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Abstract
The activity of mitochondrial alpha-ketoglutarate dehydrogenase complex (KGDHC) is severely
reduced in human pathologies where oxidative stress is traditionally thought to play an important
role, such as familial and sporadic forms of Alzheimer's disease and other age-related
neurodegenerative diseases. This minireview is focused on substantial data that were accumulated
over the last 2 decades to support the concept that KGDHC can be a primary mitochondrial target
of oxidative stress and at the same time a key contributor to it by producing reactive oxygen
species. This article is part of a Special Issue entitled ‘Mitochondrial function’.
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Introduction
The mitochondrial α-ketoglutarate dehydrogenase complex (KGDHC) catalyzes the reaction

α − ketoglutarate + CoASH + NAD+→succinyl − CoA + CO2 + NADH.

It is located in the matrix of mitochondria where it is tightly associated with the matrix side
of the inner membrane (Maas and Bisswanger, 1990). It binds specifically to Complex I of
the mitochondrial respiratory chain (Sumegi and Srere, 1984) and may form a part of the
tricarboxylic acid cycle (TCA) enzyme supercomplex (Lyubarev and Kurganov, 1989). The
KGDHC is composed of multiple copies of three enzymes: α-ketoglutarate dehydrogenase
(E1k component, EC 1.2.4.2), dihydrolipoamide succinyltransferase (E2k component, EC
2.3.1.12), and dihydrolipoamide dehydrogenase (E3 component, EC 1.6.4.3). The electrons
from E1k reduce the lipoyl groups in E2k. E3 reoxidizes the reduced lipoyl groups ofE2k
and transfers the electrons to NAD+, forming NADH. The E1k and E3 components are non-
covalently bound to a core formed by E2k components (Sheu and Blass, 1999; Wagenknecht
et al., 1983). KGDHC is activated by low concentrations of Ca2+ (10−7−10−5 M) and ADP
(∼10−4 M for half-maximum activation) (Lawlis and Roche, 1981; McCormack and Denton,
1979), and it is inhibited by high NADH and its own product, succinyl-CoA (Hamada et al.,
1975; Kiselevsky et al., 1990; LaNoue et al., 1983; McMinn and Ottaway, 1977; Wan et al.,
1989). The latter is the key substrate for heme biosynthesis and also a substrate for the
succinyl-CoA ligase, the only enzyme in brain mitochondria with the substantial capacity for
ATP-generating substrate-level phosphorylation. Thus, KGDHC is important for generating
ATP in the mitochondria in the absence of oxidative phosphorylation (Chinopoulos et al.,
2010). The importance of KGDHC in TCA and overall energy and heme metabolism has
had been extensively and repeatedly reviewed elsewhere (e.g., see Gibson et al., 2010); this
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minireview is focused primarily on the properties of KGDHC as the target of oxidative
stress and its E3 component as a source of reactive oxygen species.

Why is studying KGDHC important?
The interest in KGDHC activity in relation to human pathology and specifically brain
metabolism stems from the fact that its activity is severely reduced in human pathologies
where oxidative stressis traditionally thought to play an important role. The KGDHC
activity is reduced by ∼57% in brains of patients with Alzheimer's disease as originally
reported by Gibson et al. (1988) and later confirmed by several laboratories (Butterworth
and Besnard, 1990; Mastrogiacoma et al., 1996; Mastrogiacomo et al., 1993; Terwel et al.,
1998). Decreased KGDHC activities occur in genetic (Gibson et al., 1998) and sporadic
(Albers et al., 2000) forms of AD. In early AD-type dementia, the neocortical metabolic
abnormalities precede the non-memory cognitive defects (Haxby et al., 1986), thereby
suggesting a role for dysregulation of metabolism in etiology of AD. KGDHC activity is
also reduced in several other age-related neurodegenerative diseases including Parkinson's
(Gibson et al., 2003), Huntington (Klivenyi et al., 2004), Wernicke Korskoff (Butterworth et
al., 1993) and progressive supranuclear palsy (Albers et al., 2000; Park et al., 2001).

KGDHC is an easy target of oxidative stress
One of the reasons for this consistent deficiency of KGDHC in neurodegenerative diseases
may be that KGDHC appears to be more sensitive to oxidative damage than most other
mitochondrial proteins (Tretter and Adam-Vizi, 2000), perhaps due to the large number of
sulfhydryl groups and tyrosines that are subject to oxidant modification whereas being
critical for KGDHC enzymatic activity. Analysis of the human sequence shows that
KGDHC has 37 cysteine residues (E1k has 21, E2k has 6 and E3 has 10); there are also
multiple tyrosine residues in KGDHC (31 in E1k, 5 in E2k and 11 in E3). KGDHC is
sensitive to oxidants that increase 4-hydroxy-2-nonenal (Humphries and Szweda, 1998) and
elevate the protein carbonyl content (Cabiscol et al., 2000). A variety of oxidants inactivate
KGDHC, such as H2O2 (Chinopoulos et al., 1999; Gibson et al., 2000; Nulton-Persson et al.,
2003; Xu et al., 2001), peroxynitrite (Park et al., 1999), nitric oxide (Park et al., 1999),
hydroxynonenal (Humphries et al., 1998), chloroamine (Xu et al., 2001), sodium
hypochlorite (Xu et al., 2001), t-butyl hydroperoxide (Rokutan et al., 1987) and acrolein
(Pocernich and Butterfield, 2003). Catecholamines enhance E3 inactivation by the copper
Fenton system (Correa and Stoppani, 1996). Knockout of SOD2 in mice increases ROS
production and inactivates E1k of KGDHC (Hinerfeld et al., 2004). Increases in cellular
ROS and diminished KGDHC are seen following inhibition of respiration in microglia (Park
et al., 1999) and increased MAO expression (Kumar et al., 2003). KGDHC also interacts
with thioredoxin to maintain the mitochondrial sulfur redox (Bunik, 2003; Gourlay et al.,
2003). Thioredoxin couples the redox state of the lipoyl groups in E2k to glutathione and
peroxiredoxin (Bunik, 2003). The increase in the ratio of dihydrolipoate/lipoate in the E2k
component reciprocally diminishes E1k activity by changing its cooperative properties
(Bunik et al., 1989, 1990), inactivation (Bunik et al., 1997), production of ROS (Bunik and
Sievers, 2002) and reduction of disulfides (Bunik et al., 1995). The thiyl radical of the E2k-
bound dihydrolipoate induces the inactivation of E1k by one electron oxidation of the 2-oxo
acid dehydrogenase catalytic intermediate. The inactivation prevents the transformation of
the 2-oxo acids in the absence of terminal substrate, NAD+ (Bunik and Sievers, 2002).
Thioredoxin protects KGDHC from the E1k inactivation. In turn, the activity of thioredoxin
and other 'oxins (peroxiredoxins, glutaredoxins, which are important in maintaining other
sulfhydryl group-dependent enzyme activity) in mitochondria depends on the supply of
reducing equivalents from TCA enzymes tothioredoxin reductase 2 that regenerates the
'oxins (Andreyev et al., 2005). This supply depends on the flux through TCA, which is in
some tissues (such as the brain (Sheu and Blass, 1999)) controlled by KGDHC activity.
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Thus, ample evidence support the concept that KGDHC is an easy target of oxidative stress
because it seems to be especially vulnerable to oxidative damage while being crucially
important for keeping the mitochondrial antioxidant defense system operational.

KGDHC is a significant source of ROS
Or, more precisely, the E3 component of KGDHC is a substantial source of ROS in
mitochondria. Of note, the E3 component of KGDHC is genetically and physically identical
to that of several other E3-bearing enzymes (pyruvate dehydrogenase complex (PDHC),
branched-chain α-keto acid dehydrogenase complex (BCKDC), and the glycine cleavage
complex; the other protein components are unique to E3-bearing enzyme complexes). E3 is
known as dihydrolipoamide dehydrogenase or lipoamide dehydrogenase (commonly used
abbreviations are DLD, DLDH, or LADH). For enzymatic activity, E3 requires non-
covalently bound FAD (Koike et al., 1974; Patel and Roche, 1990; Reed and Hackert, 1990).
E3 is the most abundant flavoprotein in muscle and brain mitochondria (Kunz and Gellerich,
1993). It is not known whether E3 is present as a stand-alone, non-complex-bound enzyme
in the mitochondrial matrix. When isolated, E3 exhibits multiple enzymatic activities such
as e.g., diaphorase (Massey, 1960) that is capable of reducing quinones at the expense of
NADH, or proteinase (reviewed elsewhere (Gibson et al., 2010)). Again, it is not known
whether E3 can catalyze these reactions when it is integrated in the proper enzyme
complexes.

E3 can generate superoxide and hydrogen peroxide. KGDHC is the major source of H2O2 in
the mitochondria in resting state when the ratio of NAD+/NADH is low (Starkov et al.,
2004; Tretter and Adam-Vizi, 2004; Tretter and Adam-Vizi, 2005). ROS production has
been shown with isolated purified KGDHC (Starkov et al., 2004; Tretter and Adam-Vizi,
2004) and PDHC (Starkov et al., 2004) and in isolated mouse brain mitochondria (Starkov et
al., 2004). Mice genetically rendered deficient in E3 by 50% by suppressing Dld gene
expression exhibited about 55% of enzymatic activity of KGDHC in brain mitochondria (the
activity of PDHC was depleted by only ∼20%, likely because of the differences in the
assembly of PDHC and KGDHC complexes). Brain mitochondria isolated from these
Dld+/−; mice exhibited about 50% less ROS production with α-ketoglutarate as well as with
succinate.On the other hand, mice rendered deficient in KGDHC activity by suppressing the
expression of the E2k component (DLST+/− mice) also exhibited about 58% of KGDHC
activity in brain mitochondria (Yang et al., 2009), yet the ROS production was normal (these
data were not published). This indicates that the source of ROS in KGDHC was E3 with
electrons coming from either α-ketoglutarate or NADH (Starkov et al., 2004). It would also
explain why the ROS production was suppressed when mitochondria oxidized the succinate
in State 4 (Starkov et al., 2004). It is believed that under such conditions ROS are generated
at Complex I of the respiratory chain because of reverse electron transfer from the succinate.
However, the mitochondrial pyridine nucleotide pool becomes over-reduced under such
conditions, which prompts ROS production from other enzymes capable of it which are
linked to pyridine nucleotide pool,, such as KGDHC. Thus, ROS production in State 4 in
mitochondria oxidizing succinate is a sum of Complex I-generated ROS and ROS generated
by other enzymes linked to the NAD pool in the mitochondrial matrix.

Although E3 is a part of several enzyme complexes including KGDHC and PDHC, there is
greater impairment of KGDHC than of PDHC activity in E3-deficient mitochondria
(Klivenyi et al., 2004; Starkov et al., 2004). The data strongly indicate that KGDHC is a
primary site of ROS production in normally functioning mitochondria (Starkov et al., 2004).

This ROS production appears to be pathologically important since inhibitors of KGDHC
protect against in vitro hypoxia (Huang et al., 2005) and glutamate toxicity (Zündorf et al.,
2009) in parallel with blocking ROS production.
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Isolated E3 also produces ROS (Bunik and Sievers, 2002). The ROS production from
KGDHC is stimulated by low availability of its natural electron acceptor, NAD+ (Starkov et
al., 2004; Tretter and Adam-Vizi, 2004). The dependence on NAD+/NADH provides a
direct link to metabolism.

Mutations in the human Dld gene encoding E3 result in the inherited deficiency of the E3
subcomponent of KGDHC with severe or even lethal consequences. The disease-causing
mutations involve either the cofactor-binding sites (I12T, K37E, G194C, M326V, I358T),
the disulfide redox center (P453L) or the dimerization region (E340K, D444V, R460G) (see
Ambrus et al., 2011 for the references). Recently, researchers led by Adam-Vizi (Ambrus et
al., 2011) investigated the most important pathogenic mutants of Dld by using site-directed
mutagenesis of human Dld; the mutated proteins were expressed in Escherichia coli,
isolated, purified and studied with the help of an array of biochemical, structural and
biophysical methods. The authors found that G194C, P453L, E340K and D444V mutants
exhibited significantly enhanced ROS generation. It is interesting that the location of the
mutation in E3 or the conformation changes in the enzyme caused by these mutations had no
apparent relation to the enhanced ROS generation. Two ROS-enhancing mutations were at
the homodimer interface (E340K, D444V), one at the disulfide-exchange site (P453L) and
one at the FAD/pyridine nucleotide binding site (G194C); however, other mutations at the
same locations failed to affect ROS generation. There were also no correlation between the
changes in the physiological enzymatic activity of E3 and enhanced ROS production.
Moreover, G194C mutation did not affect the enzymatic activity of E3 yet significantly
stimulated ROS generation. It is interesting that this mutation is frequently associated with
E3-deficiency common among Ashkenazi Jews (Shaag et al., 1999). Overall, the data imply
that the ROS-generating activity of E3 could potentially be one of the important pathogenic
factors in the clinical manifestation of E3-deficiencies associated with the mutations in Dld
gene (Ambrus et al., 2011).

The H2O2 production by E3 was studied by Vinogradov's group on heart submitochondrial
particles and isolated permeabilized heart mitochondria. Earlier, these researchers found that
a fraction of matrix located proteins in bovine heart mitochondria can catalyze NADH-
supported, ammonium-stimulated H2O2 production (Grivennikova et al., 2008). The key
ROS producing enzyme in this fraction was later identified as dihydrolipoamide
dehydrogenase (Kareyeva et al., 2012). Using alamethicin-permeabilized heart
mitochondria, authors demonstrated that more than half of H2O2 production can be
attributed to dihydrolipoamide dehydrogenase (alamethicin is a pore-forming peptide that is
used in vitro to permeabilize mitochondria in order to gain unrestricted access to their matrix
side. This allows precise experimental control of the pools of small molecules such as e.g.
pyridine nucleotides or glutathione). In the presence of ammonium that stimulates
dihydrolipoamide dehydrogenase activity most of the total H2O2 production (∼90%) in
alamethicin-permeabilized rat heart mitochondria was catalyzed by dihydrolipoamide
dehydrogenase (Kareyeva et al., 2012). Recently, using a soluble form of Dld (pig heart
DLDH obtained from Calzyme, U.S.A.) they also demonstrated that H2O2 production
attributed to DLDH was dependent on the NAD+/NADH ratio and exhibited first order
dependence on O2 concentration in the medium. Authors (Kareyeva et al., 2012) commented
that the latter fact creates an apparent physiological paradox when the most ROS production
by mitochondria is expected only upon significant reduction of their pyridine nucleotide
pool whereas such a situation can arise only in deep hypoxia when ROS production is
expected to be minimal due to its first-order nature of oxygen reactivity. This led the authors
to predict that a burst of mitochondrial ROS production could be expected upon normoxic
reperfusion of anoxic tissue because anaerobically deactivated complex I is only slowly
acquiring its NADH oxidizing capacity upon the onset of normoxia (Maklashina et al.,
2002).
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It should however be noted that oxygen accessibility to the oxygen reactive site in a protein-
bound flavin (which is considered to be the site of ROS generation) in soluble DLDH may
differ from that in a more physiologically relevant situation with enzyme complex-bound
E3, e.g. in KGDHC or PDHC or other E3-bearing enzyme complexes. The binding itself is
supposed to affect the conformation of the E3 protein, which is expected to affect the
oxygen accessibility, the redox properties of the flavin and its reactivity with oxygen at its
reactive site (4a position in the isoalloxazine ring (Kareyeva et al., 2012)). Nevertheless,
these results suggest that E3-mediated ROS production could be of importance in oxidative
stress and tissue damage upon ischemia and reperfusion. To note, ROS production by
KGDHC is stimulated at lower (6.7–7.0) pH relevant to ischemia/reperfusion (Ambrus et al.,
2009).

Concluding remarks
Although the fact of ROS generation by the E3 component of KGDHC is – in our opinion –
well established, more work has to be done to demonstrate its pathophysiological role in
oxidative stress at the level of organisms and to reveal the role of other E3-bearing enzymes
in ROS production in different tissues. It would be of great interest to examine whether
ROS-generation promoting point mutationsin E3 are present in brain tissue from humans
affected by neurodegenerative diseases such as e.g., Alzheimer's or Parkinson's diseases.
Hypothetically, such mutations do not necessarily have to be inherited; they can be acquired
during the lifetime of an individual for example due to an exposure to pesticides or other
environmental toxins. Another important goal is to establish whether the E3 enzyme is
present in free, non-bound form in the matrix of mitochondria, and to study the rules and
mechanisms governing its assembly into the enzyme complexes. It would also be of interest
to evaluate the role of KGDHC (or other E3-bearing enzymes) in the oxidative stress
associated with ischemia and reperfusion. Unfortunately, these studies at present are
somewhat hindered by the absence of specific inhibitors acting at the E3 NAD+ binding site,
which is most likely the site of ROS production.
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