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Abstract
Glassy solidification is characterized by two essential phenomena: localization of the solidifying
material’s constituent particles and a precipitous increase in its structural relaxation time τ.
Determining how these two phenomena relate is key to understanding glass formation. Leporini
and coworkers have recently argued that τ universally depends on a localization length-scale <u2>
(the Debye-Waller factor) in a way that depends only upon the value of <u2> at the glass
transition. Here we find that this ‘universal’ model does not accurately describe τ in several
simulated and experimental glass-forming materials. We develop a new localization model of
solidification, building upon the classical Hall-Wolynes and free volume models of glass
formation, that accurately relates τ to <u2> in all systems considered. This new relationship is
based on a consideration of the the anisotropic nature of particle localization. The model also
indicates the presence of a particle delocalization transition at high temperatures associated with
the onset of glass formation.
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Introduction
When glasses,∰ crystals, and gels solidify, their constituent particles become localized; ie.,
they cease to freely explore space. In glass-forming liquids, a rapid increase in the structural
relaxation time and viscosity accompanies this localization transition. These two facts raise a
fundamental question: how does the extent of particle localization relate to the structural
relaxation time of glass-forming liquids?

Two types of activated transport model have typically been employed to answer this
question. In the ‘elastic models’ of activated transport, barriers to transport are assumed to
relate to high frequency (picosecond to nanosecond) elastic properties of the material1. In
the ‘free volume models’ of activated transport, on the other hand, barriers to relaxation are
related to the amount of free volume accessible to individual particles in the system. Below,
we review the predictions of each class of model.

In our discussion of these models, we focus on the Debye-Waller factor 〈u2〉 as a measure of
localization because it is directly measurable via neutron2, Mossbauer3, and x-ray4
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scattering, and more recently by time-resolved Stokes Shift measurements5. Physically, 〈u2〉
reflects the average rattle length-scale of a particle in the cage of its neighbors.

The ‘elastic’ activated transport models for relaxation assume that relaxation occurs through
the escape of particles from local potential wells with an activation energy that increases in
proportion to the local ‘stiffness’ of the material1,6–8. An influential model in this class was
developed by Hall and Wolynes, who worked from a density functional theory to arrive at a
simple model of relaxation in glass forming liquids. This mean field model specifically
suggests that particles in low-temperature glasses are localized in effectively harmonic
wells, providing a relationship between particle displacement, energy of activation, and
thermal energy. On this basis, Hall and Wolynes relate the structural relaxation time τ to
〈u2〉 by7

(1)

where τ0 is a constant prefactor, as in ordinary theories of activated transport, and u0
2 is

interpreted as a critical displacement required for delocalization (‘cage escape’).

Equation (1) was first examined computationally by Starr et. al, who found it to reasonably
describe relaxation in several simulated polymeric glass-forming materials over a limited
temperature range9,10. This approach has been more recently extended by Leporini and
coworkers, who modified it by assuming a Gaussian distribution of u0 as a way of modeling
the known nanoscale heterogeneity of glasses11–13, leading to the form

(2)

where a2 is the mean value of u0
2 and σ2 is its variance. Leporini and coworkers argue that

this modification results in a universal form for τ as a function of 〈u2〉 that applies to all
glass-forming materials14–18. We examine this model below and do not find it to be
universal. Indeed, the fact that the fast beta relaxation rate (which is directly related to
〈u2〉 19) and alpha relaxation rate can vary inversely20 makes any fixed universal
relationship between τ and 〈u2〉 unlikely. An additional parameter would seem to be
required to capture this relationship.

An alternate approach relating relaxation to localization is offered by the classical free
volume theory of τ, which relates relaxation time to free volume through a simple
exponential relationship21:

(3)

where vf is the ‘free volume’. Various measures of free volume have been proposed, but it is
frequently conceived of as the space accessible to a particle center within the ‘cage’ of its
neighbors22. This free volume definition can be related to the collision frequency in hard
sphere systems, fundamentally linking dynamics to thermodynamics22–25. However, this
free volume is not directly measurable in experiments. A direct comparison of the free
volume-based approach with equations (1) and (2) thus requires equation (3) to be recast in
terms of 〈u2〉.

Scaling Theory
Simple dimensional consistency suggests9 that free volume should scale with the Debye-
Waller factor as vf ∝ 〈u2〉3/2, and Starr et al. have found this proportionality to
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approximately hold for a simulated coarse-grained polymeric glass-former (FENE model)9.
This scaling argument implies that equation (3) can alternatively be written as

(4)

However, in arriving at equation (4), we implicitly assumed the free volume shape to be
compact and did not consider that this shape might change with temperature. In contrast,
work by Rahman26 and others has emphasized that local free volume is anisotropic and that
this anisotropy is correlated with particle motions27–29. Rahman specifically argued that
particle localization can be described by motion in a ‘tunnel’ comprised of neighboring
particles. This ‘tunnel model’ is consistent with more recent results demonstrating the
presence of one-dimensional, ‘string-like’ collective rearrangements of particles27,30.

The scaling relation between free volume and 〈u2〉 for Rahman’s ‘tunnel’ differs
considerably from that for a simple spherical model of free volume. The volume vf of a tube
scales linearly with length L, while 〈u2〉 ~ L2. Thus, if the free volume takes the form of
tubes with temperature-dependent length, free volume should scale with 〈u2〉 as vf ~ 〈u2〉1/2.
In contrast, for particle localization in spherically shaped cavities of radius R, vf ~ R3 and
〈u2〉 ~ R2. It follows that, for spherically symmetric free volume, vf ~ 〈u2〉3/2, consistent
with the naïve free volume theory discussed above.

More generally, particles may be localized within cages that are neither spherical nor
cylindrical, but which have anisotropic shapes that vary with temperature. This suggests a
more general scaling relationship of vf ~ 〈u2〉α/2. Combining this expression with the basic
free volume theory statement of equation (3) suggests the expression

(5)

which we refer to as the localization model for relaxation.

We now consider a scaling theory relating free volume to the Debye-Waller factor for a
slightly more general model of anisotropic free volume: an ellipsoidal local free volume. We
begin by analytically determining 〈u2〉 for this case. For any local free volume shape, 〈u2〉 is
equivalent to the mean distance between two uncorrelated points within the free volume,
given by

(6)

where distance D is given by D = [(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2] in Cartesian
coordinates. Introducing reduced variables x̂ = x/Lx, ŷ = y/Ly, and ẑ = z/Lz, the equation for
an ellipsoid centered at the origin becomes x̂2 + ŷ2 + ẑ2 = 1. Casting equation (6) and the
distance formula in these reduced Cartesian cordinates yields dimensionless (albeit
complicated) limits of integration, and performing the integration then gives remarkably
simple result

(7)
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which reduces to the well-known result for the sphere when all three characteristic length-
scales are equal.

In order to cast the free volume theory of glass formation in terms of 〈u2〉 rather than free
volume vf, it would appear that we need an equation for vf in terms of 〈u2〉. However, vf is
not a direct function of 〈u2〉 in real systems. Rather vf and 〈u2〉 each vary with temperature,
so that dvf/d〈u2〉 is well approximated not by ∂vf/∂〈u2〉 but rather by (∂vf/∂T)/(∂〈u2〉/∂T).
Proceeding now requires some assumption about the temperature dependence of the three
characteristic lengthscales Lx, Ly, and Lz, and we choose power law relations,

(8)

as a reasonably general form. We later test this assumption and find it to be excellent for the
simulated glass-forming systems examined in the following sections. Since the free volume
of an ellipsoid is given by vf = 4LxLyLz/3, it follows that

(9)

This form leads to vf = 〈u2〉α/2, consistent with equation (5), with

(10)

and

(11)

Equation (10) yields reasonable limits in the cases of single dimensional free volume growth
with temperature (x >> y ~ z), for which α → 1, and perfectly isotropic growth (x = y = z
and a = b = c), for which α → 3. These cases correspond correctly to the scaling for a tube
and a cylinder, described above. However, a more physically reasonably situation is that the
three growth rates are not equal but are of the same order. In this case, f(T) → 1 to leading
order in the low tempreature limit, so that

(12)

where we have used the convention that x ≥ y ≥ z. In this case, α ranges from a minimum
value of 3 for perfectly isotropic free volume growth with temperature to higher values
reflecting increasingly anisotropic growth of free volume.

As discussed in the results section below, the three growth rates are indeed found to be of
the same order in our simulated systems. Given the scaling nature of this argument, with the
expectation of qualitative predictions only, we focus on equation (5) with α scaling as
suggested by equation (12) in further discussion, and we accordingly interpret α as
reflecting the anisotropy of local free volume growth with temperature. We begin in the
following sections by demonstrating equation (5) to be remarkably successful in describing
relaxation-time data in diverse systems.
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Methodology
Experiments

Three small-molecule glass formers are examined in this study: sorbitol, propylene glycol,
and glycerol. Sorbitol and propylene glycol were purchased from Sigma Chemical Company
and used as received without further purification. All data for glycerol are obtained for the
literature31.

Debye-Waller factor data for propylene glycol and glycerol were obtained via time-of-flight
measurements performed at the Disk Chopper Spectrometer32 (DCS) installed at the NIST
Center for Neutron Research (NCNR). For all of the neutron scattering experiments,
samples were transferred in a helium glovebox to an annular-geometry aluminum sample
cell, sealed with an indium O-ring, and mounted on a closed-cycle helium refrigerator.
Sample thickness was chosen for about 10% total scattering to minimize multiple scattering
effects. The DCS spectra were acquired using an incident-neutron wavelength of λ=4.0 Å
with momentum transfer Q, range of 0.1–2.0 Å−1 and an energy resolution of approximately
200 µeV. All the samples were also measured at 30 K, where dynamics is expected to be
purely elastic. These scattering functions were used to normalize the data and also as the
instrumental resolution. The DAVE software package was used for data reduction and the
standard Fourier Transform Toolkit was used to transform the measured scattering function
S(Q,ω) into intermediate scattering function S(Q,t), from which the nonergodicity factor h at
approximately 1 ps can be directly obtained. Debye-Waller factor <u2> values at 1 ps are
then calculated from the nonergodicity factor via 〈u2〉 = −6ln(h)/q2. For all the glass
formers, <u2> values were calculated from h at q=1.4A−1, which corresponds to the first
peak in the static structure factor.

Simulations
The simulated systems include a coarse-grained polymeric glass-former with harmonic
bonds with and without the addition of an antiplasticizer additive. Each of these simulated
systems has previously been studied and is well characterized in the literature9,19,20,33–35.

The pure polymer simulated systems examined in this study consists of 50 coarse-grained
polymer chains. Each chain contains 32 beads, with nonbonded interactions being given by a
6–12 Lennard-Jones potential with diameter σ = 1 and energy constant ε = 1. Bonded beads
interact via a stiff harmonic potential with force constant 2000 ε/σ. The antiplasticized
polymer simulation adds to the above system 674 antiplasticizer particles, comprising about
5% by mass or 30% by mole. Each antiplasticizer particle is a monomeric 6–12 Lennard-
Jones bead with diameter σ = ½. Interactions between chain monomers and antiplasticizer
particles are characterized by σ = ¾, and for all interaction types ε = 1. Furthermore, for
both pure and antiplasticized systems, nonbonded interactions are cut off at a distance of 2.5,
and potentials are shifted such that they go to zero at this cutoff.

Simulations were performed with the LAMMPS molecular dynamics simulation package
using a RESPA timestepping scheme. Nose-Hoover thermo- and baro-stats were employed,
as implemented in LAMMPS. Temperature and pressure damping parameters were both 2 τ,
where τ is the LJ unit of time. The RESPA timestep for LJ interactions was 0.01 τ for the
pure polymer and 0.004 τ for the antiplasticized polymer. In each case, the time step for
bonded interactions was one quarter that for nonbonded interactions.

The equilibration scheme for these systems has been described in detail elsewhere19. In
short, it employs a slow quench of the system from high temperature in an NPT ensemble,
followed by a long NPT equilibration at each temperature, followed by rescaling to the
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average density and a final brief equilibration in the NVT ensemble. Production runs are
then performed from these configurations in the NVT ensemble.

Results
Comparison with data

We now examine the effectiveness of equation (5) in comparison to earlier activated
transport models in the context of several experimental and simulated systems. Figure 1
depicts a fit of data for the above systems to the ‘universal’ form given by Leporini et. al.
Universality of this model minimally requires that an appropriate rescaling of τα for each
system collapse the data to a single quadratic curve when log(τα) is plotted versus 〈u2〉Tg/
〈u2〉. As shown in the inset of Figure 1, plotting the log of relaxation time data for our
systems vs log(〈u2〉Tg/〈u2〉), as in the recent series of papers of Leporini and coworkers,
gives the impression of a universal collapse. However, a plot of the same data on a linear
abscissa, shown in Figure 1, reveals that the data do not follow a single ‘universal’ quadratic
curve but rather conform to a range of quadratic forms. Moreover, there is no clear physical
meaning of the fitting parameters describing these forms; for example, in the case of the
pure model polymer the best fit to the mean square ‘escape distance’ parameter u0

2 is
unphysically negative.

Equation (1) (the Hall-Wolynes model) also does not well describe the data, as it predicts
straight lines for the curves in this plot. However, we note that a linear fit is sufficient for all
systems in the high temperature range of the data, explaining both the earlier success of the
Hall-Wolynes form for a limited (high) temperature range and the apparent collapse of the
data via the Leporini form when plotted on a log-log plot, which emphasizes the high
temperature range of data.

In contrast, we find that the new form given by equation (5) describes the relationship
between τ and <u2> for all systems that we have considered. As shown by Figure 2,
linearizing the data in accordance with this form yields an almost perfect collapse of all
systems to a single master curve. The parameters describing these fits are shown in Table 1.

Quantification of free volume ‘shape’ in simulations
In order to determine whether the apparent success of this model reflect underlying physics
or merely a foruitious fitting form, we compare the scaling prediction of equation (12) for α
with the values obtained from the above fits to data from the pure and antiplasticized
simulated polymer systems, remembering that, because the proportionality constant in that
expression depends on the precise shape of the free volume, only prediction of qualitative
trends in the value of α can be reasonably expected. Estimating the value of α via equation
(12) requires that one quantify the temperature dependence of the shape of local free
volume, in terms of the three characteristic lengthscales Lx, Ly, and Lz.

How can one quantify the shape of free volume? In Rahman’s consideration of this problem,
he focused on the anisotropy of the Voronoi cells defined about each particle26. Since our
focus is on 〈u2〉 as a measure of localization, it is natural to consider the anisotropy of the
trajectories of the particles within their local cages. The radius of gyration tensor Rij is
commonly used to quantify the shape of polymers in solution36, and we adopt this quantity
to describe the shape of our particle trajectories. This tensor is given by

(13)
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where N is the number of points in the trajectory and  and  are the mth and nth

component of the vector from the trajectory centroid to the ith point in the trajectory.

The eigenvalues of Rij provide three length-scales X2(t), Y2(t), and Z2(t), that are generally
functions of the duration t of the trajectory considered. A measure of the average trajectory
anisotropy as a function of time is given by the ratio of the ensemble average of the largest
to smallest lengthscales 〈X2(t)〉/〈Z2(t)〉 At very short, inertial times, this ratio must go to
infinity, reflecting the linear nature of inertial motion. At long times, it is expected to
converge to a fixed value of 11.7 associated with diffusive motion36, or in polymeric
systems to some smaller constant value associated with monomeric subdiffusion. At some
intermediate ‘cage time’ tc, the particle trajectories will have, on average, most fully
explored the particles’ local free volume without escaping the cage of their neighbors to
freely diffuse. Unless this cage is extremely anisotropic (more so even than diffusive
motion), this time should correspond to a local minimum in the value of 〈X2(t)〉/〈Z2(t)〉. As
shown in Figure 3, this minimum indeed emerges in our simulations below the onset
temperature TA of glass formation, at T = 0.6 in Lennard Jones units in the case of the pure
polymer. Accordingly, we identify the values of X(t), Y(t), and Z(t) at this time as the
characteristic lengthscales Lx, Ly, and Lz that characterize the local free volume in the
scaling theory above. At temperatures near and below Tg, this minimum moves to long
times. Although these times are well within the timescale of our simulations, calculation of
the gyration tensor at longer times becomes very computationally expensive, and since the
minimum is evidently broad and shallow at these temperatures, we use the values of the
length-scales at the longest calculated time as a reasonable approximation of the value at the
minimum.

We now examine the free volume anisotropy in our pure and antiplasticized model polymer
systems via calculation of the mean value of Lx, Ly, and Lz as a function of temperature.
These three length-scales provide an ellipsoidal description of the free volume, and their
relative magnitudes characterize the free volume anisotropy. As shown in Figure 4 for the
pure polymer, the free volume anisotropy Lx/Lz exhibits considerable temperature
dependence in the glass formation regime, with reducing anisotropy as the system is cooled
towards Tg. This trend is qualitatively consistent with observations of concentration
dependent anisotropy in a glass-forming material37. Furthermore, we find that the
temperature dependencies of Lx, Ly, and Lz in the glass-formation region reasonably
conform to power laws, as assumed in the above scaling argument, with exponents x, y, and
z, respectively, shown in Table 1.

Because the proportionality constant in equation (12) depends on the precise shape of the
free volume, this expression can only be expected to provide qualitative trends in the value
of α. In order to test the validity of the anisotropic free volume model at this qualitative
level, we apply equation (12) to the fits of x, y and z described above for the pure and
antiplasticized simulated polymer systems. The resulting predictions are in good qualitative
agreement with the trend of reduced α in the antiplasticized polymer relative to the pure
polymer (In the limit of low T equation (12) predicts that α = 4.3 for the pure system vs 3.9
for the antiplasticized system), providing support for the physical underpinnings of this
model.

Consistency with the VFT relation
The localization model relating τ to 〈u2〉 holds over the same general temperature range for
which the Vogel-Fulcher-Tammann (VFT) equation describes the temperature dependence
of τ for many glass-forming materials:
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(14)

where T0 is an extrapolated divergence temperature of the relaxation time, τ0,VFT is an
extrapolated high temperature relaxation time, and D is related to the fragility (or
temperature-breadth) of the glass transition. This form also accurately describes our data, as
shown in the inset of Figure 5 for the pure polymer model (and in the literature for the
experimental systems28). It is then reasonable to ask whether the localization model is
consistent with the VFT equation and, if so, whether this consistency yields any further
insights into the physical meaning of the other parameters in the localization model.

Consistency between the VFT expression and equation (5) requires that the temperature
dependence of 〈u2〉 is given by

(15)

As one might expect, equation (15) requires that 〈u2〉 goes to zero as T approaches T0,
consistent with the extrapolated divergence in the relaxation time at this temperature.
However this equation also predicts a divergence in 〈u2〉, at a “delocalization temperature”
TD (see Figure 5),

(16)

which is the high temperature counterpart of T0. Together, T0 and TD demarcate a well-
defined onset and end of the congested fluid regime in terms of particle localization.

The glass transition temperature Tg is somewhat above T0 and corresponds to a condition
where the particles are sufficiently localized for dynamics to become effectively arrested
and where solid-like behavior first emerges. This condition can be estimated roughly by a
Lindemann condition38 as in crystals. Correspondingly, we can define a temperature Ts
where localization first becomes appreciable enough to noticeably affect particle dynamics.
In particular, we define Ts as the point below which the mean particle oscillation is
insufficient to escape its cage; i.e., 〈u2〉 = u0

2. This condition leads to an explicit expression
for Ts:

(17)

Both Ts and TD are roughly compatible with the onset temperature TA of glass formation8

where deviation from Arrhenius relaxation behavior first becomes apparent. The onset
condition u0

2/〈u2〉 = 1 for fluid congestion may thus be interpreted as a high-temperature
counterpart of the Lindemann condition38. This type of condition for incipient solidification
was previously introduced by Laviolette and Stillinger39 and we accordingly refer to it as the
‘Stillinger condition’ for the onset of the ‘congested’ fluid state.
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Conclusions
We have described a new ‘localization model’ for the relaxation of glass-forming materials.
This model accurately describes relaxation data for a variety of simulated and experimental
glass formers, suggesting that it may provide a universal relationship between localization
length-scale and relaxation time. The exact quantitative form of this relationship depends on
the nature of the glass former under consideration: a parameter α reflects the nature of the
inter- and intra-molecular forces and their effects on the temperature dependence of the local
packing anisotropy; parameters u0

2 and τ0 reflect the onset temperature TA (and thus the
fragility or temperature breadth20) of glass formation.

Since previous work has established that the Debye-Waller factor is directly connected to
the fast beta relaxation time19, this model also implicitly relates the structural relaxation
time to the fast (picosecond timescale) beta relaxation time. Given that the fast beta
relaxation time represents the elementary structural relaxation process in glass-forming
liquids, and also has been directly implicated in controlling processes such as transport and
chemical degradation in glassy matrices40, a relationship between fast and slow relaxation
processes is of immense practical value. Furthermore, earlier proposed relations between the
Debye-Waller factor and structural relaxation time have been employed in an attempt to
estimate diffusion rates from fast-dynamics scattering data41, and use of the localization
model should greatly improve such estimations. This will be especially useful in estimating
relaxation times and diffusion rates in molecular simulations of glass-forming materials,
where direct calculation of these quantities at low temperature is often prevented by
prohibitively large computational time requirements.

Given the close parallels between glass formation in molecular liquids and jamming in
colloids and granular media, it seems likely that the localization model describes relaxation
behavior in those systems as well. Since the motion of particles in colloids can be
experimentally tracked, these systems would provide an excellent setting for testing the
physical underpinnings of this model by correlating direct experimental measurements of
free volume shape with relaxation behavior. Validation of this model in such systems could
provide substantial new insight into the physics of jamming and glass formation.

The localization model emphasizes the existence of a congested fluid regime having a
definite beginning and end. The high temperature onset of this regime is demarcated by a
‘Stillinger onset condition’, while the low temperature end is demarcated by the classical
Lindemann criterion for melting. Associated with each condition is an extrapolated
divergence – of relaxation time at T0 in the case of the Lindemann criterion and of
localization length-scale at TD in the case of the Stillinger condition.

The apparent universality of equation (5) implies that the free energy of activation of
structural relaxation in strongly interacting fluids obeys a general limit theorem associated
with particle localization. A limit theorem is also known to govern the free energy of
localized polymer chains42. Strikingly, that limit theorem takes the same functional form as
equation (5), where the free energy of chain localization in that model corresponds to the
activation energy of transport in the present model. The correspondence is natural if one
identifies the particle trajectories depicted in Figure 4 with the polymer chain conformations.
This parallel strongly implies that the essential features of localization are highly universal,
and we suggest that the broad success of the localization model reflects this universality.
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Figure 1.
Log relaxation time vs inverse Debye-Waller factor scaled by its value at Tg for the systems
described in the text. The inset shows the same data plotted with a logarithmic x-axis, as in
papers by Leporini and coworkers7–9. An arbitrary renormalization of relaxation time has
been manually applied to each system to yield the best possible collapse, in the high
temperature range, following the approach of Leporini and coworkers. This shift is
equivalent to varying the value of τ0 in any of the models described in the text. Curves
represent quadratic fits of the form given by Leporini et. al.
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Figure 2.
Linear collapse of relaxation time vs Debye-Waller factor data via equation (5) for
experimental and simulated systems depicted in Figure 1. Also included is course-grained
polymer data provided from reference 9, where the bonded force constant involves a
nonlinear rather than harmonic spring.
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Figure 3.
Ratio of largest to smallest eigenvalues of gyration tensor for pure simulated polymer
system as a function of time. The number on each curve specifies T/Tg for that curve.
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Figure 4.
Plot of anisotropy of particle in-cage trajectories as a function of temperature, with sample
trajectories. The duration of each trajectory is equal to the caging time tc described in the
supplementary material.

Simmons et al. Page 15

Soft Matter. Author manuscript; available in PMC 2013 December 07.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 5.
Temperature dependence of 〈u2〉 for the pure polymer simulation. Points are simulation data
and the solid curve is the model fit of equation (15). Inset shows fit of VFT equation to
relaxation data from the same system.
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Table 1

Parameters for fits of equation (5) to data for systems examined in this paper.

τ0 u0
2 α

Glycerol 22.4 ps 3.26 A 3.07

Propylene glycol 97.6 ps 1.41 A 4.13

Sorbitol 17.1 ps 1.11 A 3.03

Pure harmonic polymer 2.30 τ 0.0761 5.56

Antiplasticized harmonic polymer 1.65 τ 0.122 3.09

FENE polymer 1.67 τ 0.139 3.09
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Table 2

Parameters for power-law fits to characteristic length-scales of local free volume.

Prefactor Exponent

Lx,pure 0.644 2.14

Ly,pure 0.270 1.54

Lz,pure 0.150 1.12

Lx,anti 0.834 2.06

Ly,anti 0.309 1.57

Lz,anti 0.165 1.26
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