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Abstract

Biased codon usage in protein-coding genes is pervasive, whereby amino acids are largely encoded by a specific subset of
possible codons. Within individual genes, codon bias is stronger at evolutionarily conserved residues, favoring codons
recognized by abundant tRNAs. Although this observation suggests an overall pattern of selection for translation speed
and/or accuracy, other work indicates that transcript structure or binding motifs drive codon usage. However, our
understanding of codon bias evolution is constrained by limited experimental data on the fitness effects of altering
codons in functional genes. To bridge this gap, we generated synonymous variants of a key enzyme-coding gene in
Methylobacterium extorquens. We found that mutant gene expression, enzyme production, enzyme activity, and fitness
were all significantly lower than wild-type. Surprisingly, encoding the gene using only rare codons decreased fitness by
40%, whereas an allele coded entirely by frequent codons decreased fitness by more than 90%. Increasing gene expression
restored mutant fitness to varying degrees, demonstrating that the fitness disadvantage of synonymous mutants arose
from a lack of beneficial protein rather than costs of protein production. Protein production was negatively correlated
with the frequency of motifs with high affinity for the anti-Shine-Dalgarno sequence, suggesting ribosome pausing as the
dominant cause of low mutant fitness. Together, our data support the idea that, although a particular set of codons are
favored on average across a genome, in an individual gene selection can either act for or against codons depending on
their local context.
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this by showing striking similarities between the distributions
of fitness effects of synonymous versus nonsynonymous sub-
stitutions in ribosomal proteins of Salmonella enterica Serovar
Typhimurium (Lind, Berg, et al. 2010). If comparable results
hold for other proteins across multiple species, we need
to change our assumptions about the fitness effects of syn-
onymous mutations and their long-term influence on codon
usage and genome evolution.

Population genetic models propose that biased codon
usage evolves largely due to mutational biases favoring AT-
or GC-rich codons, countered by weak-to-moderate selection

Introduction

As a widespread phenomenon observed from bacteria to
mammals, within- and between-genome variation in codon
usage has been studied extensively during the past few dec-
ades (Ikemura 1985; Bulmer 1991; Akashi 1994; Sharp 2005;
Kimchi-Sarfaty et al. 2007). However, it remains unclear
why some codons are used frequently while others are rare
in protein-coding genes. Synonymous mutations (which
change codons but not amino acids) are traditionally thought
to be under weak selection and have thus served as a neutral
baseline for tests of selection. However, it is increasingly clear

that changing codon composition and order of occurrence
in the transcript (which we collectively refer to as “codon
usage”) can have large effects on protein expression and func-
tion (Parmley and Hurst 2007; Hershberg and Petrov 2008;
Plotkin and Kudla 2010). A recent experiment emphasized

acting on specific codons (Bulmer 1991; Yang and Nielsen
2008). The importance of selection on codon composition is
demonstrated by within- and across-genome comparisons
showing that codon bias is strongest in genomic regions
that experience strong purifying selection. For instance,

© The Author(s) 2012. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License
(http://creativecommons.org/licenses/by-nc/3.0/), which permits unrestricted non-commercial use, distribution, and reproduction O P en A C c e s S

in any medium, provided the original work is properly cited.

Mol. Biol. Evol. 30(3):549-560 doi:10.1093/molbev/mss273  Advance Access publication December 4, 2012 549

ma
o
(74)
()
—
*
Q
0
~




Agashe et al. - doi:10.1093/molbev/mss273

MBE

codon bias is typically stronger in highly expressed protein-
coding genes (lkemura 1985). Even within genes, there
appears to be variation in the strength of selection on
codon usage: evolutionarily conserved amino acid residues
show stronger bias than evolutionarily variable residues
(Akashi 1995; Drummond and Wilke 2008). However, the
relative influence of physiological processes leading to the
evolution and maintenance of biased codon usage remain
unclear.

Various hypotheses posit that selection can act upon spe-
cific codons at different stages of protein production (supple-
mentary table S1, Supplementary Material online). First,
protein production may be limited by translation initiation,
causing selection on 5 mRNA folding and stability rather
than direct selection on codons per se (Gold 1988). Second,
rare codons serviced by low-abundance tRNAs can slow
down translation because ribosomes must wait longer for
the appropriate charged tRNA to elongate the nascent poly-
peptide (Curran and Yarrus 1989; Serensen et al. 1989).
On the other hand, glutamic acid codons recognized by the
same tRNA are translated at different rates (Serensen and
Pedersen 1991), and two recent studies claim that the trans-
lation time for synonymous codons in yeast and bacteria is
invariable (Li et al. 2012; Qian et al. 2012). Even if ribosomes do
pause during translation, such pauses may actually be critical
to allow the protein to fold correctly (Komar 2009). However,
in most cases ribosomal pausing is thought to be detrimental:
it can hasten mRNA degradation, sequester ribosomes on
slow transcripts, compromise protein function by increasing
the probability of mistranslation or altering cotransla-
tional folding kinetics (Cortazzo et al. 2002), and lead to
mistranslation-induced protein misfolding (Drummond and
Wilke 2008). Thus, selection for translational speed and
accuracy (“efficiency”) is expected to generally increase con-
cordance between the cellular tRNA pool and codon usage
(“translational selection”). Finally, the balance between trans-
lation initiation and elongation may be tuned via a “ramp” of
codons serviced by rare tRNAs at the 5'-end of transcripts,
which may minimize ribosome collisions or sequestration
during elongation (Tuller et al. 2010).

Despite myriad hypotheses about mechanisms underlying
selection on codon usage, the paucity of experimental
manipulations of codons in native, functional genes that
have coevolved with their genome leaves many key questions
unaddressed. What magnitude of selective difference is
possible between synonymous alleles with varying codon
usage? Is the wild-type (WT) codon usage optimal with
respect to fitness? Are codons that are serviced by more
abundant tRNAs universally preferred over those serviced
by rare tRNAs? How much does codon position (and not
just composition) matter? Which level(s) of the central
dogma (mRNA or protein levels, enzyme activity) are affected
by synonymous variants? Are fitness differences driven by
insufficient beneficial protein, or excess cost of production?
To move toward an integrated picture of the mechanistic
bases of selection upon codon usage, it is important to
address these questions for variety of native genes in multiple
species.
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As a step in this direction, we tested the fitness effects of
altering codon usage in a highly expressed enzyme-coding
gene (~2% of total cell protein, Vorholt et al. 2000) in the
a-proteobacterium Methylobacterium extorquens AM1. For
the majority of amino acids, the relative occurrence of the
most frequently used codon in M. extorquens genes is >70%
(fig. 1A and B), indicating a substantially skewed codon usage
(supplementary fig. S1, Supplementary Material online).
M. extorquens has evolved to utilize single-carbon (C;) com-
pounds such as methanol via a series of specific metabolic
pathways (Chistoserdova et al. 2003). We targeted one of
the genes in the formaldehyde oxidation pathway, fae,
which encodes the 18 kDa formaldehyde activating enzyme
FAE. FAE is essential for growth on methanol but is dispens-
able during growth on multicarbon substrates (Vorholt et al.
2000). fae has highly biased codon usage (supplementary
fig. S1, Supplementary Material online), as expected from
the commonly observed pattern of strong codon bias in
highly expressed genes (Drummond and Wilke 2008). fae
was thus ideal for our experiments because its codon usage
represents highly expressed M. extorquens genes, and its high
expression level and substrate-specific essentiality render it
tractable for protein and fitness measurements.

To sample across a wide range of possible codon usage in
fae within a minimal set of alleles, we designed and synthe-
sized six synonymous fae alleles (table 1). To ensure that
codon differences between alleles were evolutionarily rele-
vant, we characterized “rare” codons as those significantly
depleted at conserved amino acid residues, and “frequent”
codons as those significantly enriched at conserved residues
(see Results). The alleles varied from 0% to 100% rare codons,
including a trio of variants with 50% rare codons with iden-
tical codon composition but different placement of rare
versus frequent codons. We replaced the chromosomal
copy of WT fae with these mutant alleles or a WT control
(retaining the native promoter), and quantified selection on
codon usage using each mutant’s growth rate on methanol
(Supplementary methods, Supplementary Material online).
Our results uncovered extreme fitness differences between
synonymous gene variants, including a nearly complete lack
of growth with an allele encoded only by frequent codons.
These synonymous alleles exhibited different mRNA levels,
but varied even more in production of FAE protein and
enzyme activity. In all mutants, growth limitation was a
result of insufficient enzyme activity rather than excessive
costs of protein production. These results indicate a compli-
cated mapping of codon usage to gene expression and fitness,
and suggest that different synonymous alleles may be subop-
timal in distinct ways.

Results

Design and Synthesis of Synonymous fae Alleles

with Altered Codon Usage

To guide our manipulation of codon usage, for each amino
acid, we first identified codons that are most enriched (“fre-
quent codons”) or depleted (“rare codons”) at conserved
amino acid residues relative to variable residues across all
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Fic. 1. Codon usage bias metrics. The relationship between commonly used indices of codon bias and the index of relative codon usage in
Methylobacterium extorquens AM1 used in this study (odds ratio of finding a specific codon at conserved rather than variable residues in protein-coding
genes across the genome). (A) Relative frequency of codon usage for each amino acid, calculated for a list of 39 highly expressed ribosomal protein
coding genes (from the codon usage bias database, http://cub-db.csumtedu/indexshtml, last accessed December 16, 2012). (B) Relative frequency of
codon usage for each amino acid, calculated for 1,022 coding regions (GenBank) and (C) relative synonymous codon usage (RSCU), the frequency of
each codon normalized by the total number of synonymous codons for that amino acid. (D) The frequency of optimal codons (Fop) for each of the
synonymous fae alleles used in this study; bars are colored by strain. In (A-C), red points indicate the most commonly used codon in the respective set
of genes. Data in (B) and (C) are based on the entire M. extorquens genome.

Table 1. Experimental Strains with Synonymous fae Alleles.

Codon Distribution 5’ sequence
# Synonymous
Strain Residues with
% Frequent % Rare Mutations M A K I T K V. Q V G E A L V
Rare Codons -

WT 71.9 8 wild type - ATGGCAAAAATCACCAAGGTTCAGGTCGGCGAGGCCCTCGTC
AF 100 0 None 46 AT G Gooooo ©ooocooooccooao G..G
AC 89 1 Active 52 AT G e s Gooooo ©cooco0000c00 T.G..G
RN 49.4 49.4 Random 92 AT Gy lococoocoo CEEEw..... .8 NNE . .G
VA 49.4 50.6 Variable 102 AT G O T Gooooo G..A..A T.G..A
49.4 50.6 Conserved 94 ATGL e eueees A..A..A..ALLALLAL ... A..G..G
AR 0 98.8 All 150 ATGH. A,.A..A..A..A,.A,.A..A..AT.G..A

Note—To demonstrate our codon alterations, the first 14 residues at the 5'-end of the gene are shown, with conserved residues underlined and enzyme active sites
highlighted in pink. Sequence highlights: orange, rare codons; blue, frequent codons; gray, intermediate codons. In strains RN and AR, two intermediate codons were
introduced to retain restriction sites for cloning. For further details of allele design, see Supplementary methods and information, Supplementary Material online.
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protein-coding genes in M. extorquens (Supplementary meth-
ods and supplementary table S2, Supplementary Material
online). Codon bias calculated in this way is well correlated
with most other commonly used metrics of codon bias,
as well as codon usage of highly expressed genes of M. extor-
quens (fig. 1). Each M. extorquens gene can thus be character-
ized in terms of the proportion of amino acids that are
encoded by frequent, rare, and “intermediate” codons (for
amino acids with >2-fold degeneracy, those codons that
are neither most frequent nor most rare).

Given our goal to explore the fitness consequences across
the widest possible range of codon usage, we generated syn-
onymous variants of fae with varied proportion and position
of frequent versus rare codons. WT fae is largely composed of
frequent codons (72%), with a few rare codons (8%), and
some intermediate codons (20%). We synthesized six alleles
carrying different codon combinations: AF (All Frequent), AR
(All Rare), CO (“Conserved sites rare”, 50% rare), VA (“Variable
sites rare”, 50% rare), RN (“Randomly picked”, 50% rare), and
AC (“Active sites rare”). Our synthesized fae alleles (table 1)
thus test both the effects of extreme codon usage (0-100%
rare codons), as well as positional effects (rare codons located
at enzyme active sites, or conserved vs. variable residues).
Note that all three 50% rare codon versions have an identical

codon composition (except three codons that are different in
RN) because the location of frequent or rare codons was
independently manipulated for each amino acid residue.
We incorporated a C-terminal FLAG tag in each allele for
FAE protein quantification (supplementary table S3,
Supplementary Material online) and replaced the native fae
allele with each synonymous variant (retaining the native
promoter) to create chromosomal mutant strains using an
fae knockout strain (“Del”). We confirmed that the FLAG tag
does not affect fitness, by comparing the strain carrying the
WT fae construct and FLAG-tag (“WT") with the parent WT
strain without any FLAG-tags (“WT*"; see Results).

Fitness Effects of fae Alleles: Both Frequent and Rare
Codons Can Be Detrimental

As FAE is necessary for growth on methanol, we quantified
the fitness effects of our codon manipulations using the
growth rate of mutants on methanol, which is strongly cor-
related with competitive fitness (Pearson’s r = 0.99, P < 0.001
supplementary fig. S2, Supplementary Material online). We
found that none of the variants were neutral with respect to
growth rate. The strain with the WT construct was signifi-
cantly faster than all other variants (fig. 2A; analysis of variance

A . * B C
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Fic. 2. Fitness effects of synonymous fae alleles. Points show mean + SE (standard error) (n=4) for each strain, labeled and colored as in table 1.
The open triangle represents the WT strain without a FLAG tag (WT*) and the dashed line shows data for a Afae (knockout) strain (Del). (B-E) Data are
shown relative to WT. (A) Growth rate (per hour) as a function of the proportion of rare codons in fae. (B) Growth rate as a function of the amount of
mRNA, as measured from quantitative real time PCR. (C) Growth rate as a function of the amount of FLAG-tagged FAE protein as quantified from
Western blots. (D) Average amount of FAE protein produced per mRNA in each strain. (E) Enzyme activity in protein extracts from different strains
(rate of conversion of substrate to product per milligram total protein; n = 3). We did not measure enzyme activity for strains AC and AF because they
did not produce detectable FAE protein; however, we measured activity in the fae knockout strain (Del) to serve as a control for the spontaneous
reaction that occurs in cell extracts but that is insufficient to permit growth on methanol (Vorholt et al. 2000).
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[ANOVA] for effect of strain on growth rate: P=22 x 107,
all Tukey HSD corrected pairwise differences in growth rate
between strains are significant with P < 0.001, except
WT*~WT with P=0.07, and CO-AR, VA-RN, and compari-
sons between AC, Del, and AF with P > 0.3).

Overall, the proportion of rare codons was not significantly
correlated with growth rate (Pearson’s r = 0.59, P = 0.58). This
was driven by the fact that the two alleles with the greatest
number of frequent codons—and the highest sequence simi-
larity to WT (AF and AC, table 1)—barely grew at all in
methanol (fig. 2A). The remaining strains, with 50% and
100% rare codons, grew at a rate one-third to one-half that
of WT.

Considering the specific role of codon position, we com-
pared the growth rate of strains CO, VA, and RN, the three
versions with nearly identical codon composition (each with
50% rare codons). We found that strain CO had significantly
higher growth rate than both VA and RN (Tukey-adjusted
pairwise comparisons; P < 0.01 in both cases). In fact, CO and
VA had identical codon composition; but the combination of
rare codons at variable residues and frequent codons at con-
served residues (VA) was more detrimental than the inverse
codon distribution (CO). This observation is contrary to
the expectation from genome-wide analyses that associate
frequent codons with conserved residues (Akashi 1994
Stoletzki and Eyre-Walker 2007; Drummond and Wilke
2008). Together, these results indicate that substituting WT
codons with either more frequent or rarer codons imposed
a fitness disadvantage, the degree of which depended on
specific codon placement.

Synonymous Alleles Decreased Gene Expression,
Protein Level, and Enzyme Activity

To determine what aspect of FAE expression or function was
altered in our synonymous variants, we measured the levels
of mRNA and FAE protein, as well as FAE activity in cell
extracts. All synonymous variants exhibited less mRNA than

Table 2. Summary of Properties of Mutant fae Alleles.

WT, despite having the same promoter as the WT allele at the
chromosomal locus (fig. 2B). However, the decrease in gene
expression was fairly modest compared with the decrease in
protein levels (fig. 2C), resulting in a very low protein/mRNA
ratio in mutants (fig. 2D). Thus, mutants not only had less
fae mRNA (apparently due to a process downstream of tran-
scriptional initiation) but they also produced less FAE protein
from each mRNA molecule. Note that our mRNA and protein
measurements cannot distinguish between inefficient tran-
scription (or translation) and rapid transcript (or protein)
degradation.

The growth differences between strains CO, VA, and RN
(each with 50% rare codons; discussed earlier) may be partially
explained by the activity of FAE produced by each of these
strains (fig. 2E). Although strains CO and RN produced similar
amounts of FAE, protein extracts from strain CO showed
significantly higher catalytic activity. Conversely, although
strain VA produced only one-third the amount of protein
as strain RN, the apparent higher activity of its protein
allowed it to grow as fast as strain RN. This difference in
enzyme activity despite equivalent enzyme levels may arise
from mistranslation and/or altered cotranslational protein
folding, both of which could change parameters such as bind-
ing of substrate to the active site. The enzyme activity data are
therefore largely consistent with relative protein production
and growth rate observed in mutants. Thus, the particular
location of codons affected not only the quantity but also the
amount of active enzyme produced.

Fitness Effects of fae Codon Variants as a Function
of Transcript Properties

In an effort to determine the cause of low protein production
in mutants, we analyzed mutant alleles for possible correl-
ations between protein level and predicted transcript proper-
ties that may alter gene expression (Kudla et al. 2009).
We found that protein production did not correlate with
overall GC composition (r = 0.04, P = 0.94) or whole-transcript
folding energy (r=—0.03, P=094; table 2). Furthermore,

Allele AC AF VA RN co AR WT
Growth rate (h™") 0 0 0.08 0.09 0.12 0.12 023
mRNA 0.24 0.12 0.47 0.8 0.77 0.75 1

Protein 0 0.03 0.1 0.31 0.27 0.31 1

Protein per mRNA 0.01 0.26 0.21 0.39 0.34 0.41 1

Enzyme activity nd nd 0.24 0.14 0.35 0.17 1

Number of rare codons 18 0 83 81 83 162 13
Rare codons (%) 109 0 50.6 49.4 50.6 98.8 7.93
Number of frequent codons 146 164 81 81 81 0 118
Frequent codons (%) 89 100 49.4 49.4 49.4 0 719
Intermediate codons (%) 0 0 0 122 0 122 20.1
GC (%) 64.1 66.8 517 517 517 36.6 63.7
mRNA folding energy (kcal/mol) —80 —78 —50 —63 —64 —31 =75
tAl 0.28 0.29 0.24 0.24 0.24 0.2 0.29

Note—To facilitate comparison, alleles are shown in increasing order of growth rate on methanol and the WT (with maximum fitness) are highlighted in gray. mRNA and
protein amount and activity are shown relative to WT. For enzyme activity, “nd” denotes no data available due to very low protein production.
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in contrast with previous results for GFP expression in
Escherichia coli (Kudla et al. 2009), we failed to find a signifi-
cant association between protein levels and the energy of
folding measured for the 5 region or for 50-nucleotide
windows (supplementary fig. S3, Supplementary Material
online). It is also possible that the 5’ sequences of mu-
tant alleles may have altered translation initiation rates lead-
ing to low protein production in mutants. However, we did
not find a monotonic relationship between predicted trans-
lation initiation rate and protein production, nor could we
identify known translation termination or RNA regulatory
motifs within the fae alleles. Protein production was also
uncorrelated with the average tRNA adaptation index (tAl;
an estimate of translation speed; r=0.14, P =0.76; table 2).
Finally, we do not see evidence for a 5" “ramp” of slow codons
in the WT or other alleles (supplementary fig S4,
Supplementary Material online), suggesting that differential
ribosome sequestration or ribosomal collision frequency
(Tuller et al. 2010) is unlikely to explain the observed patterns
of FAE production. Thus, neither mRNA structure nor trans-
latability appears to be a consistent cause of low protein
production (and fitness) in our synonymous fae versions,
although these mechanisms may be important for individ-
ual alleles. The diametrically opposite fitness of WT and
AF despite very similar transcript properties means that this
lack of support for various hypotheses cannot be ascribed to
low statistical power to detect associations due to few
variants.

Next, we tested whether the presence of rare codon pairs
could have caused the observed decrease in protein produc-
tion in our mutants, as shown in previous studies (Coleman
et al. 2008). Of the 246 codon pairs that are most rare in
M. extorquens AM1 protein-coding genes (i.e, occur <100
times), only three are significantly correlated with protein
production in our strains (P < 0.005). However, in all three
cases the correlation is positive rather than negative (r = 0.92)
and is driven by the single occurrence of the codon pair in the
WT allele and its absence in all the mutants. We found only
positive correlations even when we expanded the set of rare
codon pairs to include pairs that occur less than 500 times
in the genome. Therefore, it is unlikely that overrepresenta-
tion of rare codon pairs caused low protein production in
our strains.

Finally, we examined our synonymous fae alleles for
evidence of internal Shine-Dalgarno (SD)-like motifs that
may affect gene expression in bacteria. Recent results using
ribosomal footprinting showed that SD-like motifs in the
transcript with very strong binding affinity to the anti-SD
sequence in 165 rRNA may cause ribosomes to pause
during translation (Li et al. 2012). Therefore, we tested
whether the frequency of SD-like hexamer sequences in our
synonymous variants could explain low protein production in
our strains. We found that protein production was negatively
correlated with the frequency of two hexamers: GAACAA
(r=—0.92, P=0.003) and TGGCCA (r = —0.77, P = 0.045; sup-
plementary fig. S5, Supplementary Material online). However,
these hexamers are unlikely to be the cause of low production
in our strains for two reasons. First, both hexamers have very
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low affinity for the anti-SD sequence (0 and —1.3 kcal/mol,
respectively), making it improbable that they could signifi-
cantly slow down translation. Second, their frequency across
alleles was inconsistent with the differences in protein pro-
duction between strains (fig. 2C). GAACAA occurred once in
all alleles except WT, which does not correspond to our ob-
servation of differential protein production across mutants.
Similarly, strain AR produced far less protein than WT even
though the hexamer TGGCCA was absent in both WT and
AR (supplementary fig. S5, Supplementary Material online).
Although these hexamers alone may not sufficiently decrease
translation speed, it is possible that multiple high-affinity
SD-binding sites in the mutant alleles were responsible for
low protein production. Such high-affinity hexamers were not
uncommon in mutant alleles (fig. 3), and therefore we pooled
all hexamers with relatively high binding affinity to anti-SD.
We found that their combined frequency was negatively
correlated with FAE protein production (fig. 4 note that
for affinity < —6 kcal/mol, the relationship is not significant
without the WT allele R*=0.016, P=08; for affinity
< —4kcal/mol, the relationship remains significant even
after removing the WT allele: R*=068, P=0.04). Thus,
although no single hexamer with high binding affinity can
explain our data, it is plausible that ribosomal pausing
due to multiple SD-like sequences resulted in low protein
production and fitness in our synonymous mutants.

Insufficient Enzyme Activity Rather Than Excessive
Cost Underlies Observed Fitness Effects

We sought to test the hypothesis that insufficient FAE activ-
ity, rather than excessive protein expression cost, underlies
the fitness effects of our codon-altered variants. First,
we found that none of the fae mutants produced detectable
misfolded protein aggregates (supplementary fig. S6,
Supplementary Material online). Second, we found that the
variants decreased fitness only when FAE was necessary for
growth. During growth on succinate, FAE production is un-
necessary but still quite high (~50% of the amount produced
during growth on methanol; Okubo et al. 2007). If the fitness
defects in our variants were a direct result of excessive costs
of FAE production, we would expect that the fitness disad-
vantage during growth on succinate should simply be one-
half of that seen on methanol. However, we found that none
of the variants imposed a disadvantage during growth
on succinate (fig. 55 ANOVA for effect of strain: P =0.66).
Together, these data provide two lines of evidence against
protein expression costs as the driver of the large fitness dif-
ferences during growth on methanol, when the enzyme prod-
uct is necessary.

To directly test whether insufficient benefit from FAE
catalysis was responsible for poor growth, we quantified the
growth rate of strains carrying synonymous fae alleles on
a plasmid with a strong, cumate-inducible promoter. If the
mutant alleles decreased fitness because their products were
costly (e.g, misfolded proteins), their growth rate would
decrease with increasing inducer concentration. Instead,
we found that except for strain AC (which remained below
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our limit of detection for both FAE protein and growth),
fae overexpression increased the growth rate of all mutants
(fig. 6). These data, in concert with those described earlier,
firmly establish that the growth of codon-altered variants is
limited by the amount of FAE enzyme, rather than over-
whelming fitness costs of fae expression.

Discussion

We have demonstrated the deleterious consequences of
altering the primary coding sequence of a metabolic
enzyme-coding gene that is essential for growth in a specific
environmental niche. Although our work complements pre-
vious experimental studies on codon usage in model systems
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Fic. 6. Fitness as a function of induced gene expression. Growth rate
(mean + SE; n=3) of fae knockout strains carrying plasmid-borne fae
alleles on a regulated promoter in methanol, as a function of inducer
concentration. The strain carrying the WT allele shows growth even in
the absence of cumate inducer, due to high background gene expression
from the regulated plasmid (~40% of native chromosomal level). The
dashed line indicates the growth rate of the chromosomal mutant
carrying the WT allele (from fig. 2A). Note that due to the cost of
plasmid carriage (Chou and Marx 2012), none of the alleles—including
the WT version—achieved the expression level of the chromosomal WT
strain.

such as E. coli and Saccharomyces cerevisiae, it presents sig-
nificant advances and distinct conclusions. First, we use a
functional gene that enables survival in a specific carbon
niche, rather than a heterologous gene removed from its
evolutionary and genomic context (eg, GFP; discussed
later). Our results corroborate those of Carlini (Carlini and
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Stephan 2003; Carlini 2004; Hense et al. 2010), who showed
(in one of the rare examples of work with endogenous genes)
that altering codon usage in the Adh gene decreased protein
production and reduced ethanol tolerance in Drosophila mel-
anogaster. A second advantage of our work is that our model
organism (M. extorquens) is not closely related to commonly
used laboratory models such as E. coli or S. enterica, and thus
our results demonstrate the broader fitness effects of codon
usage. Third, by focusing our efforts on several specific
synonymous variants, we were able to quantify their proxim-
ate effects on gene expression, enzyme quantity, and activity
in detail. This complements the strength of high-throughput
studies that address distributions of effects for one or two
phenotypes like gene expression or growth. Finally, by manip-
ulating gene expression levels, we could specifically test (and
reject) a major prediction of the translational selection
hypothesis—that the effects of codon usage are amplified
under high expression. Contrary to expectations of many
mechanistic hypotheses, we found that the growth disadvan-
tage of altering codon usage is mitigated under high gene
expression. Together, these attributes have allowed us to
explore various biological effects of each of our synonymous
variants, in contrast to previous experiments where a large
number of synonymous variants were studied without focus-
ing on specific variants (Kudla et al. 2009; Lind, Berg, et al.
2010). Our experiments thus allow us to generate predictions
for evolutionary dynamics following codon changes. For
instance, mutations that increase expression of the synonym-
ous fae variants (e.g, in the promoter region of fae) should
be selectively favored in all cases except in strain AC (fig. 6).
Note that increasing expression did not increase growth
rate of variants to the same degree; thus, there appear to
be additional problems with protein production that would
require changes to the coding sequence itself. By allowing
mutant strains to evolve in the laboratory, we are now testing
these predictions.

Current understanding of codon bias evolution is greatly
influenced by prior experimental work on the costs of heter-
ologous protein production arising from nonoptimal codon
usage. Heterologous gene expression is an important field of
active research, and our data support previous results show-
ing that matching a gene’s codon usage with host codon
bias may not be universally optimal for protein expression
(Maertens et al. 2010). These previous studies have demon-
strated that codon usage can significantly alter the produc-
tion and properties of proteins (Gustafsson et al. 2004; Welch
et al. 2009), but the mechanistic basis for these effects appears
to vary across genes. For instance, high GFP production in
E. coli was maximized by low 5" mRNA folding stability (Kudla
et al. 2009), whereas the production of other heterologous
proteins was maximized by the use of tRNAs that are robust
to amino acid starvation (Welch et al. 2009). Qian et al. (2012)
recently suggested that a close match between tRNA concen-
tration and relative codon usage may be more important for
translation than increasing the use of codons recognized by
the most abundant tRNAs (which is the focus of most codon
bias indices, e.g, the codon adaptation index). Together, these
studies paint a complicated picture of mechanisms that
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underlie the dependence of protein expression on codon
usage. However, their interpretation in light of codon bias
evolution is limited because heterologous proteins are neces-
sarily removed from the evolutionary history and ecological
context of the organism. This context is important because
genes evolve in concert with the rest of the genome rather
than in isolation. Therefore, data on the fitness and physio-
logical effects of codon usage in native genes are necessary to
understand the evolution of biased codon usage. The evolu-
tionary lineage of functional genes is also important to con-
sider in light of frequent lateral gene transfer in prokaryotes,
because codon usage can affect the outcome of horizontal
gene transfer (Jain et al. 2003; Tuller et al. 2011). Greater
understanding of the fitness effects of altering codon usage
will thus be important to predict the nature and success of
genetic exchange between species.

We found that the observed fitness decline in mutants was
a direct result of loss of beneficial enzyme product (in quan-
tity and/or quality), rather than increased costs of producing
the protein. In our experiments, we can reject mechanistic
hypotheses for low fitness that rely on the costs of gene
expression  (supplementary table S1, Supplementary
Material online). None of the fae alleles imposed a growth
defect with increasing gene expression or showed evidence of
misfolded protein accumulation; all were selectively neutral
when FAE activity was unnecessary. Furthermore, none of the
hypotheses that postulate lowered benefits of gene expres-
sion are consistent with all our mutant fitness and protein
expression data (supplementary table S1, Supplementary
Material online). Both primary sequence (location of rare or
frequent codons) and codon frequency can affect fitness.
Some of the fitness differences are clearly site dependent,
for example, between strains CO, VA, and RN, all of which
have identical codon composition with 50% rare and 50%
frequent codons. Our results corroborate those from previous
comparative analyses, showing that codon order in protein
coding genes is biased and probably evolves under selection
(Cannarozzi et al. 2010). However, in general, using too many
“frequent” codons was worse than using too many “rare”
codons. Although previous experimental studies did not
make explicit fitness measurements, they have shown parallel
results: using only common codons does not always maximize
protein expression (Kudla et al. 2009; Welch et al. 2009). Thus,
the detrimental effects of using only frequent codons that
we document may prove to be more generally applicable.
In our experiments, even if only a few codons were respon-
sible for the fitness differences between strains AR and AF,
it would still imply that frequent codons could impose a
stronger fitness disadvantage than rare codons, because
each of these strains was composed of mutually exclusive
codons. Regardless of the precise mechanism for low fitness
(e.g, whether it is due to codon usage or transcript stability or
structure), our results show that some frequent codons
should be strongly disfavored in the context of their specific
locations within fae.

Two recent studies offer independent hypotheses explain-
ing why frequent codons may not always be better than their
synonymous counterparts. Qian et al. (2012) proposed that

the most optimal codon use is one that matches the relative
proportions of tRNAs in a cell, rather than using as many of
the frequent codons as possible. Thus, all synonymous codons
are important for translation, and the degree of imbalance
between proportional codon use and tRNA abundance
should determine protein production. The model therefore
predicts that protein production (and fitness) of strain AR
codons should be less than AF codons, because the former has
a stronger imbalance in proportional codon usage and tRNA
abundance (supplementary fig. S7, Supplementary Material
online). However, our experimental data show the opposite
result: AR has higher fitness than AF (fig. 2A). Furthermore,
overexpressing a gene with biased codons should exaggerate
any fitness defects of codon usage-tRNA imbalances, which is
also contrary to our observations (fig. 6). Thus, codon
usage-tRNA imbalance cannot explain our results. However,
selection against such imbalance may more generally explain
why frequent codons are not fixed in populations.

A second study by Li et al. (2012) showed that hexamers
that are similar to SD sequences could increase translation
elongation times by binding ribosomes in the middle of the
transcript. Although SD-like sequences could not explain all
the ribosomal pausing observed in that analysis, the work
shows that depending on the neighboring codons, frequently
used codons could be detrimental if they result in an SD-like
sequence. This hypothesis predicts that protein production
should be negatively correlated with the frequency of SD-like
sequences in the mRNA. In our experiments, the pooled fre-
quency of SD-like sequences with high anti-SD affinity is the
only factor that is correlated with our observed protein levels
(fig. 4). Altering the local sequence context of frequent and
rare codons may result in the creation of new ribosome-bind-
ing sites, indicating that frequent ribosomal pausing during
translation is the major cause of low enzyme production in
our synonymous variants.

Besides the direct effect on FAE levels, a secondary pre-
dicted consequence of such frequent anti-SD like hexamers
is the sequestration of available ribosomes. However, as dis-
cussed earlier, the observed fitness rescue with increasing
gene expression (fig. 6) runs counter to the hypothesis that
ribosomal sequestration from the global pool is costly.
We propose that this apparent contradiction may be resolved
by recognizing that ribosomal pausing during translation may
both decrease beneficial protein (in this case FAE) and incur
costs due to ribosome sequestration. The relative importance
of these effects as a function of gene expression will depend
on the decrease in beneficial focal protein relative to the
costs of global sequestration. With small increments in
gene expression, the benefits of increased protein production
are likely to outweigh global sequestration costs. With
large increments in gene expression, however, ribosome
sequestration may impose a significant cost. Such costs at
very high expression levels may be the reason why some
of the mutants cannot be completely rescued by fae over-
expression. For instance, strains VA and AF have many
hexamers with high affinity to anti-SD (fig. 4), and neither
of them approach WT fitness even at high levels of gene
expression (fig. 6).
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More generally, although SD-like sequences seem to play
an important role in affecting protein production in our
experiments, the broader significance of SD-like sequences
in governing codon usage remains unclear. SD sequences
are short and very similar across bacteria (typically a variant
of GGAGG). Hence, selection to avoid SD-like sequences
could only explain avoidance of a few codons that resemble
the specific SD sequence. Given that the “frequent” codons in
strains AF and AC create problematic ribosomal-binding sites,
their prevalence in the M. extorquens genome is very puzzling.
If global codon usage were shaped by selection against
anti-SD sites, these codons would not be expected to cause
such strong fitness defects. Thus, we speculate that selection
on SD-like sequences could shape codon usage only in con-
junction with other factors that influence its evolution.

We propose that the observed lack of broad and consistent
experimental support for most of the existing hypotheses
(supplementary table S1, Supplementary Material online)
arises because the hypotheses have largely been derived
from genome-level correlations averaged across many
genes. Such averaging cancels out gene-specific effects and
enhances the appearance of more general effects, even if the
latter are small relative to gene-specific effects. This discrep-
ancy between apparent selection acting on individual genes
versus genome-wide properties may also explain why codons
that are generally highly enriched in protein-coding genes are
not always selectively favored in fae. Therefore, we speculate
that multiple (nonmutually exclusive) gene-specific mechan-
isms are required to explain why certain codons are used
more often in protein-coding genes. Thus, we predict that
the discordance between simple mechanistic models
and experimental results—such as those we observe in our
experiments—will also be observed for functional genes in
diverse organisms. Our focal gene fae does not stand out as an
outlier within the distribution of codon bias in highly ex-
pressed genes of M. extorquens (supplementary fig. S1,
Supplementary Material online) or other species. Thus, it is
likely that relatively few altered codons in each of our mutant
alleles were responsible for a majority of the fitness effects
that we observe. Tracking down these causal codons and the
context in which they decrease fitness is not trivial, but is a
promising avenue for further research.

Together with previous studies, our data help establish
that synonymous mutations do not constitute a special
“neutral” category. Although such mutations appear to face
weaker selection than nonsynonymous mutations on
average, their effects and evolutionary consequences may
be more similar to those of nonsynonymous mutations
than recognized previously. For instance, altered codon
usage in a synthetic antibiotic-resistance gene decreased pro-
tein levels and reduced E. coli fitness, which was restored
during experimental evolution via promoter mutations that
increased gene expression (Amoros-Moya et al. 2010). Lind,
Tobin, et al. (2010) also found that synonymous point muta-
tions in the ribosomal subunit genes in S. enterica could have
large impacts on fitness. Our results described here pinpoint
an example where the selective benefit of accurately and
rapidly expressing the protein is very high, so that our

558

alterations to existing codon bias in both directions had
large fitness effects. One caveat of our study is that we
ignore intermediate-frequency codons that are found at a
minority (20%) of sites in fae; these merit further investigation.
Collectively, this growing body of work on codon usage bias in
functional genes promises to provide novel insights into the
evolution of codon bias.

Although many genes may not face the same selective
pressures as fae, our experiments are an important step
toward understanding the relevance of codon usage and se-
lection acting upon it in bacterial evolution. In the end, the
biggest rule in codon usage may be that each individual gene
is an exception. Given that there are so many physiological
levels at which “silent” mutations can affect expression, the
most relevant mechanism(s) acting on any given gene may be
different from the next one. This pluralist view suggests that
to understand the role of codon usage in simultaneously
optimizing expression of multiple genes, we need more
such analyses on the fitness of altered codon usage in indi-
vidual functional genes from diverse taxa.

Materials and Methods

Generating Mutant fae Alleles

Evolutionarily conserved amino acid residues evolve under
strong purifying selection and tend to have a stronger bias
in their codon usage. Our goal was to test the fitness effects of
altering this biased codon usage. Therefore, we first identified
evolutionarily conserved amino acid residues in M. extorquens
AM1 with respect to a closely related strain M. extorquens
DM4 (using sequences of 4,285 genes with >70% amino acid
alignment, out of a total of 4,424 total ortholog pairs). We
then identified those codons that are significantly enriched at
conserved amino acid residues across the genome (relative to
evolutionarily variable residues) in M. extorquens AM1. For
each amino acid (except methionine and tryptophan both
encoded by a single codon), we picked the most enriched
codon (“frequent”) and the most scarcely used codon (“rare”;
supplementary table S2, Supplementary Material online).
Based on the list of frequent and rare codons, we synthesized
six synonymous mutant fae alleles (table 1). For designing
strains VA and CO, we used a multiple alignment of fae
sequences across 26 species to identify the 50% most
conserved and most variable residues within fae. All mutant
strains used in the study were created on the background of
an fae knockout strain (CM2563) retaining the native
fae promoter. Details of the cloning steps used to create
chromosomal and regulated promoter mutants can be
found in the Supplementary methods, Supplementary
Material online.

Media and Growth Conditions

We used a version of Hypho minimal medium composed of
the following: 1) 50mL/L of “P solution” (33.1g/L
K,HPO,.3H,0 and 25.9 g/L NaH,PO,.H,0); 2) 50 mL/L of “S
solution” (5 g/L (NH,),SO, and 2 g/L MgSO,.7H,0); 3) 1 mL/L
of Z3 metal mix (0.177g/L ZnSO,7H,0O, 1.466g/L
CaCl,.2H,0, 0.107 g/L MnCl,.4H,0, 2.496g/L FeSO,7H,0,
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0.177g/L  (NH,)sM0,0,44H,0, 0374g/L  CuSO,5H,0,
0238g/L CoCl.6H,O and 0.1g/L Na,WO,2H,O); 4)
900 mL/L dH,O; 5) carbon substrate as required (15 mM
methanol or 3.5mM sodium succinate); and 6) 2% w/v
agar if solid media were required. All cultures were grown
at 30°C.

Quantifying Fitness, Gene Expression, Protein
Production, and Enzyme Activity

We measured growth rate of strains across 48 h, using auto-
mated hourly readings of optical density (ODg) of cultures
growing in 48-well culture plates incubated on a shaker.
For expression assays, we allowed cells to grow to mid-
exponential phase in 50-mL flasks with succinate medium,
and induced fae expression with methanol. This strategy of
induction for a short time balanced the desire for steady-state
fae expression with the fact that some of the variants are
incapable of growth on methanol and fae mutants are
known to suffer from “methanol-sensitivity” due to an inabil-
ity to handle formaldehyde production (Marx et al. 2003).
One hour after induction, we harvested cells for mRNA and
protein extraction. We used quantitative real time polymer-
ase chain reaction (PCR) to estimate fae mRNA copy number
relative to an endogenous housekeeping ribosomal gene
(rpsB). We quantified FAE protein (relative to an endogenous
64 kDa reference protein) using a denaturing gradient gel
followed by a Western Blot probed with anti-FLAG antibody.
To measure the activity of FAE, we used 300-mL cell cultures
induced with methanol for 1h, in a coupled assay with the
enzyme MtdB (methylamine dehydrogenase) as described
previously (Vorholt et al. 2000) (Supplementary methods,
Supplementary Material online).

Supplementary Material

Supplementary methods, figures S1-S7, and tables S1-S3 are
available at Molecular Biology and Evolution online (http://
www.mbe.oxfordjournals.org/).
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