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Abstract
We examined how spatial smoothing affects the result of multivariate classification analysis using
the linear support vector machine (SVM) for decoding columnar-level organization. It has been
suggested that the effect of spatial smoothing on decoding performance is minor because
smoothing operation is an invertible data transformation and such invertible transformation does
not remove information in multivariate pattern. Our theoretical consideration, however, revealed
that generalization score (performance for test samples unused during classifier training) was
susceptible to non-uniform scaling of input data; SVM classifier became less sensitive to
variability in shrunk dimension. This result indicates that spatial smoothing reduces sensitivity of
SVM classifier to high spatial frequency pattern so that the effect of smoothing implies the amount
of information distributed in spatial frequencies. We also examined the effect of smoothing in an
fMRI experiment of decoding ocular dominance responses. The results of group statistic showed
that large smoothing reduced decoding accuracies while the smoothing effect at individual subject
were not the same for all subjects. These results suggest that spatial smoothing can have major
effect on decoding performance and the informative pattern for columnar level decoding resides in
higher frequencies on average across subjects while it may distribute multiple frequencies at
individual subject level.
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multivoxel pattern analysis; support vector machine; informative spatial frequency; columnar-
level decoding

1. Introduction
Multivoxel pattern analysis has been used to extract information contained in activation
patterns of functional magnetic resonance imaging (fMRI). In particular, successful
decoding of orientation column responses in the human primary visual cortex has been
demonstrated using this method with a response pattern of 3-mm-sized voxels (Haynes and

Corresponding author: Masaya Misaki, Laureate Institute for Brain Research. 6655 S. Yale Ave. Tulsa OK 74136 USA, TEL:
918-502-5184, mmisaki@lauareateinstitute.org.

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of
the resulting proof before it is published in its final citable form. Please note that during the production process errors may be
discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

NIH Public Access
Author Manuscript
J Neurosci Methods. Author manuscript; available in PMC 2014 January 30.

Published in final edited form as:
J Neurosci Methods. 2013 January 30; 212(2): 355–361. doi:10.1016/j.jneumeth.2012.11.004.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Rees, 2005; Kamitani and Tong, 2005). Whereas reliability of this analysis has been
demonstrated, the fundamental mechanism of contrast formation allowing this decoding is
still controversial (Boynton, 2005; Chaimow et al., 2011; Freeman et al., 2011; Gardner,
2010; Kamitani and Sawahata, 2010; Kriegeskorte et al., 2010; Op de Beeck, 2010a; Shmuel
et al., 2010).

The effect of spatial smoothing on decoding performance is a concern for studies of
decoding columnar-level organization with multivoxel pattern analysis. For the columnar
level decoding, spatial smoothing has been thought to remove informative response
variability across voxels and deteriorate decoding performance. Op de Beeck (2010a),
however, demonstrated that classification accuracies for orientation selective responses
stayed the same even with substantial smoothing (Gaussian kernel with 8 mm full-width-at-
half-maximum [FWHM]) applied to multivoxel response patterns. In contrast, Swisher et al.
(2010) demonstrated that the decoding information mostly resides in the high-frequency
domain; decoding performance suffered from smoothing.

Furthermore, Kamitani and Sawahata (2010) implied that the smoothing effect could be
irrelevant to informative spatial frequencies for decoding. They indicated that spatial
smoothing with Gaussian kernel convolution is an invertible transformation, so that
smoothing does not remove information for decoding. They also suggested that the
smoothing effect for decoding accuracies depends on classification algorithm.

To resolve the controversy on the effect of smoothing, we investigated how Gaussian
smoothing affects the decoding performance of multivariate classification analysis.
Specifically we examined the changes in the generalization score (performance for test
samples unused during classifier training) of the linear support vector machine (SVM) after
smoothing. Op de Beeck (2010b) has suggested that spatial smoothing affects relative
scaling of signals in different spatial frequencies. We further examine how the non-uniform
scaling affects the generalization score of SVM by theoretical considerations.

This article consists of two parts. The first part consists of a theoretical assessment of the
sensitivity of the linear SVM to smoothing operation on input data and a simulation to verify
the smoothing effect expected by the theoretical consideration. In the second part, we
performed a decoding analysis on fMRI data to evaluate empirically the effect of smoothing.
In this experiment, responses of ocular dominance columns were decoded using the linear
SVM.

2. The sensitivity of SVM generalization score to spatial smoothing
2.1. Theoretical inference

Spatial smoothing with a Gaussian kernel can be understood as an invertible transformation
of data space (Kamitani and Sawahata, 2010). Here we consider the effect of the data
transformation on the estimation of the classification boundary in multivariate classification
analysis.

In a general form of a two-class linear classification, a classification function is represented
as:

(1)

where y is the output of classifier, which is a column vector of outputs for each sample, X is
the data matrix, in which each row corresponds to individual sample of multivariate data
vector, w is the normal vector of the boundary, and b is a vector whose length corresponds
to distance from the origin to the boundary. Since the b can be represented in X and w, this
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is omitted from the following equations. The classification label is provided as [−1, 1]; if yi
> 0, xi is labeled as 1 otherwise it is labeled as −1 where yi and xi are the ith row
components of y and X, respectively.

We represent a linear transformation of data as:

(2)

where Xt is the matrix of transformed data, Xo is the matrix of original data, and M is the
transformation matrix. If M is invertible, a boundary giving exactly the same classification
output for the transformed data as in the original data should exist. The normal vector of
such boundary, which we represent as wot, is given by:

(3)

where wo is the normal vector of the boundary evaluated for the original data. From the Eqs.
(1), (2), and (3), the outputs, yt with wot for the transformed data are the same as yo with wo
for the original data:

(4)

The fact that equivalent outputs can be derived from the transformed data means that
classifiers that optimize classification scores for given training samples are insensitive to
invertible transformations of input data. Since the smoothing operator with Gaussian kernel
can be expressed as an invertible transformation (Kamitani and Sawahata, 2010), spatial
smoothing does not seem to affect the result of multivariate linear classification analysis.

However, in the decoding analysis, our interest is not in classification scores for the training
samples themselves. When the number of samples is smaller than the number of data
dimensionality, which is often the case in fMRI decoding analyses, arbitrarily high
accuracies can be attained for the training samples because the number of parameters in the
classifier is larger than the number of samples. In fMRI decoding analyses, the performance
of the classifier should be evaluated with the results for test samples that are not used in the
training, namely, using the generalization score.

Multivariate classification analysis that aims to optimize the generalization score can be
sensitive to invertible transformation of input data. The SVM (Bishop, 2007; Cristianini and
Shawe-Taylor, 2000; Vapnik, 1995) aims to maximize the generalization score by searching
a boundary that maximizes margin between classes, which is represented as:

(5)

where tn is the class label ([−1,1]) and xn is the data vector for the nth sample. The margin
and the optimal boundary for SVM can change after the data transformation if the
transformation results in non-uniform scaling; scaling factors are different between axes,
which is demonstrated in Fig. 1.

Fig. 1A shows the original data points, Xo, and Fig. 1B shows the transformed data points,
Xt. The solid line in Fig. 1A is the boundary with the normal vector of wo, which is
estimated for Xo with the linear SVM. This boundary was transformed into the data space of
Fig. 1B using Eq. (3), which is shown by the solid line in Fig. 1B. While the solid-line
boundaries in both Figs. 1A and 1B give the same classification results for the training
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samples as seen in Eq. (4), the boundary in the transformed space does not maximize the
margin. The boundary that maximizes the margin for the transformed data is shown by the
dotted line in Fig. 1B, which was estimated with the linear SVM for Xt. To compare the
boundaries in the original space, the boundary with wt (dotted line in Fig. 1B) was
transferred onto the original space (dotted line in Fig. 1A) using Eq. (3) in the reverse
direction. As seen in Fig. 1A the boundary estimated for the transformed data (dotted line) is
more parallel to the horizontal axis, which is shrunk with the transformation in Xt.

The discrepancy between the solid and dotted lines in Fig. 1 is due to the nonuniform scaling
of the two dimensions. When transformation M includes non-uniform scaling, Xt and wot
are scaled in opposite ways as seen in Eqs. (2) and (3) (M vs. M−1). Then the angle between
Xt and wot becomes larger and their inner product becomes smaller. As a result, the margin
(wTx in Eq. (5)) becomes smaller for the wot in the transformed space relative to wo in the
original space. Note that the margin is defined in the direction of the normal vector of the
boundary, so that the boundary maximizing the margin in the transformed space should be
more parallel to the shrunk axis.

Although both boundaries output the same classification labels for the given training
samples, generalization performance for unseen test samples can be changed substantially
because the classification boundary estimated for the transformed data is less sensitive to
variability on the shrunk dimension.

The Gaussian smoothing scales dimensions differently in the spatial frequency domain (Op
de Beeck, 2010b); it shrinks data space more in high frequencies than low frequencies.
While fMRI response patterns are represented by voxels, they can be transformed to
frequency space using discrete Fourier transform, which is one of the linear orthogonal
transformations that preserves angle of vectors in data space. Therefore, we can predict that
spatial smoothing makes the decoding performance (generalization score) less sensitive to
variability in high-frequency patterns and the effects of smoothing can indicate the relative
amount of information in different frequencies. A simulation of pattern classification was
carried out to confirm this prediction.

2.2. Verification of the theoretical inference by a simulation
We performed a simulation to examine the relationship between the effect of smoothing and
informative frequency for pattern classification with the linear SVM. It should be noted that
this simulation was not aimed to model an actual fMRI data, but to examine the effect of
spatial smoothing on the linear SVM in a general pattern classification analysis.

2.2.1 Simulation procedures—The overall procedures for the simulation are depicted in
Fig. 2. The simulation was performed using MATLAB (The MathWorks, Natick, MA). Two
template patterns were made with the same waveform of a sine function but their phases are
different in half cycle. The pattern consists of 50 × 50 pixels with the frequency of the sine
function at 0.1 cycles/mm where one pixel corresponds to 2 mm. From the two template
patterns, 20 samples were constructed for each class by adding Gaussian noises at each
pixel. Standard deviation of the noise is five times larger than the maximum amplitude of
the sine function. For this data set, informative frequency was localized at 0.1 cycles/mm.

Spatial smoothing was applied for these sample patterns by convolving the Gaussian kernels
of 2, 4, 6, 8, and 12 mm FWHM. Then the convolved patterns were subject to classification
analysis using the linear SVM. The decoding performance was evaluated with generalization
score using leave-one-out cross-validation (Bishop, 2007; Mitchell, 1997) with 100
repetitions of different random noise patterns.
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2.2.2 Simulation results—Fig. 3 shows the mean decoding accuracies and the standard
deviations across 100 simulations. The best performance was obtained with smoothing by 4
mm FWHM Gaussian kernel. Further smoothing with larger kernels substantially reduced
the decoding performance. Considering the cut-off frequencies of the Gaussian smoothing
(at which the power of signals is halved by the filter), these results are consistent with the
prediction that smoothing effect is systematically related to informative spatial frequency.
As the information existed only at 0.1 cycles/mm, small smoothing up to 4 mm (cut-off
frequency is 0.11 cycles/mm) was helpful to reduce high-frequency noise. Larger
smoothing, in contrast, made the SVM classifier less sensitive to informative frequency,
resulting in decreased decoding performance.

To confirm that this performance reduction was not due to numerical loss in a smoothing
calculation, we examined decoding performance for patterns that were smoothed with 12-
mm kernel and then inverted to non-smoothed ones. If numerical loss in the filtering
calculation was related to the performance reduction, this manipulation should induce large
performance reduction. However, this operation did not affect the decoding accuracies (the
left most bar in Fig. 3B), indicating that numerical loss in the calculation did not cause the
performance reduction with large smoothing.

These results indicate that the effect of spatial smoothing on the generalization score reflects
informative spatial frequencies contained in patterns if we use the linear SVM.

3. The effect of spatial smoothing on decoding ocular dominance
responses

Next, we evaluated the effect of smoothing on decoding performance in an fMRI
experiment. In the experiment, ocular dominance responses in the human visual cortex were
measured using fMRI and decoded using multivoxel pattern analysis.

3.1. Materials and Methods
3.1.1. Experimental Procedures—Twelve subjects (22–35 years of age, 5 females)
participated in this study and gave informed consent according to a protocol approved by the
Institutional Review Board at the National Institutes of Health.

The visual stimulus was a radial checkerboard pattern, flashing at 6.7 Hz, back-projected
onto a screen in the MRI bore, subtended 16.7° horizontally and 11.0° vertically in visual
angle. The visibility of the stimulus for each eye was controlled through the LCD shutter
goggles (PLATO Visual Occlusion Spectacles, Translucent Technologies Inc., Toronto,
Canada) connected to a laptop computer by changing the opaqueness of the shutter goggles.

A slow event-related design was employed in the experiment; the stimulus duration was 1 s
while the entire duration of each trial was 12 s (11 s rest) for five subjects (subjects A to E in
Fig. 4) and 16 s (15 s rest) for the others. Two monocular stimulation conditions for
measuring the ocular dominance responses, and another three (for subjects A to E) or five
(for subjects F to L) conditions of binocular stimulations were presented. While all the
conditions were modeled in the analysis, binocular conditions, which were employed for
another decoding study, were not used for evaluating the smoothing effect in this study. A
total of eight runs were performed for each subject with each condition presented four times
per run. The order of conditions was randomized and was different for each run.

A fixation task was used to maintain subjects’ attention on the center of the stimulus. In
every trial a small white fixation circle at the center of the stimulus was flashed green in
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random timing when the shutter was opened. Subjects were required to report the green flash
as fast as they can by pressing a button.

3.1.2. MRI parameters—All imaging was performed on a 3T Signa MR scanner (GE
Healthcare, Milwaukee, WI) with a 16-channel phased-array coil (NOVA Medical Inc.,
Wilmington, MA). The functional time series were obtained using single-shot gradient-
recalled echo-planar imaging (EPI) pulse sequence with ASSET (Array Spatial Sensitivity
Encoding Technique) acceleration factor = 2. The imaging parameters were TR = 250 ms,
TE = 30 ms, FA = 35°, FOV = 192 × 192 mm, 96 × 96 matrix, 4 slices of 3 mm thickness
with 0.3 mm gap, and voxel size of 2 × 2 × 3 mm. Slices were parallel to the calcarine
sulcus and covered the calcarine region. The first 48 volumes before the first trial were
excluded from the analysis.

For anatomical alignment, whole brain T1-weighted Magnetization Prepared Rapid Gradient
Echo (MPRAGE) images were acquired for each subject with TR = 6 ms, TE = 2.736 ms,
FA = 12°, and voxel size = 1 × 1 × 1 mm with ASSET acceleration factor = 2.

3.1.3. Image processing—All image processing was performed using AFNI software
package (http://afni.nimh.nih.gov/) (Cox, 1996). Functional images were de-spiked,
corrected for slice-acquisition timing, and realigned to the image volume closest to the
anatomical scan. Signal values per voxel were scaled to percent signal change relative to the
mean signal across the time-course of each run. Six levels of image smoothing were applied
using Gaussian filters with 0 (no smoothing), 2, 4, 6, 8, and 12 mm FWHM. Smoothing
operation was performed with 3dmerge program in AFNI. The smoothed data retained the
same numerical precision as the original data (16-bit integer).

Anatomical region of interest (ROI) was defined in the calcarine gyrus using anatomical
label from the TT_N27_EZ_ML mask based on the macrolabel maps of the Statistical
Parametric Mapping Anatomy Toolbox (Eickhoff et al., 2005) provided with AFNI package.
In order to transfer the anatomical mask to functional images, the template brain was
transposed onto skull-stripped anatomical images and resampled to the resolution of the
functional images.

3.1.4. Decoding analysis—The response of each voxel at each trial was estimated using
the general linear model (GLM) analysis. Temporal responses for each trial were modeled as
gamma functions using AFNI’s 3dDeconvolve program. The design matrix included
response models for all trials, six motion parameters, and low frequency components
modeled by the third order polynomial for each run. The t values of the model-fit for each
trial of monocular stimulations were used as response estimates at each voxel. These values
in ROI voxels were used as inputs for decoding analysis.

The SVM was used to decode ocular-dominance responses using the LIBSVM library
(Chang and Lin, 2001) with the linear kernel and C parameter fixed to 1. Decoding
performance (generalization score) was evaluated using the cross-validation procedure
(Bishop, 2007; Mitchell, 1997): Responses in seven runs were used to train the classifier,
and one run was used to test the decoding performance. Response estimations with the GLM
analysis were performed independently for the training and the test data in each cross-
validation fold. In this procedure, 56 training samples (7 runs × 8 trials per run) and 8 test
samples were obtained in each validation fold. This estimation procedure was repeated 8
times for all possible training and test run combinations. Mean scores across cross-
validations are reported in the results.
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Statistical analyses of smoothing effects were performed with R statistical computing
language and environment (R Core Team, 2012).

3.2. Results of fMRI experiment
Fig. 4A shows the decoding accuracies of ocular dominance decoding for each subject and
the average scores across subjects (dotted line) at different levels of smoothing. The
significance of decoding accuracy of individual subject at each smoothing was estimated by
permutation test (Golland and Fischl, 2003) with 5000 random permutations of labels within
each run. Significant accuracies (p < 0.05 with Bonferroni correction) were marked by
circles in Fig. 4.

To compare the smoothing effect with the effect of clear-cut frequency filtering, Fig. 4B
shows the decoding accuracies at different levels of low-pass Fourier filtering. Low-pass
frequencies are approximately corresponded to the sizes of smoothing kernel. While the
effect of clear-cut filtering was sharp compared to the smoothing, the same trend of the
effect was observed in both cases.

The effect of smoothing was significant using the Friedman test (chi-squared(5) = 16.228, p
= 0.006) (Demšar, 2006) for the average result. Post-hoc analysis using the Wilcoxon-
Nemenyi-McDonald-Thompson test (Hollander and Wolfe, 1999) revealed significant
difference between 0-mm and 12-mm smoothing (p = 0.035) and between 2-mm and 12-mm
smoothing (p = 0.015).

While the smoothing decreased decoding accuracies in the average result, the smoothing
effects at individual subject level were not always the same. For example, the effects in
subject E and K (dashed lines in Fig. 4A) were larger than those in the other subjects; only
for these subjects the effect of smoothing was significant (chi-squared(5) = 12.418, p =
0.030 for E and chi-squared(5) = 11.923, p = 0.036 for K). No significant effect of
smoothing was observed for the other subjects. Although the effect was not significant, we
also observed increased accuracy with smoothing (double-dashed lines in Fig. 4A) for
subject F (up to 6 mm) and J (up to 6 mm).

To confirm these decoding accuracies and the smoothing effects were not due to response
bias to one of the eyes, we performed the same analysis with normalized input vectors; the
length of response vector for every trial was normalized to 100. Fig. 4C shows the results
with the normalized input vectors. Even with this response vector normalization, we still
observed similar effects of smoothing as in Fig. 4A: The effect of smoothing for the average
result was significant (chi-squared(5) = 19.411, p = 0.002). Post-hoc analysis revealed
significant difference between 0-mm and 12-mm smoothing (p = 0.042) and between 2-mm
and 12-mm smoothing (p = 0.006). With individual subject analyses, significant effect was
observed only for subject E (chi-squared(5) = 11.4198, p = 0.030) and subject L (chi-
squared(5) = 14.390, p = 0.013).

4. Discussion
We showed that the effect of smoothing on the generalization score using linear SVM is
related to the informative frequency for pattern classification. While spatial smoothing does
not remove high frequency component, relative scaling of frequency component was
sufficient to affect the generalization score of SVM classification analysis. Clear-cut low-
pass filtering with Fourier filter (non-invertible operation) showed similar effect on the
decoding accuracies with smoothing (Fig. 4). This result suggests that we could infer
informative scale of neural organization from the result of smoothing effect on decoding
accuracies (Brants et al., 2011).
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In the ocular dominance decoding analysis, we observed large smoothing reduced decoding
accuracies on average across twelve subjects. This result suggests that informative
frequencies for the ocular dominance decoding resided in higher spatial frequencies. With
individual subject analysis, however, significant decoding accuracies were observed even
with the 12-mm smoothing for three of the subjects and the significant effect of smoothing
was observed only for two of the subjects. This individual difference should not be ignored
in the decoding analysis because many decoding analyses, especially for the early visual
cortex, have been performed on individual subject basis. For instance, the previous decoding
studies investigating informative frequencies (Freeman et al., 2011; Op de Beeck, 2010a;
Swisher et al., 2010) were based on individual results of at most four subjects.

Regarding the individual variability of smoothing effects, Swisher et al. (2010) suggested
that head motion can be one of the reasons to diminish the effect of smoothing. In the
current experiment, one subject (subject B) had substantial head motion compared to the
other subjects (Fig. S1 in the supplementary material). This subject showed less effect of
smoothing, which was consistent with the discussion in Swisher et al. (2010). However, the
subjects with less smoothing effect (e.g. subject C) did not necessarily exhibit significant
head motion, so that the head motion was not the sole reason for the variability of smoothing
effect.

Biased response to dominant eye (Haynes and Rees, 2005; Schwarzkopf et al., 2010) could
also affect the smoothing effect. For a subject with strong eye dominance, smoothing could
trivially improve decoding by spreading strong response bias in many voxels. The
smoothing effect therefore could be irrelevant to informative frequencies. The results of
decoding with response vector normalization (Fig. 4C), however, still showed similar effect
of smoothing. This suggests that the response bias did not explain the variability of
smoothing effects.

Although head motion and eye dominance did not explain all the variability of the
smoothing effect, we still cannot exclude the possibility that the difference of individual
noise was related to the smoothing effect. We, however, could at least say that informative
pattern for decoding columnar-level organization did not reside only in a specific range of
spatial frequencies for all the subjects. The results that significant decoding accuracies were
observed at large smoothing level for some subjects indicate that decoding information
could reside also in low spatial frequencies.

Variable smoothing effects seen at individual subject analyses might implicate the
mechanism of contrast formation in decoding responses of columnar organization. It has
been shown that the frequency of columnar width higher than the Nyquist frequency of the
MRI data sampling cannot be aliased into voxel space (Chaimow et al., 2011; Kamitani and
Tong, 2005). The decoding information, therefore, should come from another system
representing the difference in response patterns of the columnar organization. The biased
sampling for irregularly distributed columns (Boynton, 2005; Kamitani and Tong, 2005) has
been proposed as one of the models for decoding contrast. If the irregularity induces
organizations in multiple frequencies, this model could be consistent with the result of
variable informative frequencies.

Freeman et al. (2011) indicated that not a columnar organization but a larger-scale map of
orientation column (angular-position map) contributed to decoding. They showed that when
the angular-position component was removed from the map, decoding accuracy was
significantly reduced. They also showed an interesting effect of frequency filtering on
decoding accuracy. Even though the angular-position map is a low spatial frequency pattern,
they observed reducing effect of low-pass filtering on the decoding accuracies similar to the
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result of Swisher et al. (2010). This suggests that multiple spatial frequencies may have
information for decoding even if the response is organized in large-scale map.

In our experiment, we used ocular dominance column instead of orientation column, so that
the large-scale organization like the angular-position map would not affect the decoding. A
low-frequency regular organization like an angular-position map has not been observed for
ocular dominance column except in a region of periphery visual filed (Adams et al., 2007).
We did not observe such biased response map in our result. The current results of smoothing
effect, therefore, could suggest that variable frequencies could be informative even if the
information is not derived from a large-scale map.

How the neural response of columnar organization creates a spatial pattern in multiple
frequencies of BOLD response is still an open question. Irregular but stripped organization
of ocular dominance column may form a pattern in multiple frequencies that can contribute
to decoding. Vascular bias (downstream large vessel effects) was also proposed as a major
source of contrast in low spatial frequencies (Gardner, 2010; Shmuel et al., 2010).
Kriegeskorte et al. (2010) further suggested that blood flow may generate contrast in both
small- and large-scale patterns. This model is consistent with the current results showing the
variability of informative frequencies.

It should be noted that our investigation was focused on the linear SVM whereas the
smoothing effect might be different in other classification analyses. The Fisher’s Linear
Discriminant Analysis (LDA) (Bishop, 2007; Duda et al., 2000), for example, can be
insensitive to non-uniform scaling because LDA normalizes the distance measured with
covariance estimates so that the effect of scaling may be canceled. However, if we consider
the generalization score, the LDA may also be affected by spatial smoothing. In fMRI
decoding analysis, where the data dimensionality is very large compared to the number of
samples, the estimate of the covariance matrix is not robust. In fact, the decoding
performance of LDA using the sample covariance matrix was shown inadequate (Cox and
Savoy, 2003). For robust covariance estimation and better decoding performance, LDA
should be used with regularization technique such as the shrinkage method (Ledoit and
Wolf, 2003; Schafer and Strimmer, 2005), which reduces the off-diagonal values in the
covariance matrix. While regularization increased decoding performance (Kriegeskorte et
al., 2006; Misaki et al., 2010), the effect of scaling cannot be cancelled out in covariance
directions. As a result, smoothing could affect the decoding performance of LDA with
shrinkage regularization.

In addition, we should note that our discussion has been focused on the multivariate
classification analysis for columnar-level organization. Other multi-voxel pattern analyses
like correlation analysis for pattern similarity can benefit from moderate smoothing (Chu,
2009; Etzel et al., 2011; LaConte et al., 2005), see also (de Brecht and Yamagishi, 2012).
Furthermore, Etzel et al. (2011) showed interaction effect of spatial smoothing with
temporal detrending of BOLD signal on the decoding accuracies.

Giving the dependency on analysis methods and possible interaction with other data
processing, there is no simple rule to determine whether spatial smoothing can be beneficial
in multivoxel pattern analysis. The current result that smoothing decreased decoding
performance on average suggests that it might be safe to refrain from smoothing at least for
ocular dominance decoding. However, if large noise or minimum information is present in
high frequency patterns such as data with substantial head motion or in multi-subject
analysis, smoothing may increase the decoding performance. For a usage of spatial
smoothing in multivoxel pattern analysis, we should consider multiple factors that may
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affect the result, including data processing stream, multivariate analysis method, scale of
neural organization, and possible individual difference.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Highlights

• We examine the effect of smoothing on multivoxel pattern analysis.

• Non-uniform data scaling across dimensions changes results of SVM
classification.

• The effect of smoothing on SVM decoding was related to informative
frequency.

• Large smoothing reduced decoding accuracy on average across subjects.

• The smoothing effect could be observed differently at individual subject.
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Figure 1.
Schematic illustration for the effect of data transformation on boundary estimation of the
linear SVM. A binary classification example for two-dimensional data with 20 samples (10
for each class) is shown in the original space (A) and in the transformed space (B). The solid
line represents the boundary estimated in the original space and the dotted line represents the
boundary estimated in the transformed space.
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Figure 2.
Procedures of creating sample patterns in the simulation analysis
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Figure 3.
The effect of smoothing on the decoding accuracy for the simulated patterns using the linear
SVM. Average accuracy and standard deviations across 100 simulations with different
random noise patterns are shown. The left most bar shows the decoding result for the
patterns smoothed by 12-mm kernel, then inverted to the non-smoothed patterns.
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Figure 4.
Smoothing and low-pass filtering effect on decoding accuracy. Ocular dominance decoding
accuracies at each level of smoothing (A) and low-pass filtering (B) are shown for each
subject. C shows decoding accuracies with vector normalization (the length of every input
vector was normalized to 100) are shown. The dotted black lines with error bars show the
average accuracies and standard errors across subjects. The circles indicate that decoding
accuracy is significant (p < 0.05) by permutation test (5000 permutation) with Bonferroni
correction (corrected for testing six times for different smoothing levels).
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