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Abstract
Purpose—Although many lung cancers express the epidermal growth factor receptor and the
vascular endothelial growth factor, only a small fraction of patients will respond to inhibitors of
these pathways. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MS)
has shown promise in biomarker discovery, potentially allowing the selection of patients who may
benefit from such therapies. Here, we use a matrix-assisted laser desorption/ionization MS
proteomic algorithm developed from a small dataset of erlotinib-bevacizumab treated patients to
predict the clinical outcome of patients treated with erlotinib alone.

Methods—Pretreatment serum collected from patients in a phase I/II study of erlotinib in
combination with bevacizumab for recurrent or refractory non-small cell lung cancer was used to
develop a proteomic classifier. This classifier was validated using an independent treatment cohort
and a control population.

Result—A proteomic profile based on 11 distinct m/z features was developed. This predictive
algorithm was associated with outcome using the univariate Cox proportional hazard model in the
training set (p = 0.0006 for overall survival; p = 0.0012 for progression-free survival). The
signature also predicted overall survival and progression-free survival outcome when applied to a
blinded test set of patients treated with erlotinib alone on Eastern Cooperative Oncology Group
3503 (n = 82, p < 0.0001 and p = 0.0018, respectively) but not when applied to a cohort of patients
treated with chemotherapy alone (n = 61, p = 0.128).

Conclusion—The independently derived classifier supports the hypothesis that MS can reliably
predict the outcome of patients treated with epidermal growth factor receptor kinase inhibitors.
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Recent advances in our understanding of cancer biology have led to the development of
therapeutics that target pathways important for tumor growth and survival. One such
pathway involves epidermal growth factor receptors (EGFRs). High EGFR expression is
often observed in non-small cell lung cancer (NSCLC) and has been associated with a poor
prognosis. Targeting this pathway with the EGFR tyrosine kinase inhibitor (EGFR-TKI)
erlotinib confers a survival benefit for patients with advanced lung cancer.1 Another
pathway important for tumor growth involves the vascular endothelial growth factor
(VEGF), a major regulator of angiogenesis, and thus represents an ideal target for
therapeutic intervention. VEGF expression is up-regulated in many solid tumors and is an
independent predictor of poor prognosis in patients with NSCLC.2 A survival benefit is
observed when bevacizumab, a humanized monoclonal antibody targeting VEGF, is
combined with chemotherapy in patients with advanced lung cancers.3 Given their vital
roles in tumor growth and survival, targeting the EGFR and vascular endothelial growth
factor receptor pathways represents a rational approach toward the treatment of NSCLC.

Recent results from a randomized phase II trial evaluating the combination of bevacizumab
and erlotinib without chemotherapy demonstrated that approximately 50% of patients
derived clinical benefit from this treatment.4 The other 50% were exposed to toxicities
whereas deriving no benefit. EGFR mutations, increased EGFR gene copy number, k-ras
mutations, and overexpression of the EGFR protein have been explored as predictive
markers for the response to treatment response with EGFR-TKIs. To date, EGFR mutations,
copy number, and EGFR expression levels have been predictive of the response or the
survival in some studies.5 EGFR gene copy number was also predictive for the EGFR-TKI
response in the second and third line settings.6 These biomarkers require tumor tissue
analysis and are not sufficiently conclusive for routinely selected patients who would derive
benefits from therapy with EGFR-TKI. In addition, although there are candidate markers to
predict response to erlotinib treatment, no markers are available to predict benefit from
bevacizumab. Despite considerable evidence for the association of intratumoral and/or
plasma VEGF levels with tumor progression and/or poor prognosis, pretreatment VEGF
levels are not predictive of response to bevacizumab therapy.7 Thus, better prediction tools
are needed to maximize treatment benefits while minimizing toxicity.

Matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry
(MS) can be used to generate protein signatures from biologic specimens such as tissue,
urine, and serum. The technique also offers the advantages of rapidity and sensitivity.
Unfortunately, previous studies with serum MS proteomics as biomarkers have suffered
from the lack of reproducibility and validation. These problems have led to general
skepticism about this technology and its use in the development of cancer biomarkers.8

Recently, utilizing serum MALDI-TOF MS, Taguchi et al.9 reported a proteomic signature
that independently classified patients according to their clinical outcome after treatment with
EGFR-TKI therapy, but not with chemotherapy. This finding suggests that MALDI-TOF
MS may still be useful for biomarker development and eventual clinical utility. In the
present study, we developed another independent proteomic signature obtained from patients
treated with erlotinib and bevacizumab that can not only accurately classify this group of
patients based on clinical outcome in a leave-one-out analysis, but also can be used to
independently classify outcome in patients treated with erlotinib alone. Furthermore, despite
the small training set, the variability of signals between obtained spectra was small,
suggesting that data generated from MS are reliable and reproducible. This study thus lends
further support to the use of serum MALDI-TOF in biomarker discovery.
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METHODS
Patients and Samples

MS was performed on pretreatment serum samples from patients who were treated with
erlotinib and bevacizumab in an open-label, phase I/II study. Forty patients were enrolled in
this study. All were diagnosed with histologically proven stage IIIB (with pleural effusion)
or stage IV, recurrent, nonsquamous NSCLC. Pretreatment patient samples were available
for 37 of 40 patients in the clinical trial. Further details regarding the patient population and
the clinical trial were described previously.4 The validation cohort (n = 82) comprised of
patients enrolled in Eastern Cooperative Oncology Group (ECOG) 350. The Vanderbilt
University control group patients were comprised of unselected patients treated under
various institutional review board approved chemotherapy protocols at Vanderbilt
University Medical Center.9 These patients were treated in both the first and second line
settings. None were treated with EGFR-TKI at time of relapse.

Sample Preparation and Mass Spectrometry
The sera were thawed on ice and diluted 1:20 in a saturated sinapinic acid solution (35 mg/
ml sinapinic acid (Sigma, St. Louis, MO), 50% acetonitrile (Burdick & Jackson, Muskegon,
MI), and 0.1% trifluoroacetic acid (Sigma, St. Louis, MO)). To avoid confounding variables
associated with the run order, samples were randomly spotted in triplicate, placed on gold
64-well sample plates, and allowed to dry at room temperature. Mass spectra for all samples
were generated in linear mode using a Voyager-DE STR workstation. The results from 500
to 525 independent spectrum acquisitions per sample were averaged to generate each
spectrum. To avoid day-to-day bias, the spectrometry of all triplicate samples was repeated
on two other days (for a total of 3 days). All mass spectra were output as column text files of
intensity versus mass/charge (m/z). Mass spectra from ECOG 3503 and the Vanderbilt
control cohort were obtained from Dr. David P. Carbone.9

Spectral Preprocessing
Raw spectra were analyzed with Wave-spec software developed at the Vanderbilt University
High Dimensional Data Analysis Center. Detailed information on preprocessing was
published previously.10 Briefly, preprocessing comprised of internal calibration, smoothing,
baseline correction, normalization to the total ion current, feature selection based on signal-
to-noise ratio, and binning of features. Internal calibration was performed using the Apo-C1
(m/z = 6631), hemoglobin (m/z = 15127), hemoglobin β chain (m/z = 15127), and two
unidentified, common peaks m/z = 9423 and m/z = 13746. A total of 174 bins were selected
from m/z ratios between 3000 and 20,000. The preprocessing parameters were optimized
based on the training set and were fixed when applied to the preprocessing of the
independent test set.

Experimental Reproducibility and Variability Determination
Experimental variability and reproducibility (both analytical and biologic) were first tested
on 277 spectra generated from 37 available serum samples. We used Coefficients of
Variation (CV) as a measure of the relative variability between the expression levels of each
peak or feature. We also used a nested, random-effect model, testing the variability not only
between patients, but also with the acquisition day factor nested within each patient. The
intraclass correlation coefficient (ICC), a measure of correlation, consistency, or conformity
for a dataset when it contains multiple groups, is defined by the expression:
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where  is the variance between patients and  is the pooled variance within a patient
and between days. The distribution across peaks for CV, variance components, and ICC are
presented in quantiles and box-plots.

Risk Prediction Model
Serum sample were available from 37 of 40 patients enrolled in the clinical trial. Of these,
35 provided both spectral data and associated clinical data used to develop the risk
prediction model. Features or peaks associated with survival were selected based on a
univariate Cox regression analysis, considering mean intensity for one feature at a time. A
false discovery rate of <0.05 was used as cutoff for selecting important features. Once
significant features were selected, the compound score (denoted as ci) for patient i was
defined as

(1)

where xj,i is the peak intensity of the feature j for patient i, wj is the Wald statistic, and βj is
the coefficient obtained with the univariate Cox regression analysis for the set of k selected
significant features. The compound score (ci) is then used as prediction index. A prediction
model was then developed based on the Cox model with the compound score as predictor,

(2)

The compound score for a new patient with the vector of intensity ( ) for the

selected features can be calculated by replacing xj,i with  in (1), which is then used to
predict the survival time for that patient.

Validation of Prediction Model Using ECOG and VU Control Cohorts
For the validation of the predictive power of the compound score derived in (2), the Cox
proportional hazards (CPH) model was first fitted with this compound score as the only
covariate, whereas overall survival (OS) and progression-free survival (PFS) served as
outcome variables, respectively. After the univariate analysis, baseline clinical factors were
entered into the model along with the compound score to determine whether the compound
score could serve as an independent predictor for survival.

For the VU control cohort, smoking status, stage, and compound score were prespecified in
the multivariable CPH model. For the ECOG cohort, model building techniques were used
in four steps relying first on univariate testing for each of the candidate variables. Only
variables with a statistical significance of p < 0.2 were considered for the next step of model
building. Backward elimination, forward selection, and stepwise selection (with p < 0.1)
were then performed on the variables to select possible models. In the final stepwise step,
two-way interactions under the hierarchical principle were also added for consideration in
the model. The Akaike’s information criterion was adopted to make comparisons among a
number of possible models. The smaller the value of this statistic, the better the model fits
the data.

The proportional hazards assumption of each covariate was evaluated after model building
using time-by-covariate interactions. Model fitting was assessed via the Cox-Snell
generalized residuals plot and diagnostics for influential points. OS and PFS survival curve
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for the subgroups of categorized compound scores were estimated using the Kaplan-Meier
method. Analyses were performed using SAS version 9.1 and R version 2.1.1.

RESULTS
Reproducibility of Data Processing

Patient characteristics from the three cohorts used for testing and validation are summarized
in Table 1. We generated 277 spectra from the available 37 samples in the erlotinib/
bevacizumab study. The average number of spectra per patient was 7.5 (range, 5–9). Across
all sera, 139 peaks in the 3,000 to 20,000 m/z range were detected. To quantify the relative
variability of the features or peaks, we generated Coefficients of Variation (CV) using 139
common peaks for all samples, and for samples from each of the 3 replicated days (Figure
1A). The comparable and low mean CV of <5% across the 3 days and comparable overall
CV suggest that the spectra did not differ significantly and that our spectrometry was
reproducible. We used intraclass correlation coefficients (ICC) to measure consistency and
conformity among the multiple groups within our training set. The obtained mean ICC of
0.5192 indicates a relatively large intrasample variability (Figure 1B); therefore, nine
replications of the same sample were measured to reduce the heterogeneity of the expression
profiles in each tumor sample. Observed patient, day, and residual variance (a measure of
variability distribution) for the 139 common peaks in our dataset are shown in Figure 1C.

MALDI-MS Algorithm Accurately Classifies Outcomes for Patients Treated with Erlotinib-
Bevacizumab

Features associated with survival were selected using a univariate CPH model, with peak
intensity as covariate or associated with clinical outcome. Eleven features were selected
according to their statistical significance, defined by a false discovery rate <0.05 (Table 2).
Using the ±Wald statistic and peak intensities of these 11 features, a compound score for
each patient was generated. To illustrate that the compound score can differentiate
intensities of the 11 selected features, we generated an intensity plot comparing the mean
peak intensity of the group with high intensity score, defined as those with compound score
≥ median compound score (114.7862), to that from the group with low intensity score
(<114.7862). The difference in mean intensities between the two groups is easily observed
in peaks with m/z values greater than 5000 (Figure 2A). At higher magnification, differences
within peak regions 4121, 4596, and 4821 can also be detected (Figure 2B). Although the
two average curves show negligible differences at peak 4710, some individual spectra from
samples with high compound scores demonstrated disparate peaks at this value. Whether an
identified peak is a product of technology or biology will ultimately be established by
validation and perhaps protein identification. Figure 2C shows a heatmap to better visualize
the relationship between the compound scores and peak intensities for the 11 selected
features.

MALDI-MS Algorithm Accurately Classifies Clinical Outcome in Patients Treated with
Erlotinib-Containing Regimen

Using the univariate CPH model, the proteomic algorithm based on the 11 distinct m/z
features was found to be associated with clinical outcome in both OS and PFS (p = 0.0006
for OS; p = 0.0012 for PFS). We used the median scores to generate binary data to improve
data visualization. We found a tight relationship between compound scores and clinical
outcome when we compared the survival of patients whose compound scores were less than
the median (114.7862) to the survival of those whose scores were equal or greater. The
Kaplan–Meier survival curves for the two groups are shown in Figure 3A. The group with
the scores that were lower than the median shows a statistically significantly greater OS and
PFS (log-rank test, p = 0.00284 and p = 0.014, respectively).
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We applied the prediction algorithm to a validation cohort from ECOG protocol E3503, a
phase II trial of erlotinib. Each patient was given a compound score based on our
classification algorithm, and the results were sent to the ECOG Statistical Office for
correlation with the clinical data. The analysis is based on 82 patients, excluding ineligible
patients and those without an available compound score. With the obtained proteomic
signature, we were able to classify OS and PFS outcome for samples from the blinded test
set of patients treated with erlotinib alone on ECOG 3503 (univariate CPH model, p <
0.0001 and p = 0.0018, respectively). When the compound scores were again sorted into two
groups, one whose scores were equal or above the median (131.0321) and one below,
patients with lower compound scores had better OS and PFS than those whose prediction
scores were higher (log-rank test, p < 0.0001 and p = 0.003, respectively). Figure 3B shows
a Kaplan-Meier plot for OS and PFS.

Because the analyses were based on survival, it is possible that the survival outcome
classification derived from the MALDI-TOF MS algorithm merely indicates performance
status or overall general health, and was not specific to treatment with the erlotinib-
containing regimen. To test whether the profile was predictive or merely prognostic, we
used a control cohort of 61 patients with advanced NSCLC who were treated with various
chemotherapy regimens at Vanderbilt University Medical Center, and for whom clinical
data and spectra were available.9 About 80% of these patients received carboplatin and
paclitaxel. No difference in OS was noted between the two groups, one whose scores were
equal or above the median (133.2427) and one below (univariate CPH, p = 0.128 and log-
rank test, p = 0.181) (Figure 3C). These findings suggest that our MS algorithm is predictive
of patients who would benefit from erlotinib, and not merely prognostic. However, further
testing in a prospective, randomized setting is needed to ascertain that this observation is not
merely an artifact due to the retrospective nature of our study.

To determine whether our profiles have independent predictive ability in outcome for
patients treated with bevacizumab/erlotinib, we tested our proteomic algorithm, using the
CPH model with the adjustment of common baseline factors. After adjusting for age, sex,
and histology, our predictors remained significant for OS and PFS. In the ECOG cohort, the
predictors held after adjustment for the number of meta-static sites and performance status.
The results obtained using multivariate model for the different cohorts including that for VU
Control are summarized in Table 3.

DISCUSSION
In the present study, we developed a novel MALDI-TOF MS survival prediction model with
which NSCLC patients can be identified who may benefit from treatment with an erlotinib-
containing regimen. To develop this model, a training set of 37 patients treated with
bevacizumab and erlotinib was used. Despite the small sample size, the model retained its
predictive abilities on multivariate testing against the ECOG 3503 validation cohort. By
contrast, we could not classify patients treated with chemotherapy alone, suggesting that it is
not merely prognostic, but moreover predictive for outcome in patients treated with EGFR
inhibition with or without bevacizumab. Though our findings are encouraging, we cannot
rule out that potential confounders and selection bias due to the retrospective nature of our
study may result in an incorrect estimate of the association between the algorithm and
clinical outcome.

There is a dearth of practical and clinically useful biomarkers for diagnosis, prognosis, and
disease monitoring in lung cancer. Early studies using MS to develop proteomic profiles
from patient sera, coupled with advanced data mining algorithms had triggered hopes that
this technology could be used for cancer diagnosis, prognosis, and disease/treatment
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monitoring.11 The enthusiasm for this technology has diminished due to the lack of
reproducibility, procedural bias, and virtually no independent confirmation.8,12 Although the
two current proteomic technologies MALDI-TOF MS and surface-enhanced laser desorption
and ionization MS may differ in their approaches and sensitivity, the potential pitfall
involving data reproducibility remains a significant universal concern. To avoid systematic
or procedural bias in our study, the positions on the plates were randomized, and the sample
spectrometry was replicated a total of nine times and on multiple days. Despite the relatively
small dataset, the low and consistent coefficient variation among peaks, low variance, and
high intraclass correlation affirm the potential for reproducibility of proteomic approaches.

Interestingly, while the patients in our cohort were treated with bevacizumab and erlotinib,
our predictors could accurately classify patients from ECOG 3503 who were treated with
erlotinib alone. Furthermore, of the 11 mass spectral features identified in our study, five
overlap with those from another independent, proteomic algorithm developed by Taguchi et
al.9 Their model was based on patients treated with erlotinib alone. Because there has been
no demonstrated clinical efficacy for bevacizumab alone in human lung cancer, it is
reasonable to propose that the predictive power of the classifier is the result of direct
augmentation of the erlotinib activity by bevacizumab. It is also possible that the addition of
bevacizumab to the erlotinib treatment in our training set, compared with the erlotinib-only
population from Taguchi et al., may account for the incomplete overlap of mass spectral
features. These hypotheses will need to be tested against patients treated with erlotinib/
bevacizumab and erlotinib alone. Unfortunately, such samples are not yet available to us.
Nevertheless, validation of our predictors using the ECOG independent dataset and the
identification of similar discriminant mass spectral features in another independent
algorithm suggest that our observations most likely reflect biology and not simply data
overfitting.

Finally, although we have not yet identified the proteins represented by our 11 selected
features, our proteomic signature is unable to predict outcome in the chemotherapy-treated
cohort. This finding suggests that the selected features represent proteins that are not just
stress-related. Of note, a number of current biomarkers used for cancer screening and
treatment monitoring such as CA-125, prostate-specific antigen, and CA-19-9 have no direct
role in cancer pathogenesis. Thus, it is highly possible that the proteins we have identified as
predictive will not give insights into pathways or mechanisms of disease or treatment
response. Clearly, only further rigorous testing in a prospective clinical trial setting can
determine whether any candidate biomarker will have clinical utility regardless of its
identification.

In summary, we have demonstrated that a small dataset can be used to develop a prediction
model using MALDI-TOF MS from the sera of patients with NSCLC. With sample
randomization and replication, we were able to avoid extreme sample variations and
systemic biases. Furthermore, our model could accurately and independently identify
patients who may benefit from treatment with an erlotinib-containing regimen. Although
further validation with independent, larger cohorts is needed, our findings affirm that MS
can be a useful tool in biomarker discovery.
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FIGURE 1.
Reproducibility analysis of the bevacizumab/erlotinib training data set. A, Coefficient of
variation (CV) using 139 common peaks across all sera in the 3000 to 20,000 m/z range.
The results show low and comparable CV across all days, suggesting highly reproducible
spectra. B, Intraclass correlation coefficient (ICC), a measure of reliability, is 0.5192,
suggesting a good agreement at all common peaks. C, A summary of observed patient, day,
and residual variance (a measure of variability distribution), for the 139 common peaks.
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FIGURE 2.
The intensity plots comparing the mean spectra of samples from the group with high versus
the group with low compound scores, respectively. A, Intensity plots for m/z regions 4000 to
5000, 5000 to 6000, and 11,000 to 12,000 demonstrating different intensities among 11
features (blue lines). The black line denotes mean intensity of peaks from patients with
compound scores equal or less than the median. The red line represents mean intensity of
peaks from patients whose compound scores were greater than the median. B, Magnification
of intensity plots for features 4121, 4596, 4720, and 4821 showing a subtle difference in
intensity between the mean spectrum with high and that with low compound score. C, A
heatmap of the 11 peaks or features from the bevacizumab/erlotinib training data set, ranked
according to compound score. The levels of peak intensity (features 4121, 5720, 5841,
11,441, 11,528, 11,684, 11,731, and 11,902) increase as compound scores increase, whereas
peak intensities of features 4596, 4720, 4821 decrease.
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FIGURE 3.
Survival of patients from the training, testing, and control datasets sorted by median
compound score using Kaplan-Meier analysis. Overall survival (OS) and progression-free
survival (PFS) of patients, whose compound scores were less than the median were
significantly better than those of patients whose scores are equal or greater than the median
in bevacizumab/erlotinib (A) and ECOG 3503 (B) cohorts. (C) OS of VU control cohort
based on median score.
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TABLE 1

Characteristics of the Non-Small Cell Lung Cancer Patients Cohorts

Characteristics Bevacizumab/Erlotinib (n =35a) ECOG 3503 (n = 82) VU Control (n = 61)

Sex (%)

 Male 14 (40) 37 (45.1) 42 (68.9)

 Female 21 (60) 45 (54.9) 19 (31.1)

Age (yr)

 Median 59 70 65

 Range 36–72 41–93 40–84

Stage

 IIIB N/Ab 7 (8.5) 28 (45.9)

 VI N/Ab 59 (72.0) 33 (54.1)

 Recurrent 16 (19.5)

RECIST (%)

 Partial response 8 N/A N/A

 Stable disease 21 N/A N/A

 Progressive disease 6 N/A N/A

Survival (mo)

 Overall (95% CI) 15.25 (7.75-inf) 7.69 (5.39–10.05) 14.63 (10.3–27.27)

 Progression-free (95% CI) 4 (2.25–12.5) 3.38 (2.07–3.91)

a
The total number of patients with available clinical data for survival analysis.

b
The total number of patients in the bevacizumab/erlotinib trial was 40 (seven IIIb, 32 IV, one unknown).

CI, confidence interval; N/A, not applicable; RECIST, Response Evaluation Criteria in Solid Tumors.
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TABLE 2

List of 11 Distinct m/z Features Used to Predict Clinical Outcome

m/z Lower m/z Upper m/z pFDR

1 4121 4112 4128 0.0482

2 4596 4581 4605 0.0857

3 4720 4717 4724 0.0476

4 4821 4804 4833 0.0445

5 5720 5714 5726 0.0362

6 5841 5832 5848 0.0447

7 11441 11423 11455 0.0396

8 11528 11515 11539 0.0483

9 11684 11673 11697 0.0368

10 11731 11717 11742 0.0345

11 11902 11890 11933 0.0381

pFDR, positive false discovery rate.
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TABLE 3

Multivariable Analysis for Patient Data Sets

Factor

OS PFS

Hazard Ratio (95% CI) p Hazard Ratio (95% CI) p

Erlotinib/bevacizumab

 Compound score 1.024 (1.009–1.040) 0.003 1.016 (1.005–1.028) 0.004

 Age 0.992 (0.933–1.056) 0.809 0.979 (0.936–1.024) 0.347

 Sex 1.022 (0.328–3.185) 0.97 0.893 (0.345–2.310) 0.815

Adeno vs. nonadeno 1.679 (0.540–5.223) 0.371 0.933 (0.318–2.736) 0.899

ECOG 3503

 Compound score 1.012 (1.003–1.021) 0.012 1.014 (1.004–1.024) 0.006

 Metastatic site 1.414 (1.191–1.678) p < 0.0001 1.298 (1.086–1.552) 0.004

 PS = 0 vs. PS = 2 0.227 (0.109–0.473) p < 0.0001 NA

 PS = 1 vs. PS = 2 0.388 (0.209–0.791) 0.003 NA

VU control

 Compound score 1.011 (0.996–1.026) 0.161 NA

 Ex-smoker vs. current 0.525 (0.233–1.181) 0.119 NA

 Nonsmoker vs. smoker 0.879 (0.192–4.019) 0.868 NA

 Stage IV vs. IIIB 0.714 (0.369–1.488) 0.4 NA

OS, overall survival; PFS, progression-free survival, CI, confidence interval; NA, not applicable.
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