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Abstract The current demands of the world’s biotechno-

logical industries are enhancement in enzyme productivity

and development of novel techniques for increasing their shelf

life. These requirements are inevitable to facilitate large-scale

and economic formulation. Enzyme immobilization provides

an excellent base for increasing availability of enzyme to the

substrate with greater turnover over a considerable period of

time. Several natural and synthetic supports have been

assessed for their efficiency for enzyme immobilization.

Nowadays, immobilized enzymes are preferred over their free

counterpart due to their prolonged availability that curtails

redundant downstream and purification processes. Future

investigations should endeavor at adopting logistic and sen-

sible entrapment techniques along with innovatively modified

supports to improve the state of enzyme immobilization and

provide new perspectives to the industrial sector.

Keywords Enzyme immobilization � Techniques �
Supports � Applications

Introduction

Enzymes or ‘biocatalysts’ are remarkable discovery in the

field of bioprocess technology. Biocatalysis has been

widely accepted in diverse sectors owing to their ease of

production, substrate specificity and green chemistry.

However, for large extent commercialization of these bio-

derived catalysts, their reusability factor becomes manda-

tory, failing which they would no longer be economic.

Maintenance of their structural stability during any bio-

chemical reaction is highly challenging. Consequently,

immobilized enzymes with functional efficiency and

enhanced reproducibility are used as alternatives in spite of

their expensiveness. Immobilized biocatalysts can either be

enzymes or whole cells (Kawaguti et al. 2006). Enzyme

immobilization is confinement of enzyme to a phase

(matrix/support) different from the one for substrates and

products. Inert polymers and inorganic materials are usually

used as carrier matrices. Apart from being affordable, an

ideal matrix must encompass characteristics like inertness,

physical strength, stability, regenerability, ability to

increase enzyme specificity/activity and reduce product

inhibition, nonspecific adsorption and microbial contami-

nation (Singh 2009). Immobilization generates continuous

economic operations, automation, high investment/capacity

ratio and recovery of product with greater purity (D’Souza

1998). Several methods are used for immobilization and

various factors influence the performance of immobilized

enzymes (Table 1). Adsorption/carrier-binding method

uses water-insoluble carriers such as polysaccharide deriv-

atives, synthetic polymers and glass (Al-Adhami et al.

2002; Rosa et al. 2002; Wu and Lia 2008; Cordeiro et al.

2011). In cross-linking/covalent method, bi/multifunctional

reagents such as glutaraldehyde, bisdiazobenzidine and

hexamethylene diisocyanate are used (Lee et al. 2006;

Singh 2009). Polymers like collagen, cellulose and j-car-

rageenan are employed by entrapment method, while the

membrane confinement method includes formulation of

liposomes and microcapsules (Katwa et al. 1981; Wang and

Hettwer 1982; Mislovicová et al. 2004; Hilal et al. 2006;

Tümtürk et al. 2007; Rochefort et al. 2008; Jegannathan

et al. 2010; Chen et al. 2011a, b; Klein et al. 2011).
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This article reviews the existing techniques used for

immobilization along with providing insights into the

recent developments for each of them. We have tried to

throw light on significant modifications with respect to the

techniques and innovative support materials employed for

immobilization of biocatalysts that have potential impli-

cation on future enzyme market.

Different techniques used for immobilization

Adsorption

Enzyme adsorption results from hydrophobic interactions

and salt linkages where either the support is bathed in

enzyme for physical adsorption or the enzyme is dried on

electrode surfaces. Adsorbed enzymes are shielded from

aggregation, proteolysis and interaction with hydrophobic

interfaces (Spahn and Minteer 2008). Researchers have

used eco-friendly supports like coconut fibers having good

water-holding capacity and high cation exchange property;

microcrystalline cellulose with irreversible binding capac-

ity; kaolin with high enzyme retainability by chemical

acetylation; and micro/mesoporous materials having thiol

functionalized, large surface area ideally suited for reduc-

tion and oxidation reactions (Dey et al. 2002; Hernández

et al. 2007; Karagulyan et al. 2008; Brı́gida et al. 2010;

Mitchell and Ramı́rez 2011; Huang et al. 2011). Silanized

molecular sieves have also been successfully used as sup-

ports for enzyme adsorption owing to the presence of sil-

anols on pore walls that facilitate enzyme immobilization

by hydrogen bonding (Diaz and Balkus 1996). Various

chemical modifications of the currently used supports

would definitely help in better immobilization. Water

activity profiles of lipase adsorbed using polypropylene-

based hydrophobic granules/Accurel EP-100 has been

reported (Persson et al. 2000). It would be important to

note that Accurel with smaller particle sizes increases

reaction rates and enantiomeric ratios during biocatalyza-

tion (Sabbani et al. 2006).

For better process control and economic production,

Yarrowia lipolytica lipase was immobilized on octyl-aga-

rose and octadecyl-sepabeads supports by physical

adsorption that resulted in higher yields and greater (ten-

fold) stability than that of free lipase. This was accounted

by the hydrophobicity of octadecyl-sepabeads that enhan-

ces affinity between the enzyme and support (Cunha et al.

2008). Candida rugosa lipase adsorbed on biodegradable

poly (3-hydroxybutyrate-co-hydroxyvalerate) showed

94 % residual activity after 4 h at 50 �C and reusability till

12 cycles (Cabrera-Padilla et al. 2011). These supports

were preferred because they are less tough and crystalline

than polyhydroxybutyrate. 1, 4-Butenediol diglycidyl

ether-activated byssus threads have been suitable basement

for urease that increased pH stability and retained 50 %

enzyme activity under dried conditions (Mishra et al.

2011). Eco-friendly supports of biological origin not only

prevent cropping up of ethical issues, but also cut down the

production costs. Of late, biocompatible mesoporous silica

nanoparticles (MSNs) supports have been used for bioca-

talysis in energy applications owing to their long-term

durability and efficiency (Popat et al. 2011).

Covalent binding

Covalent association of enzymes to supports occurs owing

to their side chain amino acids like arginine, aspartic acid,

histidine and degree of reactivity based on different func-

tional groups like imidazole, indolyl, phenolic hydroxyl,

etc. (D’Souza 1998; Singh 2009). Peptide-modified surfaces

when used for enzyme linkage results in higher specific

activity and stability with controlled protein orientation (Fu

et al. 2011). Cyanogen bromide (CNBr)-agarose and CNBr-

activated-Sepharose containing carbohydrate moiety and

Table 1 Factors influencing

performance of immobilized

enzymes (Cao 2006)

Factors Implications of immobilization

Hydrophobic partition Enhancement of reaction rate of hydrophobic substrate

Microenvironment of carrier Hydrophobic nature stabilizes enzyme

Multipoint attachment of carrier Enhancement of enzyme thermal stability

Spacer or arm of various types

of immobilized enzymes

Prevents enzyme deactivation

Diffusion constraints Enzyme activity decreases and stability increases

Presence of substrates or inhibitors Higher activity retention

Physical post-treatments Improvement of enzyme performance

Different binding mode Activity and stability can be affected

Physical structure of the carrier

such as pore size

Activity retention was often pore-size dependent

Physical nature of the carrier Carriers with large pore size mitigate diffusion limitation,

leading to higher activity retention
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glutaraldehyde as a spacer arm have imparted thermal sta-

bility to covalently bound enzymes (Hsieh et al. 2000;

Cunha et al. 2008). Highly stable and hyperactive biocata-

lysts have been reported by covalent binding of enzymes to

silica gel carriers modified by silanization with elimination

of unreacted aldehyde groups and to SBA-15 supports

containing cage-like pores lined by Si–F moieties (Lee et al.

2006; Szymańska et al. 2009). Increase in half-life and

thermal stability of enzymes has been achieved by covalent

coupling with different supports like mesoporous silica,

chitosan, etc. (Hsieh et al. 2000; Ispas et al. 2009). Cross-

linking of enzymes to electrospun nanofibers has shown

greater residual activity due to increased surface area and

porosity. Use of such nanodiametric supports have brought

a turning point in the field of biocatalyst immobilization

(Wu et al. 2005; Kim et al. 2006; Ren et al. 2006; Li et al.

2007; Huang et al. 2008; Sakai et al. 2010). Covalent

binding of alcohol dehydrogenase on attapulgite nanofibers

(hydrated magnesium silicate) has been opted owing to its

thermal endurance and variable nano sizes (Zhao et al.

2010). Biocatalytic membranes have been useful in unrav-

eling effective covalent interactions with silicon-coated

enzymes (Hilal et al. 2006). Cross-linked enzyme aggre-

gates produced by precipitation of enzyme from aqueous

solution by addition of organic solvents or ionic polymers

have been reported (Sheldon 2011). Different orientations

of immobilized enzyme on magnetic nanoclusters obtained

by covalent binding have found their applications in phar-

maceutical industries owing to their enhanced longevity,

operational stability and reusability (Yusdy et al. 2009).

Maintaining the structural and functional property of

enzymes during immobilization is one of the major roles

played by a cross-linking agent. One such agent is glutar-

aldehyde, popularly used as bifunctional cross-linker,

because they are soluble in aqueous solvents and can form

stable inter- and intra-subunit covalent bonds.

Affinity immobilization

Affinity immobilization exploits specificity of enzyme to

its support under different physiological conditions. It is

achieved by two ways: either the matrix is precoupled to an

affinity ligand for target enzyme or the enzyme is conju-

gated to an entity that develops affinity toward the matrix

(Sardar et al. 2000). Affinity adsorbents have also been

used for simultaneous purification of enzymes (Ho et al.

2004). Complex affinity supports like alkali stable chito-

san-coated porous silica beads and agarose-linked multi-

layered concanavalin A harbor higher amounts of enzymes

which lead to increased stability and efficiency (Shi et al.

2003; Sardar and Gupta 2005). Bioaffinity layering is an

improvisation of this technique that exponentially increases

enzyme-binding capacity and reusability due to the

presence of non-covalent forces such as coulombic,

hydrogen bonding, van der Waals forces, etc. (Sardar and

Gupta 2005; Haider and Husain 2008).

Entrapment

Entrapment is caging of enzymes by covalent or non-

covalent bonds within gels or fibers (Singh 2009). Efficient

encapsulation has been achieved with alginate–gelatin–

calcium hybrid carriers that prevented enzyme leakage and

provided increased mechanical stability (Shen et al. 2011).

Entrapment by nanostructured supports like electrospun

nanofibers and pristine materials have revolutionalized the

world of enzyme immobilization with their wide-ranging

applications in the field of fine chemistry, biomedicine

biosensors and biofuels (Dai and Xia 2006; Kim et al.

2006; Wang et al. 2009; Wen et al. 2011). Prevention of

friability and leaching and augmentation of entrapment

efficiency and enzyme activity by Candida rugosa lipase

entrapped in chitosan have been reported. This support has

also been reported to be non-toxic, biocompatible and

amenable to chemical modification and highly affinitive to

protein due to its hydrophilic nature (Betigeri and Neau

2002). Entrapment by mesoporous silica is attributed to its

high surface area, uniform pore distribution, tunable pore

size and high adsorption capacity (Ispas et al. 2009).

Simultaneous entrapment of lipase and magnetite nano-

particles with biomimetic silica enhanced its activity in

varying silane additives (Chen et al. 2011a). Sol–gel

matrices with supramolecular calixarene polymers have

been used for entrapment of C. rugosa lipase keeping in

view their selective binding and carrying capacities (Erd-

emir and Yilmaz 2011). Lipases entrapped j-carrageenan

has been reported to be highly thermostable and organic

solvent tolerant (Tümtürk et al. 2007; Jegannathan et al.

2010).

Materials used for fabrication of immobilization

supports

Natural polymers as supports

Alginate

Alginate derived from cell walls of brown algae are cal-

cium, magnesium and sodium salts of alginic acid and have

been extensively used for immobilization as xanthan–

alginate beads, alginate–polyacrylamide gels and calcium

alginate beads with enhanced enzyme activity and reus-

ability. Cross-linking of alginate with divalent ions (like

Ca2?) and glutaraldehyde improves the stability of

enzymes (Elçin 1995; Flores-Maltos et al. 2011).
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Chitosan and chitin

Natural polymers like chitin and chitosan have been used

as supports for immobilization (Vaillant et al. 2000;

Kapoor and Kuhad 2007). The protein or carbohydrate

moieties of enzymes are used for binding them to chitosan

(Hsieh et al. 2000). Chitosan has been used in combination

with alginate where chitosan-coated enzymes had less

leaching effect compared to alginate owing to the physical

and ionic interactions between the enzyme and support

(Betigeri and Neau 2002). Similarly, a wet composite of

chitosan and clay proved to be more reliable for enzyme

trapping, because it has hydroxyl and amino groups, which

easily link with enzymes, together with good hydrophilicity

and high porosity. Chitosan in the form of beads can entrap

twice as much of the enzymes (Chang and Juang 2007).

According to Chern and Chao (2005), the chitin-binding

domain of chitinase A1 from Bacillus circulans has a high

affinity to chitin; so, this property has been exploited to

retain D-hydantoinase.

Collagen

Being a natural polymer, collagen has been used for

immobilization of tannase employing glutaraldehyde as

cross-linking agent (Katwa et al. 1981). Fe3?-collagen

fibers proved to be excellent supporting matrix for catalase

immobilization by retaining significant activity even after

26 reuses (Chen et al. 2011b).

Carrageenan

Carrageenan, a linear sulfated polysaccharide, has been

consistently used for immobilizing a variety of enzymes,

like lipase for improving stability (Tümtürk et al. 2007).

This support is pseudoplastic in nature, which helps it to

thin under shear stress and recover its viscosity once the

stress is removed. Jegannathan et al. (2010) could achieve

an encapsulation efficiency of 42.6 % by the co-extrusion

method using the same support for biodiesel production.

Carrageenan has been reported as a cheap and durable

support with better entrapment for lactic acid and a-

galactosidase enzyme (Rao et al. 2008; Girigowda and

Mulimani 2006).

Gelatin

Gelatin is a hydrocolloid material, high in amino acids, and

can adsorb up to ten times its weight in water. Its indefinite

shelf life has attracted attention for enzyme immobiliza-

tion. Gelatin has been utilized in mixed carrier system with

polyacrylamide where cross-linking with chromium (III)

acetate proved better than chromium (III) sulfate and

potassium chromium (III) sulfate (Emregul et al. 2006).

Calcium alginate with gelatin forms a good template for

calcium phosphate deposition for enzyme immobilization,

and gelatin in combination with polyester films promoted

75 % loading efficiency, compared to previous studies

which had 50 % loading efficiency (Shen et al. 2011; Ateş

and Doğan 2010).

Cellulose

This most abundant natural polymer has been widely used

to immobilize fungi laccase, penicillin G acylase, gluco-

amylase, a-amylase, tyrosinase, lipase and b-galactosidase

(Al-Adhami et al. 2002; Mislovicová et al. 2004; Bryjak

et al. 2007; Namdeo and Bajpai 2009; Labus et al. 2011;

Huang et al. 2011; Klein et al. 2011). Diethylaminoethyl

(DEAE)-modified cellulosic supports have longer storage

capacity (Al-Adhami et al. 2002). Cellulose-coated mag-

netite nanoparticles have been used for starch degradation

where the attachment of a-amylase to cellulose dialdehyde-

coated magnetite nanoparticles resulted in the formation of

a novel starch degrading system (Namdeo and Bajpai

2009). Immobilization with ionic liquid-cellulose film

activated by glutaraldehyde gave better formability and

flexibility (Klein et al. 2011).

Starch

Made of linear amylase and branched amylopectin units,

starch has been used as enzyme immobilizer. Calcium

alginate–starch hybrid supports were applied for surface

immobilization and entrapment of bitter gourd peroxidase.

Entrapped enzyme was more stable in the presence of

denaturants like urea due to internal carbohydrate moieties,

while surface-immobilized enzyme had superior activity

(Matto and Husain 2009). Radiation grafting of substances

like acrylamide and dimethylaminoethyl methacrylate

onto starch are among the widely used industrial tech-

niques for a high product yield (Dung et al. 1995; Raafat

et al. 2011).

Pectin

This structural heteropolysaccharide along with 0.2–0.7 %

glycerol acts as plasticizer to reduce brittleness of support

and has been used to immobilize papain and for develop-

ment of new materials for skin injury treatment (Ceniceros

et al. 2003). Pectin–chitin and pectin–calcium alginate

support have enhanced thermal and denaturant resistance

and catalytic properties of entrapped enzymes due to the

formation of high stable polyelectrolyte complexes

between the enzyme and the pectin-coated support (Gómez

et al. 2006; Satar et al. 2008).
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Sepharose

CNBr-activated Sepharose-4B has been used to immobilize

amylase and glucoamylase owing to its porosity and easy

adsorption of macromolecules. Further matrix modifica-

tions like alkyl substituted Sepharose with multipoint

attachment between hydrophobic clusters of the enzyme

and alkyl residues of the support play a major role in

retaining the catalytic properties at extremes of pH, high

salt concentrations and elevated temperatures (Hosseinkh-

ani et al. 2003). Another example of modified Sepharose

matrix is concanavalin A (Con A)–Sepharose 4B where

biospecific interaction between the glycosyl chains of the

enzyme and Con A plays a pivotal role in fabrication of

various biosensors (Mirouliaei et al. 2007).

Synthetic polymers as supports

Ion exchange resins/polymers are insoluble supports with

porous surface for enzyme trapping. Amberlite and DEAE

cellulose, renewable matrices with large surface area, have

been used for immobilization of a-amylase (Kumari and Ka-

yastha 2011). During white radish peroxidase immobilization,

glutaraldehyde and polyethylene glycol act as an additive and

protective layer around the active center of the enzyme to

prevent the attack of free radicals (Ashraf and Husain 2010).

Some synthetic polymers used as enzyme supports are stated

as follows: polyvinyl chloride that prevents enzyme, cyclo-

dextrin glucosyltransferase from thermal inactivation; poly-

urethane microparticles derived from polyvinyl alcohol and

hexamethyl diisocyanate in the ratio of 1:3 with high enzyme

loading and efficiency; UV-curable methacrylated/fumaric

acid-modified epoxy that is proposed to be useful for industrial

applications; polyaniline in two different forms, viz. emeral-

dine salt and emeraldine base powder used for covalent

binding of a- amylase; glutaraldehyde-activated nylon for

immobilizing lipase and UV-activated polyethylene glycol

having high porosity employed for wastewater treatment

(Abdel-Naby 1999; Kahraman et al. 2007; Pahujani et al.

2008; Romaskevic et al. 2010; Xiangli et al. 2010; Ashly et al.

2011).

Inorganic materials as supports

Zeolites

Zeolites or ‘molecular sieves’ are microporous crystalline

solids with well-defined structures and shape-selective

properties and are widely used in molecular adsorption.

Microporous zeolites were found to be a better support for

a-chymotrypsin immobilization than microporous de-

aluminized ones because of the presence of more hydroxyl

groups that form strong hydrogen bonds with the enzyme

(Xing et al. 2000). Likewise, Na Y zeolite was used to

immobilize lysozyme because it had higher activity compared

to other supports as reported by Chang and Chu (2007). The

heterogeneous surface of zeolites with multiple adsorption

sites are considered to be suitable for modulating the enzyme

and support interactions (Serralha et al. 1998).

Ceramics

Immobilization of Candida antarctica lipase on ceramic

membrane showed that this inert support could be exploi-

ted for carrying out hydrolytic and synthetic reactions by

limiting feedback inhibition (Magnan et al. 2004). Ceramic

foams containing both macro (77 nm) and micropores

(45 lm) was found to be efficient in lowering diffusion rate

and increasing the specific surface area (Huang and Cheng

2008). Another example of ceramics is toyonite whose

variable pore structure can be modified using different

organic coatings (Kamori et al. 2000).

Celite

Celite is highly porous diatomaceous, bioaffinity material and

has been used for immobilization of lipase, polyphenol oxi-

dases and b-galactosidase, because it is an inexpensive sup-

port having low polarity and large adhesion area (Khan et al.

2006; Liu et al. 2009; Ansari and Husain 2011). It provides

resistance against high pH or temperature, urea, detergents

and organic solvents (Khan et al. 2006). Celite acts as an

additive in sol–gel matrix for x-transaminases immobiliza-

tion. It has been preferred due to its chemical inertness and

interconnected pore structure (Koszelewski et al. 2010).

Silica

Enzymes like lignin peroxidase and horseradish peroxidase

(HRP) immobilized on activated silica have been effec-

tively used for the removal of chlorolignins from euca-

lyptus kraft effluent (Dezott et al. 1995). a-Amylase

immobilized on silica nanoparticles improves cleaning

performance of detergents. They have been used because of

their nano-sized structures with high surface area, ordered

arrangement and high stability to chemical and mechanical

forces (Soleimani et al. 2011). Surface modifications of

silica by amination of hydroxyl and reactive siloxane

groups and addition of methyl or polyvinyl alcohol groups

strengthen enzyme and support bonds (Rao et al. 2000;

Shioji et al. 2003; Pogorilyi et al. 2007).

Glass

Glass is a highly viscous liquid and has been employed in

immobilizing a-amylase; phthaloyl chloride containing
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amino group functionalized glass beads was found to be

robust and renewable for the process (Kahraman et al.

2007). Another enzyme nitrite reductase was immobilized

on controlled pore glass beads, which served as a biosen-

sing device for continuous monitoring (Rosa et al. 2002).

Urease immobilized on glass pH-electrodes has provided a

stable biosensor for monitoring as low as 52 lg/ml urea in

blood samples (Sahney et al. 2005).

Activated carbon

Both natural and hydrochloric acid-modified activated

carbon has provided valuable support for enzyme adsorp-

tion (Alkan et al. 2009). Lately, mesoporous-activated

carbon particles containing large contact sites for enzyme

immobilization have been used for immobilizing acid

protease and acidic lipases where catalytic efficiency has

been significantly maintained after 21 cycles of reuse

(Kumar et al. 2010; Ramani et al. 2011). It was also found that

activated carbon with a high surface area (600–1,000 m2 g-1)

and a significant fraction of its pore volume in the

300–1,000 Å range was suitable for enzyme immobilization

(Daoud et al. 2010).

Charcoal

Chemical modification of charcoal by adsorbing papain

with sulfhydryl groups increased the number of active sites

and has been utilized for recovery of mercury from aque-

ous solution and efficiently employed for industrial

wastewater treatment (Dutta et al. 2009). Charcoal supports

have been also used in food industries for immobilizing

amyloglucosidase for starch hydrolysis without any cross-

linking agent and has 90 % catalytic activity (Rani et al.

2000). As reported earlier by Kibarer and Akovali (1996),

charcoal is an excellent adsorbent with high adsorptive

capacity and minimum fine particulate matter release.

Applications and scope

Biocatalysts are the key players in various industrial pro-

cesses. Constant efforts are being made to improve the

enzyme’s activity, efficiency, reproducibility and stability

during industrial processes (Wang et al. 2010). Production

of regioselective and enantioselective compounds for bio-

medical application has been possible by immobilized

enzymes (Ren et al. 2006; Lee et al. 2009). Glucose bio-

sensors have been developed using electrospun PVA and

surface-modified carbon nanotubes (Wen et al. 2011).

Hydrogen peroxide biosensors have been devised using c-

aluminum trioxide nanoparticles/chitosan film-modified

electrode (Liu et al. 2010). Agarose–guar has been

successfully utilized for designing phenol biosensors (Ba-

gal and Karve 2006). Currently, keen efforts are being

taken for increasing the stability of biosensors. Immobili-

zation of biosensing enzymes into nanocavities showed

significant results (Vamvakaki and Chaniotakis 2007).

Biosynthesis of polyester has been facilitated by immobi-

lized C. antarctica lipase B, a greener alternative to

petroleum-based conventional catalysts (Idris and Bukhari

2011). With the advent of nanotechnology, silica nano-

particles with immobilized laccase have been applied for

elimination of micropollutants from wastewater (Zimmer-

mann et al. 2011). Increasing environmental concerns have

led to the use of immobilized biocatalysts for biodiesel

production (Jegannathan et al. 2010).

The different factors influencing enzyme immobilization

and the possible modifications for their enhancement in

activity have been chalked out in Fig. 1.

Conclusion

With the vast array of research on enzyme immobilization,

we can conclude that it is one of the most promising

techniques for highly efficient and economically competent

biotechnological processes in the field of environmental

monitoring, biotransformation, diagnostics, pharmaceutical

and food industries. Enzyme-based strategies are increas-

ingly replacing conventional chemical methods in both

laboratories and industries with attributes like efficiency,

quicker performance and multifarious use. However,

commercialization of immobilized enzymes is still at a

lower pace because of their costs and storage problems.

Research should be focused to overcome the current limi-

tations related to immobilization techniques, so as to

expand the horizon for all-round application.

Fig. 1 Determinants of enzyme immobilization and activity
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