

NIH Public Access

Author Manuscript

Org Lett. Author manuscript; available in PMC 2013 September 21

Published in final edited form as:

Org Lett. 2012 September 21; 14(18): 4910-4913. doi:10.1021/ol3022337.

Selective Esterifications of Primary Alcohols in a Water-Containing Solvent

Yong Wang, Bilal A. Aleiwi, Qinghui Wang, and Michio Kurosu

Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN 38163-0001

Michio Kurosu: mkurosu@uthsc.edu

Abstract

Oxyma and an oxyma derivative, (2,2-dimethyl-1,3-dioxolan-4-yl)methyl 2-cyano-2-(hydroxyimino)acetate (5b), displayed remarkable effect on selective esterifications of *primary* alcohols. A wide range of carboxylic acids could be esterified with *primary* alcohols by using EDCI, NaHCO₃, and Oxyma or an Oxyma derivative 5b in 5% H₂O-CH₃CN. An Oxyma derivative 5b is particularly useful since it could be removed after the reaction via a simple basic or an acidic aqueous work-up procedure.

In our efforts on total synthesis of muraymycins A_1 (1) and D_1 (2), and their analogs for structure-activity relationship studies against Gram-positive bacteria including *M. tuberculosis*, it is crucial to develop an efficient synthesis of the dipeptide **3a** and **3b** (Figure 1).¹ We have recently reported an efficient synthesis of the ureido-muraymycidine derivatives (the partial structure highlighted in a box in Figure 1).^{1b} In the synthesis of muraymycin A_1 selective acetylation of the *primary* alcohol is necessary to accomplish an efficient synthesis of the left half of **1**. We have screened reported esterification conditions for **4a** to form the mono-acetate **3a**. Although several acetylation conditions with the controlled amounts of reagents and at lowered temperatures provided the mono-acetate at the *primary* alcohol, the selectivity of mono- and di-acetate was not satisfactory. For example, acetylation of **4a** with Ac₂O (5 equiv) and pyridine (10 equiv) in CH₂Cl₂ at 0 °C gave a mixture of **3a** and the di-acetate (3/1) in less than 40% yield. DCC-mediated acetylations under anhydrous conditions that protect the *primary* alcohol of **4a** with AcOH to yield **3a** exclusively.

Correspondence to: Michio Kurosu, mkurosu@uthsc.edu.

Supporting Information Available Experimental procedures and copies of NMRs. This is available free of charge via the Internet at http://pubs.acs.org.

In our recent finding of amide-forming reactions with the ethyl 2-cyano-2-(hydroxyimino)acetate (Oxyma)² derivative (glyceroacetonide-Oxyma, **5b** in Table 1) in water media, it was observed that the **5b**-esters of amino acids (e.g. **9**) are stable during amide-forming reactions in water. Typically, glyceroacetonide-Oxyma catalyzed amideforming reactions could be achieved with EDCI (1.5 equiv), NaHCO₃ (3–6 equiv) in water (0.2–0.3 M) to yield the corresponding peptides in greater than 90% without detectable diastereomers.³ It has been reported that nucleophilicity of the oxygen atom of alcohols is slightly stronger than that of water.⁴ Thus, we expected that selective coupling of the oximeesters **9** (Table 1) with alcohols could be achieved in water media in the presence of a weak base. Gratifyingly, acetylation of **4a** with excess AcOH (10 equiv), glyceroacetonide-Oxyma **5b** (5 equiv), NaHCO₃ (10 equiv) in water (0.2 M) provided the mono-acetate **3a** in 85% yield without the formation of the diacetate ($R_2 = OAc$ in **3a** in Figure 1). Herein, we report the optimization of selective esterifications of *primary* alcohols with Oxyma **5a** or glyceroacetonide-Oxyma **5b**, EDCI, and NaHCO₃ in water-containing solvent systems.

Although an acetylation of **4a** to form **3a** could be achieved in water with excess reagents, high-yielding esterifications of alcohols using limited amount of carboxylic acids or alcohols are considered to be challenging transformations in aqueous media. Uronium-based reagents have previously been applied to introduce esters on *primary* alcohols under non-aqueous conditions.⁵ To the best of our knowledge, no practical esterification reaction has been developed in water-containing solvent systems. We have observed that glyceroacetonide-Oxyma **5b** is beneficial in high-yielding amide-forming reactions in water with wide range of amino acid derivatives.³ Reactivity difference between Oxyma 5a and 5b in amideforming reactions in water is attributed to the fact that water solubility of **5b** is improved 2.1 times greater than that of **5a** at pH 8.3 (entries 1 and 2 in Table 1).⁶ The esterification reactions of Boc-L-Phe-OH (6, 1 equiv) with alcohols (2 equiv), 5a or 5b (1.5 equiv), EDCI (1.5 equiv), and NaHCO₃ (6 equiv) were examined in water and water-containing solvent systems, and these data are summarized in Table 1. Esterification of 6 with MeOH in water furnished Boc-L-Phe-OMe (11a) in 45% yield in 2 h (entry 3). This low-yielding reaction in entry 3 was attributed to a slower reaction rate of the esterification compared to the amideforming reaction in entry 1. In addition, it was realized that the oxime-ester intermediate 9 has a half-life of approximately 6 h in water at pH 8.3.7 Thus, we examined the effect of a co-solvent to increase nucleophilicity of alcohol and a half-life of 9. The same reaction in H₂O-CH₃CN (1/1) improved the isolated yield of **11a** to 55% after 2 h (entry 4). Significant improvement of methyl esterification of $\mathbf{6}$ was observed when the reaction was performed in 5% H₂O-CH₃CN (entry 5); the isolated yield of **11a** was greater than 95%. Oxyma **5a** could effectively serve as a coupling additive for an esterification reaction in the solvent system (5% H₂O-CH₃CN) (entry 6). Thus, further studies of selective esterifications of *primary* alcohols were performed using Oxyma **5a**. Although several solvents such as 5% H₂Odioxane and 5% H₂O-acetone could be utilized for effective methyl esterification of 6 (entries 7 and 8), the esterifications in 5% H₂O-CH₃CN were superior to those in the other solvent system tested. Under the optimized conditions [acid (1 equiv), alcohol (2 equiv), 5a or **5b** (1.5 equiv), EDCI (1.5 equiv), and NaHCO₃ (6 equiv)], isopropanol and *tert*-butanol did not form the corresponding esters with 6 even after a prolonged reaction time.⁸

In order to understand the scope and limitations of the selective esterification reactions of *primary* alcohols with EDCI, Oxyma **5a**, and NaHCO₃ in 5% H₂O-CH₃CN, these conditions were applied to esterifications of a wide variety of acids with alcohols. Selected examples are summarized in Table 2. Esterifications of **6** with methanol, *primary* alcohols and phenols furnished the corresponding esters in greater than 90% yield without detectable racemization (entries 1–7). Significantly, allyl alcohol could be esterified to provide **23c** in 98% yield. It is worth pointing out that esterifications of carboxylic acid with allyl alcohols have never

been successfully performed using carbodiimide-mediated reaction conditions (entry 3).⁹ Unlike 4-(dialkylamino)pyridine-catalyzed DCC-mediated esterification conditions, the Fmoc-group was not cleaved during the benzyl esterifications of the Fmoc-protected amino acids, 12 and 13 (entries 8 and 9).¹⁰ Esterifications of N-sulforylated α -amino acids using carbodiimide coupling reagents often result in low conversion with significant racemization. However, under the conditions in Table 2, the benzyl esterification of 14 furnished 26 in 98% yield with >99% ee (entry 10). The chiral carboxylic acids possessing secondary alcohols, **15**, **16**, and **17** could be esterified efficiently with the *primary* alcohols. Benzyl esterifications of (S)-mandelic acid (15) and 3-hydroxybutanoic acid (16) furnished the corresponding benzyl esters 27 and 28 in 98% and 99% yields, respectively (entries 11 and 12). Methyl esterification of Boc-L-Thr-OH (17) gave rise to Boc-L-Thr-OMe (29) in 95% yield (entry 13). Benzoylation, acetylation, and formylation reactions of DL-1,2isopropylideneglycerol (18) provided the corresponding esters 30a-c in greater than 95% yields (entries 14–16). It should be noted that (2,2-dimethyl-1,3-dioxolan-4-yl)methyl formate (30c) was not stable to silica gel, thus, its yield was determined based on ¹H-NMR analysis of the crude product. On the other hand, formylation of (3,5bis(benzyloxy)phenyl)methanol (19) afforded 31 in 95% yield after silica gel chromatography (entry 17). Selective esterifications of diols were also demonstrated, and selected examples are summarized in Table 2. The primary alcohol of butane-1,3-diol (20) was selectively benzoylated to afford 32 in 80% yield. Esterifications of glycerol (21) with benzoic acid and *n*-hexanoic acid furnished the corresponding diesters **33a** and **33b** in 85% and 90% yield, respectively (entries 19 and 20). Benzoylation of benzyl 2-(acetylamino)-2deoxy- α -D-glucopyranoside (22) was achieved selectively at the C6-position to afford the mono-benzoate 34 in 90% yield (entry 21).

Finally, acylations of the diol of a complex muramic acid derivative **35** were demonstrated as selective esterifications of *primary* alcohols (Scheme 1).¹¹ Acetylation and benzoylation of **35** using **5b** (1.5 equiv), acid (2 equiv), EDCI (1.5 equiv), and NaHCO₃ (6 equiv) at 0 °C gave rise to the *primary* acetate **36a** and benzoate **36b** in greater than 95% without the formation of diacylated product. In the reactions summarized in Scheme 1, it is a significant benefit to use glyceroacetonide-Oxyma **5b**. Although the same reaction with Oxyma **5a** gave equal conversion yield as observed in Scheme 1, separation of **5a** from the product was extremely difficult via silica gel chromatography. On the other hand, **5b** could be removed completely via standard acidic and basic work-ups.

In conclusion, we have optimized selective esterifications of *primary* alcohols using Oxyma **5a** or glyceroacetonide-Oxyma **5b**, EDCI, and NaHCO₃ in 5% H₂O-CH₃CN. The selective esterification conditions described here do not require the strict anhydrous condition necessary for ordinal esterification reactions. The coupling additive **5b** can be removed easily after the reactions via acidic and basic work-ups. The new esterification conditions reported here should be a valuable asset in organic synthesis and for selective modifications of polyol molecules.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

We thank the National Institutes of Health (NIAID grant AI AI084411) and University of Tennessee for generous financial support.

References

- (a) Kurosu M, Li K. J. Org. Chem. 2008; 73:9767–9770. [PubMed: 18783274] (b) Aleiwi BA, Schneider CM, Kurosu M. J. Org. Chem. 2012; 77:3859–3867. [PubMed: 22458337] (c) Aleiwi BA, Kurosu M. Tetrahedron Lett. 2012; 53:3758–3762. [PubMed: 22711944]
- (a) Khattab SN. Bull. Chem. Soc. Jpn. 2010; 83:1374–1379.(b) El-Faham A, Subiro's-Funosas R, Albericio F. Chem. Eur. J. 2010; 19:3641–3649.(c) Subiro's-Funosas R, Prohens R, Barbas R, El-Faham A, Albericio F. Chem. Eur. J. 2009; 15:9394–9403. [PubMed: 19575348]
- 3. Wang Q, Wang Y, Kurosu M. Org. Lett. 2012; 14:3372-3375. [PubMed: 22697488]
- 4. (a) Pearson RG, Songstad J. J. Am. Chem. Soc. 1967; 89:1827–1836.(b) Pearson RG, Sobel H, Songstad J. J. Am. Chem. Soc. 1968; 90:319–326.
- 5. (a) Twibanire JK, Grindley TB. Org. Lett. 2011; 13:2988–2991. [PubMed: 21591807] (b) Twibanire JK, Omran RP, Grindley TB. Org. Lett. 2012; 14:3909–3911. [PubMed: 22784298]
- 6. Six equivalents of NaHCO₃ in water (0.2 M) shows pH of 8.3.
- 7. The acetate and benzoate of **5b** have a half-life of over 12 h.
- 8. Esterifications of **6** with (+)-menthol and cholesterol also did not provide the corresponding esters.
- (a) Monagle JJ. J. Org. Chem. 1962; 27:3851–3855.(b) Steglich W, Höfle G. Angew. Chem. Int. Ed. Engl. 1969; 8:981.(c) Boden EP, Keck GE. J. Org. Chem. 1985; 50:2394–2395.
- 10. Spivey AC, Arseniyadis S. Angew. Chem. Int. Ed. 2004; 43:5436–5441.
- 11. Under the optimized conditions, acetylation of **4a** furnished **3a** in greater than 95% without the formation of the diacetate (Figure 1)

Syntheses of muraymycins $A_1(1)$ and $D_1(2)$.

Table 1

Amide- or ester-forming reactions in water media.

^a6 (1.0 equiv), 7 (1.5 equiv), additive (1.5 equiv), EDCI (1.5 equiv), NaHCO₃ (6 equiv) in H₂O (0.2 M concentrations), 2 h;

 b_{6} (1.0 equiv), 8 (2.0 equiv), additive (1.5 equiv), EDCI (1.5 equiv), NaHCO₃ (6 equiv) (0.2 M concentrations);

^c de or ee was determined to be >99% via HPLC analysis;

^disolated yield.

Table 2

Selective esterifications of *primary* alcohols using EDCI, Oxyma 5a, and NaHCO₃ in 5% H₂O-CH₃CN^a

^{*a*}All reactions were carried out using 5a (1.5 equiv) at rt except where noted;

^bee was determined by HPLC (Daicel Chiralcel OD-Hcolumn);

^CR₁-CO₂H (1 equiv) and R₂-OH (2 equiv) were used;

^d_{R1}-CO₂H (2 equiv) and R₂-OH (1 equiv) were used;

^eyield was determined via ¹H-NMR;

f the reaction was carried out at 0 °C;

^gR₁-CO₂H (1 equiv) and R₂-OH (8 equiv) were used.