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Abstract
Kidney cancer is not a single disease; it is made up of a number of different types of cancer that
occur in the kidney. Each of these different types of kidney cancer can have a different histology,
have a different clinical course, can respond differently to therapy and is caused by a different
gene. Kidney cancer is essentially a metabolic disease; each of the known genes for kidney cancer,
VHL, MET, FLCN, TSC1, TSC2, TFE3, TFEB, MITF, fumarate hydratase (FH), succinate
dehydrogenase B (SDHB), succinate dehydrogenase D (SDHD), and PTEN genes is involved in
the cells ability to sense oxygen, iron, nutrients or energy. Understanding the metabolic basis of
kidney cancer will hopefully provide the foundation for the development of effective forms of
therapy for this disease.
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1: An Introduction to Kidney Cancer
It is now known that kidney cancer is not a single uniform disease; it is in fact a number of
different and specific types of cancers that can occur within the kidney. Each of these
different types of kidney cancer can be characterized by differing histologies, different
clinical courses, differing responses to a number of varied therapies and association with
alterations to different tumor suppressor genes or oncogenes. Currently there are at least
twelve different genes associated with the development of kidney cancer, the VHL, MET,
FLCN, TSC1, TSC2, TFE3, TFEB, MITF, fumarate hydratase (FH), succinate
dehydrogenase B (SDHB), succinate dehydrogenase D (SDHD), and PTEN genes. Each one
of these genes is involved in the regulation of the ancient and essential mechanisms
involving the single cell's ability to respond to nutrient deprivation in the surrounding
environment and alter its metabolism accordingly. Thus, these gene pathways are involved
in the cell's ability to respond to changes in oxygen, iron, nutrients or energy which might
limit growth and advantageous alterations that can overcome this and promote growth are
intrinsically useful in tumorigenesis. Understanding the metabolic basis of cancer of the
kidney will hopefully provide the foundation for the development of novel therapeutic
approaches targeting the metabolic basis of kidney cancer. (Suggested position for Figure 1)
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2: Hereditary Kidney Cancer
Much of what we know about the genetic basis of kidney cancer was learned from the study
of inherited forms of kidney cancer. There are a number of familial forms of kidney cancer,
including von Hippel-Lindau (VHL), Hereditary Papillary Renal Carcinoma (HPRC), Birt-
Hogg-Dubé (BHD), Hereditary Leiomyomatosis Renal Cell Carcinoma (HLRCC),
Succinate Dehydrogenase Renal Cell Carcinoma (SDH-RCC), Tuberous Sclerosis (TS), and
Cowden's Disease.(1, 2) All these syndromes are associated with the inheritance of single
mutant copy of a gene that imparts are greatly heighted risk of developing different types of
kidney cancer, along with additional clinical features in most cases. Identification of the
associated genes and study of their function has highlighted the metabolic nature of kidney
cancer and given important insights into the genetics of non-familial, sporadic kidney
cancer.

3: Von Hippel-Lindau (VHL): Clear Cell Kidney Cancer
Von Hippel-Lindau (VHL) is a hereditary kidney cancer syndrome in which affected
individuals are at risk for the development of tumors in a number of organs, including the
kidneys.(3) It represents a well studied form of inherited cancer risk syndrome, which has
additionally provided invaluable insight into the study of non-familial, sporadic kidney
cancer.

Clinical Presentation of VHL syndrome
Retinal angiomas—Affected individuals in VHL families are at risk for the development
of bilateral, multifocal retinal angiomas. These retinal lesions are made up of very
hypervascular angiomas that, while being benign, can be very destructive and can cause
blindness if not diagnosed and treated early. It is recommended that patients from families
affected with VHL undergo genetic testing early and have regular retinal examinations.
Early intervention can often be of significant benefit in preserving visual fields. Sadly, we
have managed a large number of patients who were not diagnosed and treated early in life,
who lost their vision as a result of these late detected retinal angiomas.(4)

Central Nervous System (CNS) Hemangioblastomas—Patients affected with VHL
are at risk for the development of cerebellar and spinal hemangioblastomas. These can be
early onset and can occur throughout the spine and cerebellum. Occasionally a patient may
also develop a hemangioblastoma in the frontal cortex or along the optic nerve. While these
CNS hemangioblastomas are benign, they can cause significant morbidity, including
paralysis. Surgical management is often recommended when patients develop symptoms or
if an impending ventricular obstruction is detected.(3, 5)

Endolymphatic Sac Tumors (ELST)—Patients affected with VHL are at risk for the
development of tumors in the inner ear, the endolymphatic sac. These tumors are low grade
papillary tumors which rarely metastasize. Endolymphatic sac tumors, which occur in
approximately twelve percent of VHL patients, can be associated with disequilibrium and
hearing loss and are treated by surgical resection.(6)

Epididymal Cystadenomas—Affected male VHL patients are at risk for the
development of bilateral, benign cystic adenomas of the epididymis. These lesions are found
by physical examination and/or ultrasound in fifty five percent of affected male patients.
The benign course of these lesions favors conservative management.(7)
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Pancreatic Neuroendocrine Tumors (PNET)—Patients affected with VHL are at risk
for the development of pancreatic neuroendocrine tumors and cysts.(8, 9) Pancreatic
neuroendocrine tumors can spread; in a series of 108 VHL patients with PNETs, nine were
found to have metastatic disease.(9) Tumors larger than 3 cm are more likely to metastasize,
and clinical management involves observation until the tumors reach a certain size, at which
time surgical intervention is recommended.

Kidney Cancer: Clear Cell Type—Patients affected with VHL are at risk for the
development of renal cysts and bilateral, multifocal kidney cancer. These tumors are always
clear cell histologic type.(10) It is estimated that patients with VHL are at risk for the
development of up to 600 independent clear cell kidney tumors and 1300 cysts per kidney
during their lifetime.(11) Extensive study of VHL-associated kidney cancers growth and
metastasis rates has refined the clinical management to active surveillance until the largest
kidney tumor reaches three centimeters in size, at which time surgical intervention is
recommended.(12-14)

Genetic Analysis of VHL syndrome and the VHL Gene
Genetic linkage analysis was performed on numerous VHL families that localized and
subsequently identify the gene for von Hippel-Lindau syndrome (VHL) on the short arm of
chromosome 3 at 3p21.4.(15, 16) Germline mutations in the VHL gene have been found in
nearly 100% of VHL families.(17) In order to determine if mutation of the VHL gene was
also associated with non-inherited forms of kidney cancer, VHL gene mutation analysis was
performed in tumors from patients with sporadic, non-hereditary kidney cancer. This
resulted in the fundamentally important discovery that VHL gene mutation or methylation
was found in nearly 90% of tumors from patients with sporadic clear cell kidney cancer.(18,
19)

Function Analysis of the VHL Gene Protein Product: Oxygen and Iron sensing
The product of the VHL gene, the VHL protein, makes a complex with elongin C, elongin
B, CUL2 and Rbx1 (20-23) to target the Hypoxia Inducible Factor 1 alpha (HIF1α) and
HIF2α for ubiquitin mediated degradation.(24-26) When there are normal amounts oxygen
and iron available to the cell, the prolyl hydroxylase enzymes (PHDs) can actively transfer
hydroxyl groups onto two specific proline residues in the oxygen dependent domain of the
hypoxia inducible factor protein and this enables the VHL complex to bind and ubiquinate
HIF for degradation in the proteosome.(24-26) If there is not enough oxygen or iron present
within the cell the PHD enzymes lose their activity, consequently the HIFα subunits are not
targeted for degradation and become stable and activate a response to counteract and adapt
to the environment conditions. HIF1α and HIF2α are transcription factors which regulate
the activity of a number of downstream genes important in dealing with low oxygen/iron
levels that are also extremely important to the growth and maintenance of a cancer, such as
vascular endothelial growth factor (VEGF), platelet derived growth factor (PDGF),
epidermal growth factor (EGF) and the glucose transporter, GLUT1. Activation of the HIF
pathway is a natural response to low oxygen/iron that is shutdown again once normal
oxygen levels are present, but when the VHL gene is mutated the VHL complex cannot bind
and degrade HIF, even in normoxia. Therefore the HIFα subunits are continuously stable,
they accumulate and transcription of downstream genes such as VEGF, PDGF, EGF and
GLUT1 is greatly and stably upregulated. This occurs in the VHL kidney tumors due to loss
of the one remaining wild-type copy of VHL resulting in the production of inactive or no
VHL protein and in sporadic kidney tumors by the loss of activity from both wild-type
genes, acting as a classical tumor suppressor gene. This also provides a factor for the earlier
onset of kidney tumors in VHL patients compared to sporadic cases as a single gene
alteration is required opposed to a double hit.
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VHL Gene Pathway Targeted Therapy in Clear Cell Kidney Cancer
The indepth knowledge of the actions of the VHL pathway and the results of its deregulation
have provided the foundation for the development of a number of targeted therapeutic agents
for patients with advanced clear cell kidney cancer. The first trial to target the VHL pathway
in clear cell kidney cancer involved the use of bevacizumab, a neutralizing antibody against
VEGF, in patients with metastatic clear cell kidney cancer. In this randomized, double blind
phase 2 trial, bevacizumab was shown to significantly prolong the time to progression of
disease in patients with advanced clear cell kidney cancer.(27) Sunitinib, an agent which
targets the VEGF and PDGF receptors has been shown to have a thirty one percent partial
response rate in patients with advanced kidney cancer and an increased survival time over
treatment with interferon α.(28) Sorafenib, which also targets the VEGF and PDGF
receptors, has been shown to have a 10% partial response rate and an increase of progression
free survival to 5.5 months versus 2.8 months for placebo.(29) Temsirolimus, which targets
the amounts HIFα via down regulation of its translation through down regulating the mTOR
pathway, has been shown to have an 8.6% response rate and an increase in progession free
survival (3.8 months versus 1.9 months) and an increase in overall survival (10.9 months
versus 7.3 months) versus interferon α.(30) Everolimus, which also targets HIF translation
through the mTOR pathway, has been shown to increase progression free survival to 4
months (everolimus) versus 1.9 months (placebo).(31) Pazopanib, an agent which targets the
VEGF receptors (VEGFR1, VEGFR2 and VEGFR3) has been shown to have a 30%
response rate (versus 3% placebo) in patients with advanced kidney cancer with a median
duration of response over 1 year.(32)

4: Hereditary Papillary Renal Carcinoma (HPRC): Type 1 Papillary Kidney
Cancer

Hereditary papillary renal carcinoma (HPRC) is an autosomal dominant hereditary cancer
syndrome in which affected individuals are at risk for the development of bilateral,
multifocal type 1 papillary kidney cancer.(33, 34) It is estimated that patients affected with
HPRC are at risk for the development of up to 1,100 tumors per kidney throughout their
lifetime.(35) Clinical management, like in patients with VHL-associated kidney tumors,
involves active surveillance until the largest tumor reaches the 3 cm threshold. At this time,
surgical intervention is recommended.(13)

Genetic Analysis of HPRC and Therapeutic Targeting of the MET Gene: Nutrient sensing
Genetic linkage analysis was performed in HPRC families and the proto-oncogene, MET,
was identified as the HPRC gene.(36) Activating mutations of the MET gene are found in
the germline of patients affected with HPRC.(36) Within most assessed tumors, there is
amplification of the mutated copy of the MET gene, presumably to produce a threshold level
of over-activated protein product of the MET gene within the kidney cell. An early onset
form of HPRC was observed in two apparently unrelated families carrying a specific MET
V1101I germline mutation.(37)

MET encodes the cell surface receptor for the growth factor, hepatocyte growth factor
(HGF). Growth factor-dependent activation of the phosphatidylinositol 3-kinase (PI3K)
signaling pathway increases cell surface expression of nutrient transporters, resulting in
increased uptake of glucose, amino acids and other nutrients, and increased growth and
proliferation through the up regulation of the PI3K-AKT and PI3K-RAS-Erk pathways.
Additionally, nutrient-stimulated HGF/MET signaling induces phosphorylation of LKB1 on
Ser428 through the RAS-Erk1/2-p90RSK pathway in a manner that results in uncoupling it
with its low energy sensing partner, 5'AMP –activated protein kinase (AMPK).(38) If this
occurred in an uncontrolled manner it would inhibit AMPK activation in the presence of low
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energy levels and implicates HGF/MET activation in deregulation of the LKB1-AMPK-
mTOR nutrient and energy sensing pathway. (2, 39) Therefore normal growth patterns can
be controlled by the growth factor receptor activity levels and the surrounding nutrient
levels, whereas the mutated constitutively active HGF/MET can drive uncontrolled growth
irrelevant of the surrounding environmental conditions and overcome the negative
regulation of AMPK.

A clinical trial has been conducted evaluating the role of a small molecule inhibitor of both
HGF/MET and VEGFR2/KDR in patients with papillary kidney cancer either with or
without germline MET mutations. A partial response to therapy has been seen in patients
with papillary kidney cancer, and results in patients with or without germline MET mutation
is currently being analyzed.(40)

5: Birt-Hogg-Dubé (BHD): Chromophobe Kidney Cancer
Birt-Hogg-Dubé is an autosomal dominant, hereditary cancer syndrome in which affected
individuals are at risk for the development of cutaneous fibrofolliculomas (41), pulmonary
cysts (42) and kidney cancer.(43) BHD-associated kidney cancers can be multifocal,
bilateral and they can metastasize. Patients affected with BHD are at risk for the
development of chromophobe, hybrid oncocytic, and clear cell kidney cancer and
oncocytoma.(44) Like VHL and HPRC, BHD-associated kidney cancers are managed with
active surveillance; when the largest tumor reaches the three centimeter threshold, surgical
intervention is recommended.

Genetic Analysis of BHD and Functional Analysis of the FLCN gene: Nutrient and Energy
Sensing Pathway

Genetic linkage analysis in families identified FLCN as the BHD syndrome associated gene.
(45) Germline mutations of FLCN have been detected in a high percentage of BHD families
and FLCN functions as a tumor suppressor gene.(42, 46) When tumors from BHD patients
were analyzed for alteration of the second allele of FLCN, sequence alterations or LOH of
the somatic copy of FLCN were detected in seventy percent.(47)

When FLCN was initially identified, it was a novel gene of unknown function.
Subsequently, it has been shown that the product of the FLCN gene, Folliculin or FLCN,
forms a complex with protein products of two novel genes, Folliculin Interacting Protein 1
(FNIP1) and FNIP2, which can bind the γ subunit of AMPK.(48, 49) As mentioned before,
AMPK is a critical energy and nutrient sensor in the cell that responds to low ATP levels
compared to AMP levels and low nutrient levels by down regulating cell growth, lipid and
protein metabolism. When Folliculin is inactivated in either murine or human tumors it is
observed that both aspects of the mTOR pathway, mTORC1 and mTORC2, are activated
and both are normally down regulated by AMPK signaling.(48, 50) Furthermore, increased
TFE3 transcriptional activity was found in Folliculin deficient kidney cancer cells and this
was associated with increased TFE3 nuclear localization.(51) TFE3 is a member of the
MITF/TFE transcription factor family and TFE3 gene fusions have been found in kidney
tumors with Xp11.2 translocations. The importance of this will be further elucidated in the
following section.

In order to evaluate the role of agents targeting the FLCN pathway, a FLCN kidney-specific
knockout model was developed. These animals, which died at 30 days of age of renal
failure, developed large cystic kidneys with focal areas of neoplastic growth. When the
FLCN-knockout animals were treated with rapamycin, which specifically targets mTORC1,
there was a significant reduction in kidney size and the animal's survival time was doubled.
(52)
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6: MiT Transcription Factor Associated Kidney Cancer
The MiT family of transcription factors includes TFE3, TFEB, MITF, and TFEC, a family
of transcription factors that share a highly homologous basic-helix-loop-helix-leucine zipper
DNA binding and dimerization domain. These proteins can produce both hetero- and
homodimers and bind identical DNA response elements, suggesting that they may have
common downstream targets and a degree of functional redundancy. In tumors, these genes
are mainly over expressed due to somatic translocations that create active fusion proteins
with MiT transcription factor activity, but not their normal regulation. Importantly,
translocation associated kidney cancer represents approximately 15% of the kidney cancers
in patients under 45 years of age.(53)

TFE3 Associated Kidney Cancer
Studies of kidney cancers characterized by (X;1)(p11.2,q21.2) translocations (54, 55) led to
the identification of a fusion protein involving the X chromosome gene, TFE3.(55-57)
Genes shown to be fused to TFE3 in TFE3 associated kidney cancer include CLTC in t(X;
17)(p11;q23) NONO in inv(X)(p11.2;q12), ASPSCR1 in t(X;17)(p11.2;q25), SFPQ in t(X;
1)(p11.2;p23) and PRCC in t(X;1)(p11.2;q21).(53, 58) The diagnosis is made by TFE3
staining or by a dual color FISH assay.(59)

TFE3 associated kidney cancer is now recognized as a distinct and often very aggressive
type of alveolar/papillary kidney cancer that tends to occur in younger individuals (median
age 24 years).(60, 61) The disease is seen more often in females than in males and has a
worse prognosis in older males. Xp11 translocation kidney cancers have been shown to have
increased expression of phosphorylated S6, a marker of elevated mTOR pathway activation,
and increased levels of stable HIF1α.(58)

TFEB Associated Kidney Cancer
TFEB associated kidney cancer is a novel, recently described form of pediatric kidney
cancer with a distinctive alveolar morphological pattern characterized by a t(6:11)
(p21.1;q12) translocation that stained positively for the HMB45 melanocyte marker.(62, 63)
In 2003 Davis, et al. cloned an Alpha-TFEB fusion in renal tumors harboring the t(6:11)
(p21:q13) chromosome translocation. Histologic similarity between TFE3 and TFEB
associated kidney cancer suggests that common MiT family targets may be associated with
tumorigenesis, in accordance with theory that similar genes would be affected by both
transcription factors.(63)

MITF Associated Kidney Cancer
Since we reported that the t(X;1) (p11.2;q21.2) translocation in alveolar/papillary kidney
cancer fuses PRCC to the TFE3 transcription factor in 1996 (55), we have searched in vain
for a hereditary variant of a MiT associated kidney cancer involving either TFE3 or TFEB.
However, a 2010 study by Maubec, et al. investigating the co-existence kidney cancer and
melanoma and the familial clustering of melanoma supported the finding that there is a
genetic predisposition underlying the association between kidney cancer and melanoma.(63,
64) These and other findings, including the finding that both melanoma and TFEB kidney
cancer express HMB45, led Bertolotto et al., to perform a very elegant study which they
identified a specific MITF germline mutation/variant (pE318K) that was significantly
enriched for in patients with either melanoma or kidney cancer or a combination of both.(63,
65) The MITF transcription factor variant was found to upregulate a number of genes
important in kidney cancer tumorigenesis, including MET and HIF1α.(65, 66)
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Therapy of MiF Transcription Factor Family Associated Kidney Cancers
The most successful strategies to date for targeting the MiF transcription factor associated
kidney cancers (TFE3 and TFEB associated kidney cancer) have involved approaches
targeting the known up regulation of the HIF1α or mTOR pathways. In the largest
therapeutic series to date, Malouf, et al. reported three of eleven patients treated with
sunitinib had a partial response to therapy, seven of eight patients treated with sorafenib had
stable disease and one patient receiving mTOR inhibitors had a partial response while six
had stable disease.(67)

7: Tuberous Sclerosis Complex: Regulation of the mTOR Pathway
The tuberous sclerosis complex (TSC) is an autosomal dominant disorder in which affected
individuals are at risk for the development of manifestations involving multiple organs,
including cutaneous angiofribroma, pulmonary lymphangiomyomatosis and renal tumors.
(68) Although angiomyolipoma is the most common type of renal tumor found in TSC
patients, other types of tumors have been identified, including clear cell kidney cancer.(69)

TSC1/TSC2 Gene Pathway
Tuberous sclerosis complex is characterized by germline mutation of either the TSC1 or
TSC2 genes, the protein products of which are essential parts of the LKB1/AMPK/TSC/
mTOR nutrient and energy sensing pathway and both genes act as tumor suppressors.(70,
71) TSC2 encodes the tuberin protein and TSC1 encodes the hamartin protein, which
combine to form a heterodimer that acts as a GTPase-activating protein complex on Rheb, a
Ras-family GTPase that in turn inhibits mTOR activity. Thus the levels of active TSC
protein complex directly controls the activity of the mTOR pathway and is itself controlled
AMPK and AKT in opposing manners. TSC2 loss has been shown to result in accumulation
of HIF1α and increased expression of HIF-responsive genes, including vascular endothelial
growth factor (VEGF) and treatment of TSC2-deficient cells with rapamycin normalizes
HIF levels, indicating that TSC2 regulates HIF translation by inhibiting mTOR activity.(70)

Targeting the TSC Pathway
In an effort to target the TSC pathway, patients with angiomyolipoma who were affected
with tuberous sclerosis complex were treated with sirolimus, a rapamycin analogue which
targets mTORC1. Although sirolimus was found to induce regression of the renal
angiomyolipomas, most of the kidney tumors that regressed on therapy tended to increase in
size after therapy was stopped.(72) However, this study demonstrated that targeting the
LKB1/AMPK/TSC2/mTOR pathway can have a notable effect on TSC-deficient renal
tumors.

8: Cowden Syndrome: PTEN and the Regulation of the mTOR Pathway
Cowden syndrome is an autosomal dominant disorder that results from germline mutation of
the PTEN gene, in which affected individuals are at risk for manifestations in a number of
organs, including tumors of the breast, thyroid, endometrium and kidney.(73-75) The protein
product of the PTEN gene, PTEN, is a phosphatase that catalyzes the conversion of PIP3
(phosphatidylinositol 3,4,5 triphosphate) to PIP2 (phosphatidylinositol 4,5 biphosphate). In
response to growth factor receptor stimulation, intracellular PIP3 rises, leading to activation
of a number of effectors, including AKT/mTOR pathway, then PTEN lowers the levels of
PIP3 to abrogate the response. In a PTEN deficient tumor, increased levels of PIP3 remain
constant and continuous activation of AKT occurs, which phosphorylates the TSC complex
leading to its decreased TSC2 and the up regulation of mTOR pathway.(71)
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Targeting the PTEN Deficient AKT/mTOR Pathway
In pre-clinical PTEN-deficient models a therapeutic approach has been developed to target
the mTOR pathway with rapamycin. Treatment of an epithelial-specific deletion of Pten in
mice has been shown to promote the rapid regression of advanced mucocutaneous lesions.
When the drug was administered before disease manifestation, rapamycin halted the
development of Cowden's disease-like lesions, prolonging survival.(76) Clinical trials are
currently underway evaluating the role of rapamycin in the treatment of patients with PTEN-
deficient Cowden's syndrome.

9: Tricarboxylic Acid Mutation Kidney Cancers: Exemplifying the Warburg
Effect

In the 1920's Otto Warburg proposed that a basic characteristic of cancer would be that it is
characterized by aerobic glycolysis.(77, 78) Subsequently, this has been shown to be true to
a greater and lesser extent in nearly all general cancer types, including kidney cancer. There
are two types of inherited kidney cancer that are unique examples of the Warburg effect in
cancer driven by specific gene mutation; fumarate hydratase-deficient kidney cancer and
succinate dehydrogenase deficient kidney cancer.

Hereditary Leiomyomatosis Renal Cell Carcinoma
Hereditary Leiomyomatosis Renal Cell Carcinoma (HLRCC) is a hereditary cancer
syndrome in which affected individuals are at risk for the development of cutaneous and
uterine leiomyomas and kidney cancer.(79, 80) The cutaneous leiomyomas, which can be
painful, are often multiple and can occur on the arms or trunk and may appear on only one
side of the body. Up to 90% of affected females develop early onset uterine leiomyomas,
many of whom have had hysterectomies in their twenties.(81) Patients affected with
HLRCC are at risk of developing a very aggressive form of kidney cancer, where tumors
can be solitary, multifocal and/or bilateral. The histologic pattern, which is characterized by
orangophilic nucleoli and a unique perinucleolar halo with H&E staining, can be papillary,
tubulopapillary or solid.(82) Whereas VHL, HPRC or BHD tumors rarely spread when the
tumors are smaller than 3 cm, it is important to note that HLRCC kidney tumors can
metastasize quickly, even when the primary tumor is still relatively small.(83) Therefore,
clinical management of HLRCC-associated kidney cancer does not include active
surveillance; when a kidney tumor is detected in an HLRCC patient, immediate surgical
intervention is recommended.

Genetic Analysis of HLRCC and the Fumarate Hydratase Gene
Hereditary Leiomyomatosis Renal Cell Carcinoma is characterized by germline mutation of
the fumarate hydratase (FH) gene.(84) In the North American HLRCC families, FH
mutation was detected in nearly ninety percent.(81) In fumarate hydratase (FH) deficient
cells, including FH-deficient kidney cancer cells, fumarate levels accumulate to excessive
levels. These increased fumarate levels inhibit the activity of the HIF prolyl hydroxylases,
resulting in accumulation of HIFα and upregulation of HIF target genes such as VEGF and
GLUT1, providing a VHL-independent mechanism for dysregulation of HIFα degradation
in fumarate hydratase-deficient kidney cancer.(81, 85, 86)

Fumarate Hydratase Deficiency and the AMPK Pathway
Fumarate hydratase-deficient kidney cancer is characterized by aerobic glycolysis. The FH-
deficient kidney cancer cell lines do not respire normally; they take up nearly no oxygen and
produce a large amount of lactate. As neither the Krebs cycle nor the electron transport
chain are functioning normally, these cells are very dependent on glucose transport and
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glycolysis for energy production.(86, 87) Fumarate hydratase-deficient kidney cancer cells
have decreased activated phospho-AMPK and decreased production of AMPKα and
AMPKβ. This decreased level of AMPK results in increased fatty acid synthesis and
increased activation of the mTOR pathway. Treatment of FH-deficient kidney cancer with
metformin increased AMPK levels, a known function of the drug, and significantly inhibited
invasion in an in-vitro model.(86) A potential approach to therapy for this most aggressive
form of kidney cancer could involve targeting AMPK as well as inhibiting glucose uptake
by targeting the vasculature. A clinical trial is currently underway evaluating the role of
bevacizumab and erlotinib in patients with advanced HLRCC-associated kidney cancer.

Succinate Dehydrogenase Deficient Kidney Cancer (SDH-RCC)
Germline mutations of three succinate dehydrogenase genes, SDHB, SDHD and SDHC,
have been found to be associated with familial paraganglioma/pheochromocytoma.(88-90)
Patients affected with these hereditary syndromes are at risk for the development of
bilateral, multifocal pheochromocytomas and paragangliomas. Patients with familial renal
carcinoma with or without pheochromocytoma/paraganglioma have been characterized with
germline mutation of SDHB and SDHD genes.(91-94) SDH-RCC can be a very aggressive
form of kidney cancer and is another example of the Warburg effect in cancer. Thus, the
current suggested clinical management for SDH-RCC is the same as for HLRCC, where
immediate surgical intervention is recommended.

SDH-deficient cells have been shown to have increased levels of succinate and these
increased succinate, similar to the increased levels of fumarate, can inhibit the prolyl
hydroxylases and lead to increased levels of HIF.(85) Targeting the metabolic basis of SDH-
deficient kidney cancer could lead to approaches that would target the vasculature to
decrease glucose uptake.

10: Conclusion - Kidney Cancer is a Metabolic Disease
Kidney cancer is fundamentally a metabolic disease. The known genes for kidney cancer,
VHL, MET, FLCN, MITF, TFE3, TFEB, TSC1, TSC2, PTEN, FH, SDHB and SDHD are
involved in the cell's ability to sense oxygen, iron, nutrients, and, particularly in the TCA
cycle enzymes, energy. Although significant progress has been made targeting, we still have
a long way to go. Most patients treated with the approved drugs targeting the VHL gene
pathway, such as sunitinib, sorafenib, bevacuzimab, temsirolimus and everolimus,
eventually fail therapy and their disease progresses. Hopefully targeting the metabolic basis
of kidney cancer will provides the opportunity to develop effective forms of therapy for all
patients with this disease.
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Figure 1.
Kidney cancer is not a single disease; it is made up of a number of different and specific
types of cancers that can occur within the kidney. Each of these different types of kidney
cancer can be characterized by differing histologies, different clinical courses, differing
responses to a number of varied therapies and association with alterations to different genes.
(TBD*: to be determined.)
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Figure 2.
Patients affected with von Hippel-Lindau are at risk for the development of bilateral,
multifocal (A,B) clear cell kidney cancer (C) and have germline mutation of the VHL gene
(D). From Linehan, et al.(1)
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Figure 3.
Patients affected with Hereditary Papillary Renal Carcinoma (HPRC) at risk for the
development of bilateral, multifocal (A,B) type 1 papillary kidney cancer. HPRC is a highly
penetrant autosomal dominant hereditary cancer syndrome (D). From Linehan, et al.(1)
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Figure 4.
Patients affected with Birt-Hogg-Dubé (BHD) are at risk for the development if bilateral,
multifocal kidney cancer (left upper and left lower panels) with chromophobe (upper right
panel), hybrid oncocytic (right middle panel) and oncocytoma (right lower panel). From
Linehan, et al.(1)
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Figure 5.
BHD is a highly penetrant autosomal dominant hereditary cancer syndrome characterized by
germline mutation of the FLCN gene. From Toro, et al. (81).
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Figure 6.
Hereditary Leiomyomatosis and Renal Cell Carcinoma (HLRCC) is an autosomal dominant
hereditary cancer syndrome (right lower panel) in which affected individuals are at risk for
the development cutaneous and uterine leiomyomas (upper middle and upper right panels)
and an aggressive form of kidney cancer (upper left panel). HLRCC is characterized by
germline mutation of the Krebs cycle enzyme gene, fumarate hydratase. From Linehan, et al.
(1)
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Figure 7.
Kidney cancer is essentially a metabolic disease. Each of the genes known to be associated
with the development of kidney cancer, VHL, MET, FLCN, FH, SDHB, SDHD, TSC2,
TSC1, TFE3, TFEB, MITF and PTEN, is involved in the cell's ability to sense oxygen, iron,
nutrients or energy. Adapted from Linehan, et al. (2)
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