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Abstract
Despite distinct mechanical functions, biological soft tissues have a common microstructure in
which a ground matrix is reinforced by a collagen fibril network. The microstructural properties of
the collagen network contribute to continuum mechanical tissue properties that are strongly
anisotropic with tensile-compressive asymmetry. In this study, a novel approach based on a
continuous distribution of collagen fibril volume fractions is developed to model fibril reinforced
soft tissues as a nonlinearly elastic and anisotropic material. Compared with other approaches that
use a normalized number of fibrils for the definition of the distribution function, this
representation is based on a distribution parameter (i.e. volume fraction) that is commonly
measured experimentally while also incorporating pre-stress of the collagen fibril network in a
tissue natural configuration. After motivating the form of the collagen strain energy function,
examples are provided for two volume fraction distribution functions. Consequently, collagen
second-Piola Kirchhoff stress and elasticity tensors are derived, first in general form and then
specifically for a model that may be used for immature bovine articular cartilage. It is shown that
the proposed strain energy is a convex function of the deformation gradient tensor and, thus, is
suitable for the formation of a polyconvex tissue strain energy function.
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1. Introduction
Biological soft tissues, such as cartilage, meniscus, ligament, skin, annulus and artery, have
distinct mechanical behaviors and functions but possess a common microstructure in which
a porous saturated ground matrix is reinforced by a collagen fibril network. The
microstructural arrangement, primary orientation, and mechanical behavior of collagen
fibrils contribute to highly anisotropic, nonhomogeneous, and asymmetric tissue material
properties. For example, along the depth of articular cartilage fibrils are oriented in the plane
parallel to articular surface in the superficial zone [1] whereas they are arranged randomly in
the middle zone [2] and turn vertical in the deep zone [1] where they anchor into
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subchondral bone [3]. In addition, the molecular nature of collagen fibrils results in elastic
properties that possess tensile-compressive asymmetry (i.e. tensile moduli are ~ 1–2 orders
of magnitude greater than compressive moduli) [4, 5]. The range of finite and multi-
dimensional strains that such fibrous tissues may experience in vivo [6] suggests the
importance, as well as the challenges, of accurately modeling soft tissue biomechanics.

For soft fibrous tissues with multiple constituents, mathematical distribution functions have
represented dispersed and continuous (i.e. non-discrete) fibrils oriented in all directions
depending on the type of (and anatomical location in) the tissue under investigation [7, 8].
These types of continuous fibril models have been used recently for articular cartilage [9–
11]. Those latter models were based on the general structural theory initially proposed in [8]
that considered distinct constituent strain energy functions and which calculated the strain
energy of the collagen fibril network based on the response of individual fibrils in tension in
different directions and integrated over a unit sphere at a material point.

In a mixture theory approach that uses distinct constituents, the total tissue stress is the sum
of apparent constituent stresses and, therefore, apparent stresses are commonly used. Then
true constituent stresses (or true material constants) are typically multiplied by constituent
volume fractions to obtain apparent stresses (or apparent material constants). One aim of this
work is to refine the relationship between true and apparent collagen network stresses when
using a fibril distribution function with fibrils that are mechanically active in tension only.

Thus, the goal of the current study is to develop an accurate nonlinearly elastic and
anisotropic model for fibril-reinforced soft tissues. This approach uses true moduli of
collagen fibrils multiplied by different volume fractions for different directions to represent
the anisotropic distribution of fibrils. Compared with other approaches that use a normalized
number of fibrils for the definition of the distribution function, this representation is based
on a distribution parameter (i.e. volume fraction) that is commonly measured
experimentally. Consequently, an immediate and explicit output of numerical simulation
may be the effective volume fraction of the collagen network, i.e. the volume fraction of
only those fibrils in tension.

The specific aims are to: 1. introduce the concepts of a continuous volume fraction
distribution function and effective volume fraction of the collagen network and derive the
corresponding collagen network strain energy function; 2. account for a collagen network
that may be “pre-stressed” in a tissue natural configuration; 3. present examples for
distribution functions and a specific fibril strain energy function; 4. show that the specific
strain energy function is a convex function of the deformation gradient tensor.

2. Preliminaries
It is assumed that the tissue’s solid matrix occupies a stress-free reference configuration κ0
corresponding to a continuous open set of material points in three-dimensional Euclidean
space. The tissue is in equilibrium at κ0 and, under an overall solid matrix deformation
gradient tensor F, will occupy the current configuration κ (Figure 1). In biological tissues,
the solid matrix is a multiphasic material; e.g., for articular cartilage it can be considered as
a mixture of collagens, glycosaminoglycans, and other ground matrix constituents. These
constituents may have distinct reference configurations which may or may not be stress-free
[12]. Here, focus is on the collagen constituent only.1

1The superscript COL will be used to indicate the collagen constituent.
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Due to swelling pressure of glycosaminoglycans, the collagen network is not stress-free at
the solid matrix reference configuration. The collagen initial deformation gradient tensor

 maps a stress-free collagen reference configuration  to the solid matrix reference

configuration κ0. The collagen deformation gradient tensor FCOL that maps  to the
current configuration κ is obtained via the multiplicative decompostion

(1)

Consequently, the collagen and solid matrix right Cauchy-Green deformation tensors are
related by

(2)

The collagen Lagrangian strain tensor ECOL defined with respect to the collagen initial

configuration , using equation (2), is

(3)

Assuming collagen as a nonlinear Green-elastic material, its second Piola-Kirchhoff stress
tensor SCOL is related to its strain energy function WCOL as: 2

(4)

Furthermore, the collagen elasticity tensor ℂCOL is obtained from WCOL via

(5)

Note that the derivatives in (4) and (5) are defined with respect to C and, hence, the solid
matrix reference configuration κ0. Thus, when C = I, SCOL ≠ 0 and indicates the collagen
stress in κ0.

3. Collagen volume fraction distribution and strain energy functions
3.1 Theory

To include the possible contributions of collagen fibrils in all directions, a local spherical
coordinate system at a material point is used [7, 9]. At a material point, fibrils inside a
pyramidal volume element dV cross through the differential area dA = sinΘdΘdΘ with
outward normal n (Fig. 2). The apex of a pyramidal volume element dV is located at the
center of the sphere and its base is the surface element dA. Thus, the differential volume of a
pyramidal element is

2Or in indicial form and since C is symmetric: 
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(6)

Fibrils inside a pyramidal volume element are oriented in the range [(Θ, Θ + dΘ), (Φ, Φ +
dΦ)] with 0 ≤ Θ ≤ π and 0 ≤ Φ ≤ 2π.

Here, a volume fraction distribution function is used to define the proportion of collagen
fibrils oriented in different directions, so that the total volume fraction defined as the integral
of the volume fraction distribution function over the unit sphere equals the volume fraction
of fibrils at a material point in the tissue. Specifically, this distribution function assigns a
certain percentage of the total volume fraction of collagen to dV identified by an average
outward normal vector n. Similarly, the total strain energy function will be the integral of

the uniaxial fibril strain energy function in each direction n over the unit sphere. , the
fibril strain in the direction n, is related to the collagen Lagrangian strain tensor ECOL via

(7)

where (·) is the dot product. The Heaviside step function  is used so that fibrils in

compression do not contribute to the strain energy function i.e.  or 0 if 

or < 0, respectively. The total volume fraction of fibrils (defined as  where Vf and

Vtot are the fibril volume and unit sphere volume, respectively) will be modified by 
to become an effective volume fraction. Thus, the effective volume fraction is the volume
fraction of fibrils in tension only and, consequently, depends on the strain at a material
point.

In order to motivate the strain energy definition, first consider the special case where the
collagen fibrils with the true stain energy density function Ψ, with units of energy per
volume, are oriented isotropically and occupy the entire volume of the unit sphere at a
material point i.e. Vf = Vtot. The collagen strain energy density, with units of energy per
volume, is

(8)

However, in a biological tissue there exist multiple constituents at a typical material point

and the isotropically distributed collagen fibrils occupy a volume fraction . Due to the
assumed isotropic distribution, the directional volume fraction of collagen fibrils per

pyramidal volume element dV oriented in direction n and denoted by  is equal to total

volume fraction  in the unit sphere, i.e.

(9)

Consequently, the collagen strain energy density at a typical material point is3
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(10)

Having considered the special case above, now consider an anisotropic distribution of

collagen fibrils. The directional volume fraction per sphere volume  (as opposed to

directional volume fraction per pyramidal volume ) is defined as

(11)

Using (9) and (11),  and  are related by

(12)

Note that .

The fibril volume fraction distribution function R (θ, φ) is defined for dV spanning [[Θ, Θ +
dΘ], [Φ, Φ + dΦ]] as

(13)

Using (9) and (12) in (13), one obtains

(14)

Based on the above definition, the volume fraction distribution function must satisfy

(15)

This definition is different from those in [7, 10] where the distribution function must satisfy

 or .

Using (6) and (13), the collagen network strain energy density in (10) becomes

(16)

3Although  is independent of direction for an isotropic distribution, one cannot factor  out of the integrand in (10) since

 must exclude fibrils in compression and generate an effective volume fraction that modulates the true collagen material
properties.
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3.2 Examples
For further clarification, two examples for distribution function (one discrete, one
continuous) are presented.

Example 1—Consider a unit sphere divided into 20 identical pyramidal volume elements

dV. Because the total volume of the sphere is , the volume of each dV = 0.05Vtot.

Now, assume that there exist collagen fibrils with 9% volume fraction (normalized by the

total volume of the sphere i.e. ) but that these fibrils exist in only three
pyramidal elements. Represent these three pyramidal elements by numbers 1, 2 and 3 and
assume that from the 9% collagen volume fraction, 3% exists in pyramid 1 (i.e. 0.03Vtot),
4% exists in pyramid 2 (i.e. 0.04Vtot), and 2% exists in pyramid 3 (i.e. 0.02Vtot). The
directional volume fractions per pyramidal volume are

(17)

These values show that 60%, 80% and 40% of each pyramidal volume, respectively, is

occupied by collagen fibrils. In the remaining 17 pyramids  (for i = 4 to 20).

Now, the infinitesimal directional volume fractions per sphere volume for each pyramidal
volume element are

(18)

and  (for i = 3 to 20). Since  is defined by normalizing the fibril volume inside a

pyramidal element to the total sphere volume, . On the contrary, since  is
defined by normalizing the fibril volume inside a pyramidal element to the pyramidal

element volume, .

The volume fraction distribution function must satisfy (15)

(19)

For this example

(20)

Thus, the corresponding distribution function will be defined as
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(21)

For the special case where all fibrils are in tension,  in all directions and one
obtains

(22)

Example 2—To define isotropically distributed fibrils with a constant value for all
directions (e.g. for the transitional middle zone of articular cartilage) one divides the total

volume fraction of collagen  by the total volume of the sphere to obtain

(23)

For a 9% total volume fraction of fibrils that are isotropically distributed the distribution

function is . For this special case, the integral in (15) becomes

(24)

If all fibrils are in tension, equation (16) takes the specific form

(25)

4. Collagen network stress and elasticity tensors

Considering  fixed,  is a function of C and n; using equations (3) and (7) one
obtains

(26)

Thus, equation (16) can be written in terms of C as

(27)

Furthermore, the solid matrix elasticity tensor is obtained from W via the standard result
Recalling earlier definitions in (2), (4), (5) and (26)
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(28)

(29)

4.1 Example
This example illustrates how stress and elasticity tensors can be specified using equations
(28) and (29). A quadratic strain energy function may be reasonable for immature native or
engineered tissues which do not exhibit strong nonlinearity at large deformations; e.g.
immature native tissue has been shown not to exhibit a strong nonlinear response in tension
up to 20% strain and compression up to 45% strain [13, 14] so a quadratic strain energy
function may be sufficient for some studies. Consider the special form for the true fibril
strain energy function

(30)

where Ef is the true collagen elastic modulus.

Using (26) the collagen strain energy density (30) becomes

(31)

4.1.1 Stress—To calculate SCOL using equation (28) and (31), recall that the directional
derivative of any scalar-valued function f(Y) of a second order tensor Y with respect to Y in
the direction of an arbitrary second-order tensor Z is defined as

(32)

where (:) is the scalar double dot product. Replacing Y with C and f (Y) with Ψ̃ (C, n) leads
to

(33)

After some straightforward tensor algebraic manipulation, one obtains

(34)

With further manipulation of the right hand side of 2.34 and since Z is arbitrary, the collagen
network stress tensor SCOL in (28) becomes
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(35)

Where (⊗) denotes the tensor product.

4.1.2 Material elasticity stiffness—To calculate ℂ̃COL using equations (29) and (31),
the collagen material elasticity tensor is calculated from

(36)

Using the directional derivative of a second-order tensor function (i.e. the standard
generalization of equation (32)), one obtains

(37)

After some straightforward manipulation of the right hand side of (37) and using (36), the
collagen elasticity tensor is

(38)

5. Material stability
To address material stability criteria and avoid numerical divergence in computational
solutions, a restriction on the strain energy function may be imposed. Here, focus is on the
polyconvexity condition4 for the tissue’s solid matrix strain energy function W. A sufficient
condition for polyconvexity [21] is as follows: if the strain energy function W (F) satisfies
the additive decomposition

(39)

and each of the functions W1 (F), W2 (det(F)) and W3 (adj(F)) is a convex function of,
respectively, F, det(F) and adj (F), then W (F) is polyconvex. Furthermore, addition of two
or more polyconvex functions results in a polyconvex function. For use in tissue models
where additional constituent strain energies are added to WCOL, it suffices here to prove that
WCOL, which contributes to the W1 (F) term, is a convex function of F, i.e.:

(40)

4Polyconvexity guarantees the existence of local minimizers of the strain energy function subject to boundary conditions [16] while
not sharing the limitations of convexity related to global uniqueness [17] or invariance requirements and coercivity [18]; see also [15].
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Considering equation (16), it will be sufficient to show that  is a convex function of

F because the integrand in equation (16) is a continuous function and, apart from ,
the other components of the integrand do not depend on F and are positive. Therefore, it

suffices to show that for 

(41)

CCOL in equation (2) and Ψ in equation (31) can be expressed as functions of F

(42)

(43)

Noting that the collagen initial configuration is different from the solid matrix reference
configuration, the hat superposed on uppercase indices denotes the collagen initial
configuration. Calculating the derivative of equation (43) with respect to F results in

(44)

Calculating the second derivative of Ψ with respect to F, and with some manipulations,
results in

(45)

Recalling (41), (45) becomes

(46)

A necessary and sufficient condition for the above result to be non-negative is that Ef be
positive. Since Ef is always taken positive, the convexity condition is satisfied. It is
emphasized that the proof is only valid for the strain energy proposed in equation (30). Note
that, for the complete solid matrix strain energy to be polyconvex, the strain energy terms
for other constituents need to be considered.
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Fig. 1.
The tissue’s solid matrix occupies a stress-free reference configuration κ0, where constituent

pre-stresses balance each other. The deformation gradient tensor  maps the collagen

stress-free initial configuration  to κ0.
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Fig. 2.
Representation of the unit sphere and a typical pyramidal volume element dV with its
corresponding area base dA. The fibrils can be represented by a smaller pyramidal volume
element dVf with area base dAf (in grey).
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