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Abstract
Donor specific HLA antibodies significantly lower allograft survival, but as yet there are no
satisfactory therapies for prevention of antibody-mediated rejection. Intracapillary macrophage
infiltration is a hallmark of antibody-mediated rejection, and macrophages are important in both
acute and chronic rejection. The purpose of this study was to investigate the Fc-independent effect
of HLA I antibodies on endothelial cell activation, leading to monocyte recruitment. We used an
in vitro model to assess monocyte binding to endothelial cells in response to HLA I antibodies.
We confirmed our results in a mouse model of antibody-mediated rejection, in which B6.RAG1-/-
recipients of BALB/c cardiac allografts were passively transferred with donor specific MHC I
antibodies. Our findings demonstrate that HLA I antibodies rapidly increase intracellular calcium
and endothelial presentation of P-selectin, which supports monocyte binding. In the experimental
model, donor specific MHC I antibodies significantly increased macrophage accumulation in the
allograft. Concurrent administration of rPSGL-1-Ig abolished antibody-induced monocyte
infiltration in the allograft, but had little effect on antibody-induced endothelial injury. Our data
suggest that antagonism of P-selectin may ameliorate accumulation of macrophages in the
allograft during antibody-mediated rejection.
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Introduction
Donor specific antibodies to HLA class I and II molecules have a deleterious impact on graft
survival in solid organ transplantation (1-4), and correlate with chronic rejection (5-8). HLA
I antibody binding to vascular endothelial and smooth muscle cells activates cell signaling
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pathways that are required for increased proliferative capacity, migration, stress fiber
formation, and survival (9-17). Endothelial vesicles known as Weibel-Palade bodies (WPb)
are mobilized after HLA I crosslinking, leading to adherence of the immature neutrophilic
cell line HL60 (18).

Antibody-mediated rejection is a complex process, with characteristic features such as
endothelial cell swelling and complement deposition in the vessels of the graft (19). In
addition, macrophage infiltration frequently accompanies antibody-mediated rejection
(AMR), and correlates with donor specific HLA antibodies and poor graft outcome (20-24).
Macrophages comprise a significant proportion of graft infiltrating cells in acute rejection
(25-29), and are found in lesions of chronic allograft vasculopathy (CAV) in human biopsies
and experimental models (21, 29, 30). Macrophages promote deposition of extracellular
matrix by SMC (31), release soluble mediators that cause endothelial cell proliferation (32),
and may exhibit direct alloreactivity against the allograft (33, 34). Importantly, depletion of
macrophages reduces rejection of murine cardiac allografts (35). Therefore, the
understanding of the mechanism(s) that promote monocyte recruitment may lead to novel
approaches to reduce allograft rejection.

It is incompletely understood how HLA I antibodies may promote monocyte recruitment
into the allograft. In this study, we used an in vitro approach to measure endothelial cell
activation and the Fc-independent recruitment of monocytes in response to HLA I antibody.
Our results show that HLA I signaling in endothelial cells is sufficient to increase monocyte
adhesion mediated by HLA I-induced P-selectin. Using an in vivo model of antibody-
mediated rejection, we confirmed that donor specific MHC I antibodies elicit macrophage
infiltration into the allograft. Importantly this influx can be blocked by the selectin
antagonist rPSGL-1-Ig. This study demonstrates that selectin blockade prevents monocyte
adherence in vitro and intragraft macrophage accumulation in vivo in response to MHC I
antibodies.

Materials and Methods
Reagents

Pan-HLA I antibody (murine monoclonal W6/32, mIgG2a) was obtained from BioXCell.
The F(ab’)2 fragment of W6/32 was generated as previously described (36), or using a kit
from Thermo Scientific. Neutralizing goat (Santa Cruz) or sheep (R&D) antibody to P-
selectin, or antibody to PSGL-1 (Biolegend, San Jose, CA) were used. Purified polyclonal
human IgG was obtained from Fisher Scientific. Calcium inhibitor BAPTA-AM was from
Calbiochem. Recombinant soluble PSGL-1 Fc chimera (rPSGL-1-Ig) was provided by Y’s
Therapeutics (San Bruno, CA). It contains mutations in the crystallizable fragment (Fc)
region to eliminate interactions with complement and FcγRs, and inhibits the initial
tethering of leukocytes to selectins (37, 38).

Cell Culture
The use of the human aortic tissue for the research described herein was approved by the
OneLegacy Biomedical Review Board under the agreement #RS-02-10-2 and UCLA
MTA2009-561. Primary human aortic endothelial cells (HAEC) were isolated from aortic
rings and cultured as previously described (11). Endothelial cells were seeded in 24 or 48
well plates, and grown to confluence before use in experiments. The monocytic cell line
Mono Mac 6 (39, 40) was cultured in RPMI-1640 supplemented with 10% FBS, sodium
pyruvate, nonessential amino acids, antibiotics, and insulin, and maintained at fewer than
106 cells per mL.
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Primary Human Monocytes
Human peripheral blood mononuclear cells (PBMC) were collected under our institutional
review board-approved study and isolated by Ficoll density centrifugation. Monocytes were
enriched using MACS Monocyte Isolation Kit II (Miltenyi). Purity was confirmed by CD14
staining and to be greater than 85%.

Measurement of von Willebrand Factor
Confluent aortic endothelial cells were stimulated with HLA I antibody, thrombin, histamine
or phorbol myristate acetate (PMA) in M199 supplemented with 5% fetal bovine serum
(assay medium) for one hour. Supernatant was collected and von Willebrand Factor (vWF)
was measured using an ELISA kit (Helena Laboratories) according to the manufacturer’s
protocol.

Flow Cytometric Analysis
Cell surface expression of HLA I, E-selectin or P-selectin was measured by flow cytometry.
Basal expression of HLA I on endothelial cells is shown in Supplemental Figure 1.
Endothelial cells were treated with stimuli for the indicated times in assay medium and
detached using Accutase (Innovative Cell). To preserve epitopes, trypsin was not used (41).
Cells stained with PE-conjugated anti-human P-selectin or anti-E-selectin (BD) were
assayed on a FACSCalibur flow cytometer (BD). P-selectin results are expressed as
proportion of cells staining positively, normalized to untreated endothelial cells.

Intracellular Calcium Measurement
HAEC were plated onto gelatin-coated glass coverslips, then labeled with 5μM Fura-2 AM
for 20min at 37°C. Cells were washed and mounted in a standard cuvette filled with saline
(at 37°C) (ANO-2100, Hitachi Instruments). The cuvette was placed in a fluorimeter
(F-2000, Hitachi Instruments) with a heated jacket (37°C), and continuously stirred.
Samples were taken every 0.5 secs (excitation 340nm, emission 380nm) using associated
software (F-2000 Intracellular Cation Measurement System). The ratio of the signals at 340
nm/380 nm provided a monitor of Ca2+ concentration.

Monocyte Adhesion Assay
Preliminary studies determined the optimal concentration of blocking reagents. Adherence
of the monocytic cell line Mono Mac 6 or freshly isolated primary monocytes to endothelial
monolayers was adapted from previously described methods (42). Due to the established
affinity of human FcγRs for murine IgG2a (43, 44), we sought to eliminate antibody-FcγR
interactions. Briefly, HAEC were stimulated and carboxyfluorescein diacetate succinimidyl
ester (CFSE, Invitrogen)-labeled Mono Mac 6 were added at a ratio of approximately 3
monocytes per endothelial cell for 20min. Nonadherent cells were removed by washing
three times. Adherent monocytes were imaged by fluorescence microscopy (Nikon Eclipse
Ti) and counted in 8-10 fields per sample using automated software (CellProfiler or Image J)
(45). HAEC were pretreated with BAPTA-AM (20μM) for 30min, or rPSGL-1-Ig (20μg/
mL) or P-selectin neutralizing antibody (10μg/mL) in the last 10min of stimulation.
Monocytes were pretreated with a neutralizing antibody to PSGL-1 (10μg/mL), or with
polyclonal human IgG (20μg/mL) to block FcγRs where indicated, for 20min (46).

Mice
Male B6.129S7-Rag1tm1Mom (B6.RAG1−/−, H-2b) and male BALB/c (H-2d) mice aged 7-10
weeks old were purchased from Jackson Laboratory (Bar Harbor, ME, USA), housed under
pathogen-free conditions in filter-top cages throughout the experiments and cared for
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according to The Guidelines for Animal Care. All reagents and experiments in this study
were reviewed and approved by the UCLA Animal Research Committee.

Murine heterotopic heart transplantation
BALB/c (H-2d) hearts were heterotopically transplanted into abdominal great vessels of
B6.RAG1 KO (H-2b) recipients as previously described (16). Briefly, under phenobarbital
anesthesia, the donor aorta was anastomosed to the recipient abdominal aorta and the donor
pulmonary artery was joined to the recipient inferior vena cava. Graft function was
monitored daily by abdominal palpation. On day 30 post-operatively, the donor and native
hearts were recovered. All allografts included in the study were functioning at the time of
sacrifice. The base of the heart was fixed in formalin and paraffin-embedded.

Adoptive transfer of monoclonal antibodies
All reagents to which mice were exposed were sterile and azide free. Allograft recipient
mice were passively transferred with 30μg (approximately 1.5mg/kg) isotype control
antibody (clone MOPC-173, Biolegend) or donor specific anti-MHC I antibodies (anti-Kd

mIgG2a, clone SF1-1.1; anti-Dd mIgG2a, clone 34-2-12, Biolegend; diluted in sterile saline)
by tail vein injection the beginning day 3 post-transplant, continuing weekly thereafter.
70μg of rPSGL-1-Ig (approximately 3.5mg/kg) was injected intravenously beginning on day
3 after transplant and continuing biweekly. The dose and administration regimen were based
on previously published studies detailing the pharmacokinetics and efficacy of rPSGL-1-Ig
in mouse (47, 48).

Histologic Analysis of Graft Infiltrating Cells
Histological features of antibody-mediated rejection and immunohistochemical staining in
allografts were assessed by a pathologist blinded to the experimental groups. Microvascular
changes were assessed, including endothelial cell swelling and increased number of
intravascular cells, as previously described (16, 19). Cross sections of formalin-fixed tissue
were stained for Mac-2 (Acris) or CD45 (Millipore). A Mac-2 or CD45 score of 0 indicates
negative staining, 1 is rare, 2 is rare/focal, 3 is focal staining, and 4 is strongest, diffuse
staining.

Initial experiments comparing macrophage infiltration into the allograft between animals
receiving 5μg and 30μg of anti-Kd antibody, or biweekly administration of 30μg anti-Kd

antibody, revealed no statistically significant difference between the three groups when
compared by unpaired T test. Therefore, we combined animals from these groups into a
single group, the anti-Kd antibody treated group. Groups treated with control antibody at
5μg and 30μg were merged into one control antibody treated group.

Flow Cytometric Crossmatch
To confirm the presence of circulating donor specific antibodies, blood was collected at the
time of sacrifice, and serum was separated using a Capiject tube (Terumo T-MG). BALB/c
splenocytes were incubated with 25μL of serum for 30min on ice, then stained with
fluorescein isothiocyanate (FITC)-conjugated goat-anti-mouse-Fcγ and anti-mouse CD3-
phycoerythrin (PE). MHC I antibody binding to T cells was measured by gating on CD3+
using flow cytometry (FACSCalibur, BD).

Statistical Analysis
In the leukocyte adherence assay, the number of adherent cells was counted in 8-10 random
fields for each sample, and the mean number of cells was determined. Statistical significance

Valenzuela et al. Page 4

Am J Transplant. Author manuscript; available in PMC 2014 February 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



between controls and samples was determined using one-way ANOVA followed by
individual comparisons (student’s T-test).

Results
HLA I antibodies trigger endothelial exocytosis of Weibel-Palade bodies via intracellular
calcium

To examine whether HLA I crosslinking on endothelial cells could cause release of
preformed von Willebrand Factor (vWF) and P-selectin from Weibel-Palade bodies (WPb),
we treated confluent monolayers of human aortic endothelial cells with a monoclonal
murine pan-HLA I antibody (W6/32), or with classical agonists thrombin, PMA and
histamine. Stimulation of endothelium with positive controls thrombin, PMA or histamine,
or with HLA I antibody significantly increased vWF secretion by more than 1.5-fold over
untreated control (p=0.025). Negative isotype control murine IgG (mIgG) had no effect
(Figure 1a).

HLA I antibody (5μg/mL) significantly increased the proportion of cells staining positively
in flow cytometry for P-selectin by 2.0+/−0.14 fold over control after 30min (Figure 1b).
Untreated endothelial cells were negative for P-selectin staining. Dose response and kinetics
studies revealed a maximal effect on P-selectin induced by 5μg/mL HLA I antibody at 30
minutes (Supplemental Figure Figure 2a, 2b and 2c). This response was specific to HLA I
antibodies, as treatment of endothelial cells with nonbinding mIgG or non-HLA antibody
against endoglin (CD105) did not significantly alter cell surface P-selectin (Fig. 1b). In
contrast, P-selectin expression was elevated on positive control thrombin, PMA or
histamine-treated endothelial cells. HLA class I mediated WPb exocytosis comparable to
induction by classical agonists (49-54), which trigger rolling of leukocytes on blood vessels
in vivo (55-58). Treatment of EC with HLA class I antibody had no effect on expression of
E-selectin over a 48-hr time frame (Supplemental Fig. 3), whereas TNFα treatment
increased cell surface E-selectin as previously reported (59, 60).

We postulated that HLA I-induced exocytosis might be dependent on Ca2+ signaling.
Pretreatment of endothelial cells with BAPTA-AM to chelate intracellular Ca2+ significantly
inhibited HLA I-induced P-selectin induction, from 1.70+/−0.11-fold without inhibitor to
1.15+/−0.37-fold over control (Figure 1c). Likewise, vWF secretion from endothelium in
response to HLA I antibodies or thrombin was completely prevented by BAPTA-AM (data
not shown). To further confirm that HLA I antibodies increase Ca2+-dependent signaling,
we measured [Ca2+]i in real time after HLA I crosslinking. Endothelial cells treated with
HLA I antibody exhibited a rapid increase in [Ca2+]i levels. As a positive control, we
verified that thrombin treatment rapidly increased free cytosolic Ca2+. In contrast, isotype
control mIgG had no effect on [Ca2+]i levels (Figure 1d).

HLA I antibody-induced endothelial P-selectin is necessary and sufficient to promote
monocyte adherence in vitro

In order to focus on monocyte recruitment due exclusively to HLA I antibody-provoked
endothelial cell signaling and to eliminate interaction of FcγRs with the Fc fragment of
antibody, endothelial cells were treated with an F(ab’)2 fragment of HLA I antibody
(W6/32) and fluorescently labeled Mono Mac 6 were added. Crosslinking of HLA I on
endothelium by HLA I F(ab’)2 significantly increased the number of adherent monocytes by
1.66+/−0.07 fold compared with untreated endothelial cells (p<0.0001) (Figure 2a).
Representative micrographs and raw data from one representative experiment are given in
Figure 2b. As an alternative approach, we treated endothelial cells with intact HLA I
antibody and preincubated Mono Mac 6 with soluble IgG to block FcγRs. Treatment of
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endothelial cells with HLA I antibody significantly increased monocyte adherence by 1.48+/
−0.09 fold (p<0.0001). Thrombin also increased Mono Mac 6 binding, while exposure of
endothelial cells to isotype control mIgG did not (Figure 2a).

We examined whether P-selectin was involved in mediating the increased adherence of
monocytes. rPSGL-1-Ig was added to block P-selectin. Mono Mac 6 adherence to
endothelium was increased by 1.61+/−0.06 fold over control in response to HLA I F(ab’)2,
but was significantly reduced to 1.13+/−0.09 fold over control by rPSGL-1 (76.7+/−12.8%
inhibition). Mono Mac 6 binding to thrombin-stimulated endothelium was also reduced by
the presence of rPSGL-1 (Figure 2c). We substantiated the requirement for P-selectin with
neutralizing antibody to P-selectin, or to monocytic PSGL-1, both of which significantly
prevented Mono Mac 6 recruitment to HLA I F(ab’)2-treated endothelial cells (Figure 2d).
Similar results were obtained using human monocytes enriched from peripheral blood
(Figure 2e), where HLA I F(ab’)2 fragment or positive control PMA increased the number of
monocytes bound to endothelium by more than 2-fold (p<0.01), while anti-CD105 antibody
had no significant effect. Binding of peripheral blood monocytes was significantly inhibited
by P-selectin antagonism (Figure 2e).

To determine whether endothelial cells required intact Ca2+ signaling to recruit monocytes
after HLA I crosslinking, endothelial cells were pretreated with BAPTA-AM. Activation of
BAPTA-AM treated endothelial cells with HLA I F(ab’)2 or thrombin failed to trigger Mono
Mac 6 adherence (p<0.001 compared with no inhibitor) (Figure 2f).

Passive transfer of donor specific MHC I antibodies increases macrophage infiltration into
the cardiac allograft

To elucidate the role of P-selectin under physiological conditions, we utilized an in vivo
model of AMR (16, 61). C57BL/6 RAG1 KO (H-2b) recipients of BALB/c donor (H-2d)
hearts were transferred with murine monoclonal IgG2a recognizing donor MHC I molecules
(anti-Kd or anti-Dd) or control murine IgG2a (MOPC-173). The treatment regimen and dose
of MHC I antibody were based on a previously described mouse model of antibody-
mediated rejection (61, 62). Grafts were recovered on day 30 post-transplant and analyzed as
outlined in Figure 3a.

We performed flow crossmatching to measure circulating antibodies. The flow cytometric
cross-match revealed no binding of sera from control antibody-treated recipients to BALB/c
CD3+ splenocytes. In contrast, sera from animals passively transferred with MHC I
antibodies bound highly to donor CD3+ splenocytes, and cells stained positively even when
serum was diluted to 1:4. These results document the presence of anti-donor antibodies in
the circulation of passively transferred cardiac allograft recipients (Figure 3b).

We then characterized the infiltration of macrophages in cardiac allografts in response to
MHC I antibody treatment by immunohistochemistry. Less than half (42%) of grafts from
animals which received control mIgG2a antibody were positive for macrophages, with a
score of 2 or greater, and none (0%) were strongly positive with a score of 3 or 4 (Table 1).
Strikingly, 84% of cardiac allografts from animals treated with anti-Kd antibody stained
positively for the macrophage marker, with 40% having strong infiltration. Macrophage
staining in anti-Kd antibody-treated allografts was significantly greater (p<0.001) when
compared with allografts from control antibody-treated animals. We confirmed this
phenomenon using a different monoclonal donor specific MHC I monoclonal antibody.
Eighty percent of anti-Dd antibody treated allografts scored positively for macrophages, with
40% having strong macrophage infiltration. When allograft recipients were given both anti-
Kd and Dd antibodies together, all transplanted hearts had a score of two or greater for
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Mac-2 macrophage marker (Table 1 and Figure 3c). These results demonstrate that donor
specific MHC I antibodies promote macrophage accumulation at the allograft site.

The selectin antagonist rPSGL-1 significantly reduces MHC I antibody-elicited macrophage
and CD45+ accumulation in the allograft

We sought to determine whether antagonism of P-selectin could reduce immune cell
recruitment in response to MHC I antibodies in vivo. While greater than 80% of anti-Kd

antibody treated allografts were positive for Mac-2 staining, only 25% of allografts which
received concurrent rPSGL-1 therapy had a Mac-2 score of 2 or higher. Remarkably,
rPSGL-1 abolished the strong macrophage infiltration induced otherwise by donor specific
MHC I antibodies (from 40% to 0%; Table 2 and Figure 4A and 4C).

We also examined the allografts for total immune cell infiltration by immunohistochemistry.
Allografts from control antibody-treated animals were negative for CD45 staining. In
contrast, 57% of allografts from animals which received anti-Kd antibody were positive for
CD45 (score ≥2), and nearly one third (29%) stained strongly for CD45. Increased CD45
infiltration elicited by MHC I antibody (anti-Kd mIgG2a) was abolished by concurrent
administration of rPSGL-1-Fc (p<0.05), as no allografts from animals which received both
anti-Kd antibody and rPSGL-1 were positive for CD45 (Table 3 and Figure 4B). Therefore,
rPSGL-1 therapy specifically reduced macrophage infiltration and prevented CD45+
immune cell infiltration.

The allografts were examined for histological features of antibody-mediated rejection. H&E
sections of cardiac allografts showed characteristic histological features of AMR including
microvascular changes and endothelial cell swelling (Figure 4c) (16, 19, 20, 27). No
hemorrhage or intravascular neutrophils, as commonly seen in severe acute humoral
rejection, were observed. An increase in overall cellularity in the interstitium, with cells in a
linear arrangement indicative of intracapillary macrophages (19, 27), was found in allografts
when compared with native hearts. However, allografts treated with donor specific MHC I
antibody had notably greater cellularity and endothelial cell swelling due to intravascular
macrophages when compared with control antibody-treated grafts (Figure 4c). While
rPSGL-1-Ig therapy decreased cellularity, allografts receiving this treatment had no
detectable change in the histological pattern of endothelial cell injury.

Discussion
In this study, we established that MHC I crosslinking on endothelial cells increases cell
surface P-selectin, which is required for recruitment of monocytes independently of
antibody-FcγR interactions. We also determined that [Ca2+]i signaling downstream of HLA
I ligation is necessary for exocytosis, consistent with previous studies (18, 63). Importantly,
we confirmed these results in an in vivo system, where donor specific MHC I antibodies
increased macrophage infiltration into cardiac allograft, which could be abolished by P-
selectin antagonism.

Given the Ca2+ dependence of exocytosis, we postulated that HLA I crosslinking elicited an
increase in [Ca2+]i in the endothelial cell. HLA I antibodies (1μg/mL) stimulated a sustained
increase in [Ca2+]i, suggesting that Ca2+-dependent pathways are activated shortly after
HLA I signaling. Our group has previously demonstrated that HLA ligation rapidly
stimulates several intracellular signaling pathways, necessary for proliferation and
cytoskeletal changes (14, 64). Increased intracellular Ca2+ (reviewed in (65)) triggers a
variety of signaling pathways, including protein kinase C (PKC), calmodulin and myosin
light chain kinase (MLCK) (66) which are not yet explored in the context of HLA I
signaling. It is interesting that the potent diacylglycerol (DAG) surrogate PMA stimulated P-
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selectin and increased adherence of monocytic cells, suggesting that DAG/PKC acts in
conjunction with Ca2+ signaling in mediating HLA I-triggered events.

Herein, we describe HLA I antibody-elicited recruitment of monocytic cells in vitro, which
could be blocked by several strategies of P-selectin antagonism. P-selectin is an important
early mediator of the leukocyte recruitment cascade, which initiates the capture of immune
cells from circulation and precedes firm adhesion and extravasation events. P-selectin is
upregulated on endothelium in acutely rejecting cardiac allografts, and on thickened arterial
intima during chronic rejection in rodent models (67, 68). Allografts from murine donors
deficient in both intercellular adhesion molecule (ICAM-1) and P-selectin or in all three
selectins (ELP-/-) had significantly longer graft survival than their wild-type counterparts
(69, 70). rPSGL-1 or SLX (antagonists of selectin) reduce immune cell infiltration,
neointimal hyperplasia and rejection in many models (48, 71-76). Currently, clinical trials
are underway to investigate the use of rPSGL-1-Ig in humans as a treatment to reduce
ischemia/reperfusion injury (77-79). However, the effect of rPSGL-1-Ig on long-term
survival and leukocyte recruitment in human transplantation has yet to be revealed.

Our group previously reported increased macrophage infiltration into allografts treated with
a single high dose of MHC I intact antibody or F(ab’)2 (16). P-selectin and vWF were
increased in acutely rejecting murine allografts from wild-type but not IgKO recipients,
suggesting that these mediators are specifically induced in presence of donor specific
antibodies (80, 81). Another group demonstrated that HLA I F(ab’)2 caused rapid neutrophil
recruitment and acute rejection of human skin grafts on immunodeficient mice (18). We
attempted confirm our findings in vivo with an MHC I F(ab’)2 fragment, but were unable to
achieve consistently detectable levels of circulating antibody, likely due to their short half-
life in vivo (82). Nevertheless, the data reported here show that P-selectin is a critical
initiator which facilitates capture of monocytes from the circulation by graft endothelium in
a long-term vascularized model of AMR.

We found that overall CD45+ infiltration was reduced by rPSGL-1 therapy. NK cells,
neutrophils, monocytes and T cells utilize selectins to adhere to endothelium and
transmigrate from the blood into tissue (83-86). Donor specific MHC I antibodies cause
platelet activation in skin allograft recipients (80), and attachment of platelets to
endothelium can support monocyte tethering through P-selectin (87). Moreover, recent data
point to a novel role for NK cells in AMR (61, 62, 88). NK cells adhere to P-selectin during
recruitment to atherosclerotic lesions (89). In our in vivo model, it is possible that
administration of rPSGL-1-Ig also antagonized platelet or NK cell adhesion. While P-
selectin is the preferred ligand of PSGL-1, PSGL-1 can interact with other adhesion
molecules, such as E- and L-selectin and von Willebrand Factor (90). We did not observe an
increase in E-selectin expression induced by HLA I crosslinking in vitro, but E-selectin may
be involved in vivo. In light of the myriad parallel mechanisms which may promote
leukocyte recruitment during antibody-mediated rejection, the promiscuity of rPSGL-1-Ig
may be viewed as advantageous from the therapeutic standpoint since it can disrupt many of
the interactions between leukocytes and endothelium.

Complement and endothelial activation are parallel pathways of AMR. rPSGL-1 therapy did
not change the histological pattern with respect to endothelial cell injury (19, 27),
emphasizing the complexity of antibody-mediated rejection. Our results suggest that
concurrent therapies may be required to inhibit the multiple mechanisms of HLA antibody-
mediated graft injury. We did not observe graft failure in this model, consistent with several
studies (16, 61, 62), nor did we observe chronic vascular lesions in allografts from animals
transferred with MHC I antibody, in disagreement with previous reports (61, 62). This
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inconsistency may be due to the restricted localization of transplant arteriosclerosis in this
model, which is reported to occur only in the proximal coronary arteries.

In conclusion, we have demonstrated that monocyte infiltration is directly triggered by HLA
I antibody activation of endothelial cell exocytosis and P-selectin expression. These results
strongly suggest that selectin antagonism may reduce the accumulation of macrophages and
other recipient immune cells into the allograft during AMR.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Abbreviations

AMR antibody mediated rejection

CAV chronic allograft vasculopathy

CFSE carboxyfluorescein diacetate succinimidyl

ELISA enzyme-linked immunosorbent assay

FBS fetal bovine serum

Fc crystallizable fragment of immunoglobulin

FITC fluorescein isothiocyanate

HAEC human aortic endothelial cell

ICAM intercellular adhesion molecule

PKC protein kinase C

PMA phorbol myristate acetate

vWF von Willebrand Factor
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Figure 1.
HLA I antibodies trigger Weibel-Palade body exocytosis via intracellular calcium.
(a) Human aortic endothelial cells (HAEC) were treated with isotype control mIgG at 5μg/
mL, HLA I antibody (clone W6/32, murine IgG2a) at 5μg/mL, thrombin at 10U/mL, PMA
at 200nM, or histamine at 10mM for 1 hr. Supernatant was collected and vWF was
measured by ELISA. An experiment showing the average optical density from duplicate
measurements +/− SEM (upper panel). Bar graph in lower panel shows mean fold increase
in optical density (OD) from 2 (PMA and histamine) or 3 (mIgG, HLA I antibody and
thrombin) independent experiments for each condition. * p<0.05, ** p<0.01 versus mIgG.
(b) HAEC were treated with mIgG, anti-CD105 antibody, or HLA I antibody at 5μg/mL for
30min, thrombin at 1U/mL for 15min, PMA at 200nM for 20min, or histamine at 10mM for
10min and detached using Accutase. Cell surface P-selectin was stained with conjugated
anti-P-selectin-PE and analyzed by flow cytometry. Bar graph shows mean fold increase in
P-selectin positive cells from multiple independent measurements for each condition: mIgG
(n=5), anti-CD105 antibody (n=2), HLA I antibody (n=10), thrombin (n=3), PMA (n=6),
histamine (n=23). * p<0.05, ** p<0.001 versus untreated.
(c) HAEC were pretreated with BAPTA-AM at 20μM for 30min, then stimulated with HLA
I antibody at 5ug/mL for 1 hour (h) and P-selectin was measured as in (b). Bar graph shows
summary of data from 6 independent experiments. Black bars show the fold increase in P-
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selectin expression without inhibitor, and white bars show P-selectin induction with
inhibitor.
(d) In order to monitor intracellular Ca2+ concentration, HAEC were loaded with Fura 2-AM
and then treated with HLA I antibody at 1μg/mL, thrombin at 0.01U/mL and 1U/mL, or
isotype control antibody (mIgG) at 1μg/mL. Intracellular calcium was monitored in real-
time using a fluorimeter. Data are presented as the ratio of emission at 340nm/380nm, and
are representative of 2 (mIgG and thrombin 0.01U/mL) or 3 (HLA I antibody and thrombin
1U/mL) independent measurements. The time of introduction of reagents is marked with an
arrow.
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Figure 2.
HLA I antibody-induced endothelial P-selectin is necessary and sufficient to support
increased monocyte adherence in vitro.
(a) HAEC were treated with isotype control mIgG (n=17), HLA I intact antibody at 5μg/mL
(n=9) or F(ab’)2 fragment at 10μg/mL for 60min (n=18); or thrombin at 1U/mL for 20min
(n=16). Fluorescently labeled Mono Mac 6 were left untreated or incubated with soluble
human IgG to block FcγRs. Mono Mac 6 with or without an FcγR blockade were added to
stimulated endothelial monolayers, and adherent cells were counted after 20min. Bar graph
represents mean fold increase in the number of adherent Mono Mac 6 from multiple
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independent experiments +/−SEM, normalized to untreated. #, p>0.05; *** p<0.0001 versus
untreated.
(b) Representative experiment performed as in (a), with data expressed as average number
of adherent cells per field in 10 fields +/− SEM. Representative micrographs illustrate
fluorescently labeled monocytic cells adherent to the endothelial monolayer. **** p<0.0001
versus untreated.
(c) rPSGL-1 was added to block endothelial P-selectin, and Mono Mac 6 adherence was
assessed with or without inhibitor as in (a). Graph shows mean fold increase in the average
number of adherent monocytes per field +/−SEM over 5 independent experiments. Black
bars show Mono Mac 6 binding without inhibitor, white bars with inhibitor. ** p<0.01
comparing no inhibitor to inhibitor.
(d) Mono Mac 6 were incubated with anti-PSGL-1 blocking antibody (n=2), or stimulated
HAEC were incubated with rPSGL-1 (n=5) or with neutralizing anti-P-selectin antibody
(n=3) prior to adherence assay. Graph shows the mean percent inhibition +/− SEM of
binding to HLA I F(ab’)2 treated endothelium by each inhibitor.
(e) Experiments were performed as in (a) using human monocytes enriched from peripheral
blood and rPSGL-1 was added to block endothelial P-selectin. Data is expressed as average
number of adherent monocytes per field in 10 fields +/− SEM, and is representative of three
independent experiments using monocytes isolated from three different donors. *** p<0.001
versus untreated. ‡ p<0.0001 versus no inhibitor.
(f) HAEC were pretreated with BAPTA-AM at 20μM for 30min, then stimulated with HLA
I F(ab’)2 at 10μg/mL for 45min or thrombin at 1U/mL (n=6). Adherence of Mono Mac 6
was assessed. Data are presented as mean fold increase in adherent cells +/−SEM. Black
bars are binding without inhibitor, white bars with inhibitor. ** p<0.01, *** p<0.001 versus
comparing no inhibitor to inhibitor.
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Figure 3.
Donor specific MHC I antibodies increase monocyte recruitment into a murine cardiac
allograft.
(a) Diagram of antibody administration protocol. BALB/c (H-2d) donor hearts were
heterotopically grafted into RAG1 knockout recipients on a C57BL/6 background (H-2b).
Animals were passively transferred with a murine isotype control monoclonal IgG2a or
monoclonal directed against the donor MHC I locus beginning on day 3 after transplant and
continuing weekly thereafter until day 28. Grafts were recovered from recipients while still
beating on day 30 post-transplant. Cellular infiltration in the base was assessed by
immunohistochemical staining and scored by a pathologist blinded to the experimental
groups. The fusion protein rPSGL-1-Ig was administered to a group of animals biweekly
beginning on day 3 post-transplant at 70μg per animal.
(b) The presence of circulating donor specific MHC I antibodies in recipient serum was
confirmed using flow cytometric crossmatch on BALB/c splenocytes. BALB/c splenocytes
were incubated with 25μL of neat serum collected from allograft recipients, and stained with
anti-mouse Fcγ-FITC. Cells were stained with anti-CD3-PE and fluorescence was measured
by flow cytometry. CD3-positive cells were gated as shown in the representative dot plot,
and the median fluorescence in the FL-1 channel was determined. Results are shown as
median fluorescence intensity of serum on CD3 positive cells +/−SEM, using sera from
multiple animals for each condition: unstained (n=5), control mIgG2a (n=3), anti-Kd

mIgG2a (n=7), anti-Dd mIgG2a (n=2), anti-Kd + Dd mIgG2a (n=2).
(c) Native or transplanted hearts were assessed immunohistochemically for Mac-2 and
staining was scored by a pathologist blinded to the experimental groups. The box and
whiskers graph shows the distribution of scores for each group. Infiltration near the suture
site or in the endocardium was disregarded. Global ANOVA, then individual groups. *
p<0.05, ** p<0.01, *** p<0.001 versus control mIgG2a group.
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Figure 4.
rPSGL-1-Ig therapy reduces macrophage and CD45+ accumulation in the allograft in
response to MHC I antibody. Native or transplanted hearts were assessed
immunohistochemically for Mac-2 (a) or CD45 (b) and staining was scored by a pathologist
blinded to the experimental groups. Global ANOVA and individual comparisons * p<0.05.
*** p<0.001. Graphs show the distribution of scores for each group. Representative
micrographs at 100x and 200x magnification of Mac-2 staining and H&E are shown in (c)
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