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Abstract

Background To avoid complications associated with

under- or overtreatment of patients with skeletal metasta-

ses, doctors need accurate survival estimates.

Unfortunately, prognostic models for patients with skeletal

metastases of the extremities are lacking, and physician-

based estimates are generally inaccurate.

Questions/purposes We developed three types of prog-

nostic models and compared them using calibration plots,

receiver operating characteristic (ROC) curves, and deci-

sion curve analysis to determine which one is best suited

for clinical use.

Methods A training set consisted of 189 patients who

underwent surgery for skeletal metastases. We created

models designed to predict 3- and 12-month survival using

three methods: an Artificial Neural Network (ANN), a

Bayesian Belief Network (BBN), and logistic regression.

We then performed crossvalidation and compared the

models in three ways: calibration plots plotting predicted

against actual risk; area under the ROC curve (AUC) to

discriminate the probability that a patient who died has a

higher predicted probability of death compared to a patient

who did not die; and decision curve analysis to quantify the

clinical consequences of over- or undertreatment.

Results All models appeared to be well calibrated, with the

exception of the BBN, which underestimated 3-month sur-

vival at lower probability estimates. The ANN models had

the highest discrimination, with an AUC of 0.89 and 0.93,

respectively, for the 3- and 12-month models. Decision
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analysis revealed all models could be used clinically, but the

ANN models consistently resulted in the highest net benefit,

outperforming the BBN and logistic regression models.

Conclusions Our observations suggest use of the ANN

model to aid decisions about surgery would lead to better

patient outcomes than other alternative approaches to

decision making.

Level of Evidence Level II, prognostic study. See

Instructions for Authors for a complete description of

levels of evidence.

Introduction

Accurate survival estimates are important when treating

patients with skeletal metastases [20]. These estimations help

to set patient and physician expectations and to guide the

medical and surgical decision-making process [10]. Unfor-

tunately, physician-based estimates are generally inaccurate,

and better means of prognostication are necessary [5].

Accurate and successful survival models must include

information from several sources [4]: demographic and

disease-specific variables [1], patient- or physician-derived

performance status [17], and laboratory analysis [6].

Physician-based estimates, though controversial, may also

be important to consider [12]. With this in mind, we chose

three distinct modeling techniques that could be used with

a variety of clinical input data. Each was designed to

estimate 3- and 12-month survival in patients with surgi-

cally treated skeletal metastases. The first was a Bayesian

Belief Network (BBN) [3], chosen because it retains its

ability to function in the setting of missing input data [15],

which is common in the clinical setting. The second was an

Artificial Neural Network (ANN), chosen for its powerful

discriminatory capability [22]. Finally, the third was a

logistic regression model, considered to be the gold stan-

dard, as it is commonly used for this purpose.

Traditionally, model comparisons focus solely on accu-

racy. In this manner, sensitivity and specificity can be

rigorously calculated and the area under the receiver oper-

ator characteristic (ROC) curve (AUC) calculated [2].

However, these metrics fail to address consequences asso-

ciated with a falsely positive or negative result. These are

typically of unequal importance, particularly in the onco-

logic setting, in which the consequences of a missed

diagnosis generally outweigh the risk of unnecessary testing

and/or surgery. As such, the consequences of wrong answers

generated by prospective models must also be evaluated to

determine not only which model is superior but also whether

the models are actually useful in the clinical setting [8].

When treating patients with skeletal metastases of the

spine and extremities, we seek to maximize function and

quality of life for the greatest amount of time. Falsely

optimistic survival estimates may influence patients and

clinicians to pursue more aggressive therapies, rather than

perhaps more appropriate conservative treatments. This

approach results in a higher proportion of both major

perioperative complications and death during convales-

cence [21]. Conversely, falsely pessimistic survival

estimates are problematic when surgeons choose a less

invasive, less durable implant that lacks sufficient biome-

chanical durability to outlast the patient. In this setting,

implant failures can occur, which require more compli-

cated revision procedures, often at the end of life [16, 20].

We therefore developed three models, an ANN, a BBN,

and a logistic regression model, and compared them using

a variety of methods. We then asked the following ques-

tions: (1) Which model offers the greatest discrimination

between patients with different postoperative survival in

terms of ROC analysis? And (2) which model performs

best on decision curve analysis [18] and is therefore most

clinically useful?

Patients and Methods

We retrospectively reviewed our institution-owned patient

management database (Disease Management System, v5.2,

1996) and identified all 189 patients who underwent sur-

gery for skeletal metastases at Memorial Sloan-Kettering

Cancer Center between 1999 and 2003. No records were

excluded. Each record contained 15 variables and sufficient

followup information to establish survival at 12 months

after surgery (Table 1). Recorded variables included age at

surgery, race, sex, primary oncologic diagnosis, indication

for surgery (impending or complete pathologic fracture),

number of bone metastases (solitary or multiple), presence

or absence of visceral metastases, estimated glomerular

filtration rate (mL/minute/1.73 m2), serum calcium con-

centration (mg/dL), serum albumin concentration (g/dL),

presence or absence of lymph node metastases, prior che-

motherapy (yes or no), preoperative hemoglobin (mg/dL;

on admission, before transfusion, if applicable), absolute

lymphocyte count (K/mL), and the senior surgeon’s esti-

mate of survival (postoperatively in months). No patients

were lost to followup during the study period.

Each model was constructed using the same data and

trained to estimate postoperative survival at both 3 and 12

months. The 3-month model was intended to help surgeons

decide whether or not to operate, and the 12-month model

was intended to help surgeons decide whether a more

durable implant is necessary. Thus, two models were

developed using each technique: a 3-month model and a

12-month model. There were no missing data. Each model

was internally validated using the crossvalidation tech-

niques described below.
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The BBN was developed in a manner previously

described [3] using commercially available machine learn-

ing software (FasterAnalyticsTM; DecisionQ, Washington,

DC, USA). Briefly, all 15 variables (features) were consid-

ered as candidate features for inclusion in the model. BBNs

readily identify relationships of conditional dependence,

how and under what circumstances the value assumed by one

feature depends on the value(s) of other features. Conditional

dependence for a group of features can be represented

mathematically by a joint probability distribution function

(jPDF). The jPDF allows one to describe the hierarchical

relationships between features in a graphical manner and

then calculate the probability of one feature (ie, 3-month

postoperative survival) assuming a particular value (yes/no),

expressed in terms of the values of two or more features. For

this study, prior distributions (the value or values each fea-

ture is likely to assume under various circumstances) were

estimated from the training set and thus were not specified

a priori. Unrelated and redundant features were pruned to

generate the final models. The BBN models were trained to

estimate the likelihood of survival at both 3 and 12 months

after surgery, discriminating two possible outcomes (sur-

vival at 3 and 12 months: yes or no). Ten-fold crossvalidation

was performed to assess the accuracy of the models. Briefly,

we first randomized the data into 10 matching train-and-test

sets. Each set consisted of a training set composed of 90% of

patient records and a test set composed of the remaining 10%

of records. Each matching set was unique to ensure there was

no overlapping information between sets. A BBN model was

trained, using each training set, by applying the same

parameters as the final models and then tested on the

unknowns contained within the corresponding test set.

We then developed ANN models using the Oncoge-

nomics Online Artificial Neural Network Analysis

(OOANNA) system [13], which uses feed-forward multi-

layer perceptron (MLP) ANNs. We performed principal

component analysis on all 15 candidate features to identify

the top 10 linearly uncorrelated variables with the largest

variance. This was done in an effort to simplify, as well as

mitigate overfitting of the model to the training data.

Overfitting occurs when a model describes the noise within

a set of observations, rather than more general trends,

resulting in poor predictive performance on external vali-

dation. This MLP network was composed of three layers:

an input layer consisting of the 10 principal components

identified above, a hidden layer (which may change the

relative emphasis placed on data from each of the inputs)

with five nodes, and an output layer, which based on

information from the hidden layer estimates the most likely

outcomes (survival at 3 and 12 months: yes or no). Briefly,

data from all 189 study subjects were uploaded into the

OOANNA system, which automatically selected the top 10

principal components and input them into the ANN model.

Leave-one-out crossvalidation was performed by training

the model on n � 1 (188) records and then testing it on one

independent test record. In this fashion, the ANN, using the

10 principal components, estimated the likelihood of 3- and

12-month survival for each independent test record.

Finally, for comparison to the two machine learning

techniques described above, we developed a conventional

logistic regression model using variables observed to be

potentially significant on univariate analysis (oncologic

diagnosis, presence of visceral metastasis, preoperative

serum hemoglobin concentration, Eastern Cooperative

Oncology Group performance status, and the surgeon’s

estimate of postoperative survival). We used STATA1

11.0 statistical software (StataCorp LP, College Station,

TX, USA). Ten-fold crossvalidation was performed.

Models were directly compared using a variety of

methods. First, calibrations were created that plotted pre-

dicted risk against actual risk to assess the accuracy of the

model predictions. Second, the discrimination, or AUC, of

Table 1. Patient characteristics (n = 189)

Characteristic Value

Age (years)* 63 (54, 72)

Male 85 (45%)

Cancer diagnosis

Lung, gastric, hepatocellular, or melanoma 49 (26%)

Sarcoma or other carcinoma 38 (20%)

Breast, prostate, renal cell, thyroid, myeloma,

or lymphoma

102 (54%)

Bone metastasis

Solitary 54 (29%)

Multiple 135 (71%)

Fracture type

Completely broken 83 (44%)

Impending 106 (56%)

ECOG performance status

B 2 91 (48%)

C 3 98 (52%)

Lymph node metastasis 34 (18%)

Visceral metastasis 113 (60%)

Albumin (g/dL)* 4.0 (3.5, 4.4)

Absolute lymphocyte count (K/lL)* 1.0 (0.6, 1.5)

Calcium (g/dL)* 9.2 (8.7, 9.7)

GFR (mL/min/1.73 m2)* 96 (75, 114)

Hemoglobin (g/dL)* 11.4 (10.1, 12.9)

Surgeon estimate of survival (months)* 8 (4, 12)

Survival [ 3 months 131 (69%)

Survival [ 12 months 78 (41%)

Values are expressed as median, with interquartile range in paren-

theses; the remaining values are expressed as frequency, with

percentage in parentheses; ECOG = Eastern Cooperative Oncology

Group; GFR = estimated glomerular filtration rate.
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each model was assessed. The discrimination of a model is

the probability that a patient who died has a higher pre-

dicted probability of death compared to a patient who did

not die [2]. Third, decision curve analysis [16] was per-

formed in the following manner. In contrast to decision tree

analysis, which weighs the possible consequences of sev-

eral decisions, decision curve analysis helps quantify the

consequences of over- or undertreatment of a disease

process. When constructing the decision curves, we

assumed clinical decisions would be based strictly on the

output of each model. For instance, the decision to offer

surgery would be based on the likelihood of survival at

3 months, whereas the choice of implant (more durable or

less durable) would be based on the likelihood of survival

at 12 months. Each model generates a survival probability

p at specific time points after surgery. If the probability is

near 1, surgeons may choose to recommend surgery in the

case of the 3-month model and a more durable implant in

the case of the 12-month model. If the probability is near 0,

nonsurgical treatment may be recommended in the case of

the 3-month model or a less invasive/less durable implant

in the case of the 12-month model. At some probability

between 1 and 0, however, surgeons may have difficulty

choosing a treatment method. For this study, we defined the

point at which surgeons become indecisive as the threshold

probability pt, in which the expected benefit of treatment is

equal to the expected benefit of no treatment. The treatment

decision trees are depicted for 3-month survival (Fig. 1)

and 12- month survival (Fig. 2), in which a, b, c, and d

represent values associated with each possible outcome.

For instance, for the 3-month models, a � c is defined as

the consequence of a false-negative result, withholding

surgery in someone who actually survives long enough to

benefit (ie, [ 3 months, in this case). Similarly, d � b is

defined as the consequence of a false-positive result, per-

forming surgery in someone who does not live long enough

to benefit (ie, \ 3 months). For the 12-month models, the

definitions remain the same; however, the clinical impact

changes. For 12-month survival, a � c remains the con-

sequence of a false-negative result, but in this case, a less

durable implant is inappropriately chosen in a patient who

outlives his/her implant and subsequently requires a revi-

sion procedure. Similarly, d � b remains the consequence

of a false-positive result; however, this time it results in

unnecessarily aggressive surgery in a patient who does not

live long enough to benefit.

From the decision trees, we derive the following for-

mula as previously described [18]:

a� c

d� b
¼ 1� pt

pt

Simply stated, the threshold probability of survival pt in

which a surgeon decides (1) whether to offer surgery and/or

(2) a more durable implant is necessary is related to how he/

she weighs the consequences of overtreating or undertreating

the patient. By letting the value of a true-positive result be 1,

we arrive at the following formula [14]:

Net benefit ¼ True � positive count

n
� False� positive count

n
� pt

1� pt

� �

In this fashion, each model’s net benefit, defined as one

patient duly receiving an implant commensurate with his/

Fig. 1 This decision tree repre-

sents the four possible scenarios

stemming from the use of the

3-month models. Each outcome,

a, b, c, or d, corresponds to a

theoretical clinical scenario. For

instance, true positives are those

in which appropriate surgical

treatment is rendered, false posi-

tives are those in which

unnecessary surgery is performed,

false negatives are those in which

surgery was inappropriately with-

held, and true negatives are those

in which appropriate nonsurgical

or less invasive treatment is

rendered.
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her estimated survival, was plotted against a range of

threshold probabilities from 0 to 1.

Results

By inspection of the calibration plots (Fig. 3), the ANN

and logistic regression models appeared well calibrated. By

comparison, the BBN models appeared miscalibrated,

underestimating actual 3- and 12-month survival over the

lower range of probability estimates and slightly overesti-

mating 12-month survival over the higher ranges.

The ANN models were the most accurate, with AUCs of

0.89 (95% CI, 0.84–0.94) and 0.93 (95% CI, 0.89–0.96),

respectively, for the 3- and 12-month models. The BBN

and logistic regression models performed similarly, with

AUCs of 0.85 (95% CI, 0.79–0.91) and 0.83 (95% CI,

0.77–0.89) and 0.84 (95% CI, 0.77–0.90) and 0.83 (95%

CI, 0.78–0.89), respectively.

All three modeling techniques produced validation data

suitable for ROC analysis and decision curve analysis. After

decision curve analysis, all models demonstrated a net

benefit, indicating each could be used clinically, rather than

assume all patients or no patients will survive longer than 3

or 12 months, respectively. All three 3-month models per-

formed similarly; however, there were subtle differences

among them (Fig. 4). Any differences noted by this method

are thought to be clinically important. Regarding the

12-month models (Fig. 5), the ANN produced the highest

net benefit across all threshold probabilities. The BBN and

logistic regression models performed similarly. At both

3- and 12-month time points, the ANN performed best at or

near the threshold probability of 0.5, corresponding to a

50% probability of survival at each time point.

Discussion

There is, perhaps, no better application of personalized

medicine than for the treatment of patients with cancer.

One aspect of this would be developing personalized esti-

mates of survival for patients with skeletal metastases, as

we have done. Our goal is to provide orthopaedic surgeons

with a web-based tool, designed to help them decide not

only whether to offer surgery but also whether a more

durable implant is appropriate. In doing so, it is important

to carefully avoid over- or undertreatment of the disease

and thus maximize function and quality of life for the

greatest amount of time. With this in mind, patients with

short life expectancies may require less invasive surgery,

including intramedullary nailing or other fixation tech-

niques [19, 23]. In contrast, patients with longer survival

estimates are generally thought to require more durable

reconstructive options that increase both the perioperative

risk and the duration of rehabilitation [10, 16, 20]. Though

more accurate models are generally more useful than less

accurate models, it is possible either can lead to inferior

outcomes. Thus, one’s focus should not solely be on

accuracy. Decision curve analysis not only elucidates

whether models are worth using clinically but also provides

metrics to directly compare individual models. Our goal

was to critically evaluate three prognostic models, all

developed using the same clinical data, and answer the

following questions: (1) Which model performs best on

decision curve analysis [18]? And (2) which model most

accurately estimates postoperative survival in terms of

sensitivity, specificity, and ROC analysis?

This study has limitations. First, the patient population is

from a highly selected tertiary referral center and may not be

representative of other populations. This may be problematic

Fig. 2 This decision tree repre-

sents the four possible scenarios

stemming from the use of the

12-month models. Each outcome,

a, b, c, or d, corresponds to a

theoretical clinical scenario. For

instance, true positives are those

that result in the appropriate use

of durable implants, false posi-

tives are those in which more

durable implant are used unnec-

essarily (when less durable

implants would have sufficed),

false negatives are those in which

less durable implants were used

when more durable implants were

required, and true negatives are

those in which appropriate less

durable implants were used.
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when employing machine learning techniques such as ANNs

and BBNs to build prognostic models. Overfitting can occur,

which would cause the results of the decision curve analysis

to be overly optimistic. As such, despite demonstrating

positive net benefit, these models must still undergo external

validation to demonstrate their applicability in other patient

populations, and prospective external validation is currently

underway. Second, these models apply only to patients

undergoing surgery for skeletal metastases and do not apply

to all patients with metastatic disease. Third, the ANN and

logistic regression models require complete input informa-

tion, which can limit their usefulness and result in misleading

conclusions when complete information is not available.

Nevertheless, the demographic and clinicopathologic vari-

ables used in these models will likely be readily available,

particularly in the perioperative setting. Fourth, the BBN

models appeared miscalibrated, underestimating actual

3- and 12-month survival over the lower range of probability

estimates and slightly overestimating 12-month survival

over the higher ranges. This is a subjective determination.

Fig. 3A2F Calibration plots are shown for the (A) 3- and (B) 12-

month BBN models, (C) 3- and (D) 12-month ANN models, and

(E) 3- and (F) 12-month logistic regression models. Calibration plots

illustrate the agreement between observed outcomes and predictions.

Perfect calibration to the training data should overlie the 45� solid

line. Note the 3-month BBN model appears miscalibrated at low

probability estimates by underestimating actual survival.
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Though methods exist to quantify the degree of calibration

along a continuum, there is no consensus regarding what is,

and is not, calibrated.

Our findings suggest each modeling technique produced

potentially clinically useful models on decision curve

analysis and can be used clinically rather than assume all

patients will survive longer than 3 months or no patients

will survive longer than 12 months. At the 3-month time

point, each technique performed similarly, all resulting in

net benefit higher than the alternatives of treating all or no

patients (Fig. 4). Depending on the threshold probability

(the probability of survival at which the surgeon would

recommend treatment), each modeling technique appeared

best at some point along the continuum. However, the ANN

produced the greatest net benefit over the higher threshold

probabilities. Therefore, the ANN may be consistently the

most useful model when applied to the clinical setting.

At the 12-month time point, the ANN consistently out-

performed the BBN and logistic regression models over all

threshold probabilities. At the extreme (pt[0.9), surgeons

may be better off assuming no patient will survive longer

than 12 months than using the BBN or logistic regression

models. This is not likely to be a common clinical scenario:

it is doubtful any surgeon would demand a 90% probability

of survival before considering a more durable implant. In

fact, the cutoff chosen for ROC analysis for the 12-month

models was 0.4, which represents, in our opinion (JAF,

JHH), a clinically relevant threshold for surgeons who treat

this specific patient population. Nevertheless, decision

curve analysis evaluates and compares models over a range

of threshold probabilities, so an exact value of pt need not

be specified a priori.

Using our institutionally derived data set, the ANN

model was superior to the other two models both in

accuracy and on decision curve analysis. Nevertheless,

BBN techniques retain a unique advantage over ANNs. As

clinicians, we often base clinical decisions on incomplete

or otherwise inadequate information. BBNs can effectively

account for this type of uncertainty or missing information

within the input data [15], which may make them ideally

suited for use in the clinical setting. While ANNs can be

developed to accommodate missing data [11], Bayesian

methods are typically better suited for this purpose [9].

With respect to the clinical utility of logistic regression

models, one must consider they do not typically account

for conditionally dependent relationships between variables

[7]; this weakness may degrade accuracy in the setting of

missing input data. If clinical decisions are to be made

using incomplete information, the BBN method, described

above, can still be used.

These data support the use of each of these models in

patients with surgically treated skeletal metastases. Though

prognostic models are common in orthopaedics, we are

aware of no other reports documenting the use of decision

curve analysis in the orthopaedic literature. Nevertheless,

we believe prognostic models should be evaluated on the

basis of clinical value (by decision curve analysis) before

clinical use. It would also be helpful to understand more

about the relevant threshold probabilities in surgeons who

treat this specific patient population. This highlights the

need for prospective studies evaluating surgeon preference.

We believe models such as these should continue to be

developed and, when vetted properly, will ultimately pro-

vide orthopaedic surgeons with useful clinical decision

support tools to estimate each patient’s likelihood of sur-

vival and, as such, help guide surgical management and

implant selection.
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