4 and C > and

(13)

Lemma 2.2 and (11) imply that the threshold on  should be approximately that

of , Which is log  We set the threshold slightly
more conservatively. The following theorem shows the control of family-wise type I error.

THEOREM 2.1. Assume (1), (5), and transformation (4) with m = log1+b n for some b > 0. For
the collection  of all the possible intervals in {1, …, T},

Note that the above bound  converges to 0 quite slowly. To better control the

family-wise type I error, we can increase λn a little to  for some
εn = o(1). This small increase does not change the theoretical results in this paper.

When there exist segmental signals that are strong enough, the RSD with threshold λn can
successfully detect their existence while controlling the family-wise type I error. This is
shown in the following theorem.

THEOREM 2.2. Assume (1), (5), and transformation (4) with m = log1+b n for some b > 0. If
there exists some segment  that satisfies
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(14)

and

(15)

for some ε > 0, then RSD has the sum of the probabilities of type I and type II errors going
to 0.

Condition (14) guarantees that the difference between |Ij|/m and the cardinality of {Jk : Jk ⊆
Ij} is negligible. Condition (15) shows the requirement for the signal strength of some
segment Ij, which is a combined effect of μj and |Ij|. Note that this condition is easier to
satisfy for a bigger h(0), which corresponds to a more concentrated noise distribution. This
agrees with our intuition that the detection of signal segments should be easier if the
observation noises are more concentrated.

Next we characterize the situation when RSD cannot have asymptotically vanishing type I
and type II errors. In fact, in this situation, no testing procedure works.

THEOREM 2.3. Assume (1), (5), and transformation (4) with m = log1+b n for some b > 0. If
, and for all segments Ij ∈ ,

(16)

(17)

for some ε > 0, then no testing procedure constructed on the transformed data X1, …, XT
has the sum of the probabilities of type I and type II errors going to 0.

The results in Theorem 2.2 and 2.3 imply that RSD is an near-optimal procedure to detect
short signal segments based on X1, …, XT. It can successfully separate H0 and H1 based on
the transformed data whenever there exists some testing procedure that is able to do so.

The RSD is robust over a wide range of noise distributions when assumption (5) is satisfied.
On the other hand, in the special case when the Gaussian assumption does hold for the noise
distribution, the GLRT procedure specifically designed for this case is more efficient. The

GLRT rejects H0 if , where  is the collection of all possible intervals

in {1, …, n} and  We have the following proposition.

PROPOSITION 2.1. Assume (1) and ξi ~ N(0, 1). If there exists some segment  that satisfies

(18)

for all ε > 0, then the GLRT built on the original Yi has the sum of the probabilities of type I
and type II errors going to 0. On the other hand, if log q = o(log n), and for all segments

,

(19)
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(20)

for some ε > 0, then no testing procedure has the sum of the probabilities of type I and type
II errors going to 0.

This proposition generalizes Theorems 2.1 and 2.2 in Arias-Castro et al. (2005). By
comparing Proposition 2.1 with Theorem 2.2 and 2.3, we can see the exact power loss due to
the local median transformation if noise distribution is known to be Gaussian. Note that

when ξi ~ N(0, 1), condition (5) is satisfied with . If we use the

transformed data, the detection bound of  is , where

 is the corresponding bound for the original data. Therefore, the power loss is due to

the stronger condition on . However, a significant advantage of the RSD is that it
automatically adapts to a wide range of unknown noise distributions, while the GLRT
procedure specifically designed for the Gaussian case may fail completely if the noise
distribution is heavy-tailed.

3. Robust Segment Identification
In this section we turn to segment identification, which is to locate each  when the

alternative hypothesis is true. Recall the model , where  for some .

In this section, we define , and

, and assume

(21)

which means that the lengths of the signal segments are neither too long nor too short.
Examples of such segments include these that have . Further, assume

(22)

which implies that the number of signal segments are less than nb for any b > 0.

To identify each , a computationally efficient method, called the robust segment
identifier (RSI), is proposed. RSI first transforms data by (4) and then applies a similar
procedure as the LRS to the transformed data. The selected intervals have their statistics
X(Î) defined in (9) pass certain thresholds and achieve local maximums. The RSI is
computationally efficient even for ultra-high dimensional data. The transformation step
significantly reduces the dimension by a factor of m. Further, the second step utilizes the
short-segment structure and only considers intervals with length ≤ L/m, where L is some
number much smaller than n.

The ideal threshold for RSI should be the same as that of RSD, which is λn defined in (10).
However, h(0) is usually unknown in practice and needs to be estimated. By Lemma 2.1,

 is approximately the standard deviation σ of the transformed noise ηk, which
can be estimated accurately when signals are sparse. One such robust estimator is the
median absolute deviation (MAD) estimator:
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(23)

Therefore, we can set the data-driven threshold for the RSI at

(24)

The algorithm of RSI for a fixed L, can be stated as follows.

Step 1: Transform data by (4). Let  be the collection of all possible subintervals in
{1, . . . ,T} with interval length ≤ L/m.

Step 2: Let j = 1. Define , where X(Ĩ) and  are defined as in (9)
and (24).

Step 3: Let  and update .

Step 4: Repeat Step 3–4 with j = j + 1 until  is empty.

Step 5: For each  generated above, let  and

, and denote .

Denote the collection of selected intervals as . If , we reject the null
hypothesis and identify the signal segments by all the elements in . Note that the above
RSI procedure is designed for positive signal segments (μj > 0). When both positive and
negative signal segments exist, a simple modification is to replace the X(Ĩ) in step 2 and 3
with |X(Ĩ)|.

We now show that with m and L chosen properly, the RSI consistently estimates the
segmental signals if they are strong enough. Define the dissimilarity between any pair of

 and  as

(25)

It is clear that  with  indicating disjointness and 
indicating complete identity. The following theorem presents estimation consistency of the
RSI for .

THEOREM 3.1. Assume (1), (5), and transformation (4) with m = log1+bn for 0 < b < 1. Suppose
that  is an -consistent estimator of the standard deviation of ηk for some γ > 0, and L
satisfies

(26)

If (15) is stasfied for all , then the RSI is consistent for  in the sense that
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(27)

for some δn = o(1).

The asymptotic result (27) essentially says that both the probability of having at least one
false positive and the probability of some signal segments not being matched well by any of
the selected intervals are asymptotically small. Condition (26) provides some insights on the

selection of L. The range  is very large when signal segments are relatively short and
rare as in the applications we are interested. The second part log L = o(log T) is satisfied, if,
for instance, L = loga T for a ≥ 0. More discussions and some sensitivity study on L for the
original LRS procedure in the Gaussian case can be found in Jeng et al. (2010).

Recall Theorem 2.3, which shows that when signals are very sparse, no testing procedure
based on the transformed data can separate H0 and H1 if, for all ,

. This implies that the RSI is an near-optimal
identification procedure for the transformed data when m and L are properly chosen. In
other words, the RSI consistently estimates the signal segments whenever it is possible to
detect their existence based on the transformed data.

4. Simulation Studies
We evaluate the finite-sample behavior of the RSI through simulation studies and compare
its performance with the performances of LRS and another popular procedure, circular
binary segmentation (CBS) (Olshen et al., 2004).

4.1. Performance of RSI under different noise distributions
We generate ξi from a set of t-distributions with degrees of freedom 1, 3, and 30, where t(1)
is the standard Cauchy distribution, which has heavy tails. As the degree of freedom
increases, the tails get thinner, and the t-distribution approaches to the standard normal.
Nevertheless, the t-distributions satisfy the general assumption in (5). We set the sample size
at n = 5 × 104, the number of segments at , the lengths of the segments at |I1| = 100, |I2|
= 40 and |I3| = 20, respectively, and the signal mean for all segments at μ = 1.0, 1.5, and 2.0,
respectively. We randomly select three locations for the segments and generate the data
from

i = 1, …, n, where α = μ if i is in some signal segment, and α = 0 otherwise.

We apply the RSI on Yi with m = 20, L = 120, and , where  is calculated as
in (23). Figure 2 shows the histograms of the original data Yi ∈ [−60, 60] with t(1) noise and
μ = 1, and that of the transformed data Xk. Clearly, even though the original distribution is
far from being Gaussian, the transformed data is close to be normally distributed. In this
case, m = 20 is large enough to stabilize the noise. More discussions on the choice of m are
given in Section 4.3.
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As used in Jeng et al. (2010), the identification accuracy of RSI is measured by two
quantities, Dj and #O, where Dj measures how well the signal segment Ij is estimated, and
#O counts the number of over-selections. In detail, for each signal segment Ij, define

where  is defined in (25). Obviously, smaller Dj represents better matching between

Il and some estimate , and Dj = 0 iff . Define

So #O is a non-negative integer, and #O = 0 if there are no over-selected intervals. Note that

according to Theorem 3.1,  should be at least  for segment
Ij to be consistently estimated by RSI in this example.

We repeat the simulations 50 times to calculate Dj and #O. The medians of D1, …, Dq, and
#O are reported in Table 1 with estimated standard errors. To estimate the standard errors of
the medians, we generate 500 bootstrap samples out of the 50 replication results, then
calculate a median for each bootstrap sample. The estimated standard error is the standard
deviation of the 500 bootstrap medians. Table 1 shows that the RSI provides quite accurate
estimation for any of the signal segments when μ is large enough. In all the cases, the over-
selection error is controlled very well. It also shows that larger μ is needed for shorter
segments, which agrees with our theoretical results. More importantly, the results are very
stable over different noise distributions.

4.2. A comparison with LRS and CBS
In the second set of simulations, we compare the performance of RSI with that of the
original LRS and CBS under different noise distributions. All the parameters are chosen the
same as in the previous simulations except that μ is fixed at 2.0. Further, the maximum
interval length L for the original LRS is set at 45. Table 2 shows that in the cases of t(1) and
t(3), the LRS has lower power and a large number of over-selections, while RSI remains
very stable. In contrast, CBS fails to select any true intervals. When noise distribution is
t(30), which is very close to Gaussian, both LRS and CBS outperform RSI with better power
and better identification of the signal segments. However, RSI still performs reasonably well
and has no over-selection. This agrees with our theoretical results in Section 2.2.

We next consider the case when the errors have heterogeneous variances along the genome.
The baseline noise is generated from N(0, 1). We randomly select 100 intervals with length
of 50 and generate heterogeneous noise in these intervals. In each interval, the noises follow
N(0, σ2), where σ is generated from Gamma(2, τ) with τ = 0.5, 1 and 1.5. Note that the
noise variances are constant within an interval but different for different intervals. The
bottom half of Table 2 shows the comparison of the three procedures. RSI still has the best
overall performance. It results in smaller numbers of over-selections than LRS and better
power than CBS. However, as the noise variance increases, RSI can result in more over-
selections.

The computation is more expensive for LRS, especially for the t(1) and t(3) cases, because a
large number of intervals pass the threshold of LRS. On the other hand, RSI is
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computationally much more efficient because the data transformation step regularizes the
noise and also reduces the dimension from n to T.

4.3. Choice of m
The third set of simulations evaluate the effect of the bin size m on the performance of the
RSI. We use the same simulation setting as in the first set of simulations except that μ is
fixed at 2.0, m takes values of 10, 20, and 40.

Table 3 shows that there is a trade-off between the power and over-selection when m varies.
Smaller m results in better power but more over-selections, especially when the noise
distribution has heavy tail. The greater power is due to finer binning, which preserves the
signal information better. On the other hand, when m is large, it is possible that none of the
original observations in segments with length less than m is kept in the transformed data,
such as the case when m = 40 and I3 = 20. However, if m is too small, the Gaussian
approximation of the transformed noise is not accurate enough to overcome the effect of the
heavy-tailed noise on segment selection, which in term leads to more over-selections in the
case of t(1) and m = 10.

5. Application to Identification of CNVs Based on the NGS Data
To demonstrate our proposed methods, we analyze the short reads data on chromosome 19
of a HapMap Yoruban female sample (NA19240) from the 1000 Genomes Project. Let Yi
denote the GC content adjusted number of short reads that cover the base pair position i in
the genome, for i = 1, …, n where n is very large. After the short reads are mapping to the
reference human DNA sequences, we obtain the RD data at n = 54, 361, 060 genomic
locations. Figure 3 (a) shows the read depth for the first 10, 000 observations of the data set.
The median of the count number over all n sites is 30.

The statistical challenges for CNV detection based on NGS data include both ultra-high
dimensionality of the data that requires fast computation and unknown distribution of the
read depths data. A close examination of our data shows that the variance of the data is
much larger than its mean, indicating that the standard Poisson distribution cannot be used
for modeling these RD data.

We apply the proposed RSI with m = 400 and L = 150, which assumes that the maximum
CNV based on our pre-processed data is 400 × 150 = 60, 000 base pairs (bps). This is
sensible since typical CNVs include multi-kilobase deletions and duplications (McCarroll
and Altshuler, 2007; Medvedev et al., 2009). We chose L=150 partially due to
computational consideration. If the true CNVs are longer than the maximum allowable
interval length, these intervals are often divided into several contiguous segments, we can
then simply perform some post-processing to merge these segments into longer ones. The
RSI selected 115 CNV segments, ranging from 400 to 75,991 bps in sizes, among these 24
are contiguous segments. After merging these contiguous segments, we obtained 101 CNVs,
ranging from 400 to 125,440 bps in sizes with a median size of 38,860 bps. See Figure 3 (b)
for the distributions of the sizes of CNVs identified. There are 8 CNVs of size of 400 bps, 4
CNVs of size of 800 bps and 4 CNVs of size of 1200 bps. These small CNVs are identified
since we did not set a lower limit on the sizes of the CNVs.

To visualize the CNVs identified by the RSI, Figure 4 shows six CNVs identified, including
two duplications, two deletions, and two regions with the shortest CNVs. It is clear that
these identified regions indeed represent the regions with different RDs than their
neighboring regions. Examinations of the other CNV regions identified also show that these

Cai et al. Page 13

J R Stat Soc Series B Stat Methodol. Author manuscript; available in PMC 2013 November 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



regions contain more or fewer reads than their neighboring regions, further indicating the
effectiveness of the RSI procedure in identifying the CNVs.

Mills et al. (2011) recently reported a map of copy number variants based on whole genome
DNA sequencing data from 185 human genomes from the 1000 Genomes Project, where
both the RDs and the pair-end mapping distances were used for CNV identifications.
Among the methods applied in Mills et al. (2011), three were based on the RDs data as we
used in our data set. These three methods identified a total of 438, 332 and 615 CNVs on
chromosome 19, respectively, based on the data from all 185 samples. Out of the 101 CNVs
we identified for one single sample NA19240, 76 of them overlap with the CNVs reported
in the CNV map of (Mills et al., 2011), indicating high sensitivity of our method in detecting
the CNVs based on the RD data since our CNVs calls are based on data from only a single
sample (NA19240). We are not able to make a direct comparison on CNV calls for this
particular sample since the sample-level CNV calls are not available from the publication of
Mills et al. (2011).

6. Conclusion and Further Discussion
Motivated by CNV analysis based on the read depth data generated by the NGS technology,
we have studied the problem of segment detection and identification from an ultra long
linear sequence of data with an unknown noise distribution. We have developed a robust
detection procedure RSD and a robust segment identification procedure RSI, which are
adaptive over a wide range of noise distributions and are near-optimal for the transformed
data. The RSI procedure has been applied to identify the CNVs based on the NGS data of a
Yoruban female sample from the 1000 Genomes Project. The CNV regions identified all
show deviated read depths when compared to the neighboring regions. The key ingredient of
our approaches is a local median transformation of the original data. This not only provides
the basis for our algorithm and theoretical development, but also save a large amount of
computational cost by greatly reducing the data dimension, which makes it particularly
appealing for analyzing the ultra-high dimensional NGS data. As more and more NGS data
are becoming available, we expect to see more applications of the RSI procedure in CNV
identifications.

Model (1) does not require a specification of the noise distribution. However, we assume
that the noises are i.i.d, which can be violated for the RD data. The noise distribution of the
RD data is directly related to the uncertainty and errors inherent in the sequencing process
and is the result of complex processing of noisy continuous fluorescence intensity
measurements known as base-calling. Bravo and Irizarry (2010) showed that the complexity
of the base-calling discretization process results in reads of widely varying quality within
sequence samples and this variation in processing quality results in infrequent but systematic
errors. Such errors can lead to violation of the i.i.d assumption for the RD data. While such
errors can have great impact on analysis of single nucleotide polymorphisms and rare
genetic variants, their impact on RD data distribution and CNV identification is not clear.
Our simulations (Table 2) showed that when the noise has heterogeneous variances, RSI can
still identify the correct CNVs unless the variance is very large.

The methods presented in this paper can be extended to more general settings, where one
only needs to assume that the density function h of the noise satisfies
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Obviously, this assumption is more general than (5) (Brown et al., 2008). To accommodate
this more general assumption, a larger m is needed for the robust methods developed in this
paper. Our methods can also be extended to detect and identify general geometric objects in
two-dimensional settings (Arias-Castro et al., 2005; Walther, 2010). Other interesting
extensions include identification of CNVs shared among multiple individuals based on the
NGS data and test for CNV associations. Our methods provide the basic tools for these
extensions in order to consider structured signals with unknown and possibly heavy-tailed
noise distributions.
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Appendix: Proofs
In this appendix we present the proofs for Lemma 2.2, Theorem 2.1, 2.2, 2.3, and 3.1.

Proof of Lemma 2.2
(13) has been proved in Arias-Castro et al. (2005). We only need to show (12).

Decompose  as , where  and

. Then

(28)

Let Ak = mζk1, then by (7) in Lemma 2.1, EAk = 0 and E|Ak|l ≤ Cl for any l > 0. According
to Lemma 2 in Zhou (2006), there exists some positive constant ∊′ such that for any 0 ≤ x ≤
∊′ and interval ,

where  is the survival function of a standard normal random variable. Then we have

(29)

where the last step is by Miller's inequality. On the other hand,  implies that there

exists some ζk2 such that , then

(30)

where the second inequality is by (8) and the last inequality is by the choice of m. Combine
(28)–(30) we have
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(31)

and consequently

Therefore, (12) follows by letting  for some a > 4.

Proof of Theorem 2.1

Decompose  into two terms:

By (11) and (13), the first term

On the other hand, it is easy to show that the second term is bounded by  using
(12). Result follows by combining the upper bounds of the two terms.

Proof of Theorem 2.2
Since Theorem 2.1 implies that the type I error of RSD goes to 0, all we need to show is

(32)

Suppose that under H1 segment  satisfies (14) and (15). Define  to be the collection of
the index of Jk such that Jk ⊆ Ij, i.e.

(33)

then

(34)

and for each , θk = μj. This combined with (4) and (6) implies that
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which further implies that

By (34), (14) and (15), we have

Then

(35)

where the last inequality is by Miller's inequality and (31). (32) follows directly.

Proof of Theorem 2.3

Let  and . Assume (A) each  is in

{ } for some lj, where  is defined in (33). We show that no testing
procedure has both type I and type II errors going to 0 under this situation. This is enough to
show that no procedure has both type I and type II errors going to 0 without assuming (A).
Let

then Wl can be rewritten as

where , , and  at all but at most  positions

where  by (17).
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By the well-known relationship between the L1 distance and the Hellinger distance, it is

enough to show that the Hellinger affinity between the distribution of  under the
null and that under the alternative tends to 1 − o(1/n), i.e, define

where  represents the density function of , and it is enough to show

where  and . Further, define

. Then . Applying
Taylor expansion gives

where, by Cauchy-Schwarz inequality,

Now, by the range of ν and the conditions on  and maxj |Ij|, it is sufficient to show

The following Lemma is implied by Lemma 3.1 in Cai et al. (2010).

LEMMA 6.1.

where ϕ is the density function of a standard normal random variable.

Then it is enough to show

(36)

and
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(37)

Consider (36) first. By convolution,

where

by (31), and

where the last step is by (31) again, and

Summing up above gives (36).

Next, consider (37). By convolution again,

where

by (31). Note that in Dn, ϕ(x) ≥ Cn−1, then III = o(ϕ(x)). Further, we have
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where

by the choice of m and the fact that |ϕ′(x)| ≤ Cϕ(x) for all x. Summing up above gives

(38)

in Dn. Similarly,

(39)

in Dn. Substitute (38) and (39) into the definition of E[g2(X)1Dn] gives (37).

Proof of Theorem 3.1
It is sufficient to show that the set  of RSI satisfies

(40)

and

(41)

for any δn such that . Note that

 under conditions (21), (22), (26), and the choice
of m.

Consider (40) first. Since

and  converges to λn at the order of , then, by Theorem 2.1 and some routine
calculation, (40) follows.

Next, we show (41). Since all the elements in  can not reach more than one signal
segments, the accuracy of estimating any  by some element in  is not influenced by
the estimation of other segments in . This means that the accuracy of estimating any  is
equivalent to the case when only segment Ij exists. De ne the following events:
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We have

and it is sufficient to show that for any j ∈ {1, …, q},

(42)

and

(43)

Consider (42) first. By the construction of ,

where  is defined in (33). By (35), the fact that  converges to λn at the order of

 and some routine calculation, (42) follows.

Now consider (43). Define

for some C > 0. Since for an interval I, D(I, Ij) > δn implies , where  is the

collection of the index of Jk such that Jk ⊆ I, then  implies , where  is defined

in the Step 3 of RSI algorithm. This further implies the existence of some  such

that . Denote

We have
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Since , which converges to 

exponentially fast, and ,
then we have

It is left to show

(44)

and

(45)

For (44), since , then

where the first term on the right shows up because there is at most one position in  that can
possibly has mean μj, and other positions have mean 0. On the other hand,

So

where the second inequality is because

by conditions (21), (15) and the choice of m, and

(46)

by (31). Therefore, (44) follows.
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For (45), since , we can write

Note that LR1, LR2 and LR3 are independent, and

for some τ > 0. On the other hand,  implies

Combing above with (46) we have

Given (15) and the choice of m, (45) follows for δn satisfying
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Fig. 1.
Effects of long-tailed error distribution on segment identification. Left plot: Data with
Cauchy noise and a signal segment at [457 : 556]. Middle plot: Intervals identified and
estimated interval means by LRS. Right plot: Interval identified and estimated means by
RSI.

Cai et al. Page 26

J R Stat Soc Series B Stat Methodol. Author manuscript; available in PMC 2013 November 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 2.
Simulated data. Left: histogram of the original data Yi with t(1) noise and μ = 1. Right:
histogram of the transformed data Xk.
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Fig. 3.
Analysis of the chromosome 19 data of individual NA19240 from the 1000 Genomes
Project. (a): scatter plot of the first 10,000 observations; (b): histogram of the sizes of the
CNVs identified in base pairs.
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Fig. 4.
Examples of CNV identified on chromosome 19 of NA19240 from the 1000 Genomes
Project. Top two plots: duplications, regions with the highest scores; middle two plots:
deletions, regions with the smallest scores; bottom two plots: the two shortest CNVs
identified. For each plot, the horizontal line presents the median count of 30 and the vertical
dashed lines represent the estimated CNV boundaries. For each plot, x-axis is the genomic
location in base pairs/10,000.
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