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Abstract. Skeletal muscle pathologies cause irregularities in the normally periodic organization of the myofibrils.
Objective grading of muscle morphology is necessary to assess muscle health, compare biopsies, and evaluate
treatments and the evolution of disease. To facilitate such quantitation, we have developed a fast, sensitive, auto-
matic imaging analysis software. It detects major and minor morphological changes by combining texture features
and Fourier transform (FT) techniques. We apply this tool to second harmonic generation (SHG) images of muscle
fibers which visualize the repeating myosin bands. Texture features are then calculated by using a Haralick gray-
level cooccurrence matrix in MATLAB. Two scores are retrieved from the texture correlation plot by using FT and
curve-fitting methods. The sensitivity of the technique was tested on SHG images of human adult and infant muscle
biopsies and of mouse muscle samples. The scores are strongly correlated to muscle fiber condition. We named the
software MARS (muscle assessment and rating scores). It is executed automatically and is highly sensitive even to
subtle defects. We propose MARS as a powerful and unbiased tool to assess muscle health.© TheAuthors. Published by SPIE
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1 Introduction
Skeletal muscle fibers and cardiac myocytes have a regular,
periodic organization, which is not only structural but also
functional.1–3 The repeating units, made largely of actin and
myosin filaments, are called sarcomeres and are the structural
basis for producing the force responsible for contractile func-
tion.4–6 In a healthy muscle, sarcomeres, visualized in electron
or light microscopy, appear as striations that are rarely inter-
rupted and are in register between several neighboring fibers.7

Myopathies, such as Duchenne muscular dystrophy,8,9 and
metabolic disorders with muscle pathologies, such as Pompe
disease,7,10,11 affect the periodicity and the regularity of the sar-
comeres, either by partial removal of contractile proteins or by
inclusion of nonsarcomeric structures. Because progressive
muscle weakness is the ultimate cause of death in such diseases,
the ability to assess muscle condition quantitatively is highly
desirable.

There are different ways to visualize sarcomeric organiza-
tion. Electron microscopy produces very high-resolution views
but of very small sample areas; preparation is lengthy.12,13

Immunofluorescence, for example with anti-myosin or anti–
α-actinin antibodies, can be used but necessitates manual teasing
to prepare single fibers that are separated from neighboring
fibers, or the sectioning of muscle which again limits the sam-
pling.13,14 Two-photon microscopy provides an alternative tech-
nique, second harmonic generation imaging (SHG). SHG is a
nonlinear optical effect created when a powerful pulsed laser

passes through a highly polarized, non–centro-symmetric
material.15,16 The best SHG emitters are collagen and myosin.
SHG microscopy can therefore be used to visualize the muscle
sarcomere structure and has been used to visualize defects in
mouse and human Pompe disease muscles without need for
exogenous fluorophores and with minimum sample prepara-
tion.7,17 An SHG endoscope even allows visualization of muscle
sarcomeres in alert, unanesthetized animals and humans.18

A tool for the quantitative analysis of such images, sensitive
to any kind of muscle defect, would be particularly useful for
assessing long-term changes in patient biopsies or animal
models, understanding disease evolution, assessing therapy, or
testing new treatments. Plotnikov et al. proposed an imaging
tool to evaluate muscle condition based on the notion that the
spacing and angle of the sarcomeres can distinguish healthy
from sick muscle.19 Their method is based on the calculation
of pixel intensity and on comparisons with the neighboring pix-
els. Although this method works well for muscles with limited
defects, it is not meant to analyze muscle fibers in which many
or even most of the sarcomeres break down, such as in infants
with Pompe disease.19

Friedrich et al.11 and Garbe et al.20 introduced another auto-
matic tool by using the boundary tensor to detect verniers, which
are local misalignments of sarcomere pattern. However, this
method is limited to a particular defect of muscle structure.
In Pompe disease, for example, there are several types of defects
that could not be quantitated by this technique.

We have developed a novel imaging processing tool for
detecting and quantifying muscle defects from SHG images.
This software is based on texture analysis21,22 and rates muscle
condition by combining several mathematical and statistical
tools. We have named it muscle assessment and rating scores
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(MARS). In this article we assess its potential for monitoring
muscle disease by applying it to human and mouse samples.

As standards of reference we used muscle fibers from healthy
human adults and from mice. As disease samples we examined
biopsies of infants with Pompe disease, some of which we have
imaged previously.7 Pompe disease is a lysosomal storage dis-
order resulting from the total or partial lack of the enzyme
acid–α-glucosidase.23–25 The disease manifests itself as a cardiac
and skeletal myopathy characterized by the presence in muscle
fibers of enlarged, glycogen-filled lysosomes and of massive
accumulations of autophagic debris. There are two major forms
of the disease, infantile and late-onset. Before the development
of the enzyme replacement therapy (ERT) infants died of heart
failure within one to two years. ERT works well on cardiac
muscle and has extended the lifespan of infants with Pompe dis-
ease. However, the treatment only partially alleviates the skeletal
muscle problems, and not all patients respond similarly. It is
therefore important to continue and try to better understand
the disease. In particular it would be useful to find out how
much clinical symptoms correlate with muscle defects observed
by cell biological techniques. A technique for quantitating
muscle defects is necessary to achieve this goal.

Our results show strong correlations between the rating
scores and the Pompe muscle condition. We find that MARS
is highly sensitive to subtle pattern disruptions and can be
used to detect gradual microarchitecture changes during chronic
disease development or during recovery after muscle treatments.
We also demonstrate that MARS results are robust when imag-
ing parameters (brightness and noise) vary. Once the image area
to analyze has been selected, MARS functions automatically.
Therefore MARS could give fast and unbiased assessment for
evaluating muscle conditions regardless of the type of muscle
defects and could be extended, with little additional work, to
the analysis of other tissues.

2 Materials and Methods

2.1 Muscle Biopsies: Origin and Preparation

Muscle fibers from a healthy, fasting, Caucasian male (age
33 years) were donated by Thorkil Ploug, MD (Department
of Biomedical Sciences, University of Copenhagen, Denmark).
The muscle fibers were from a biopsy obtained from m. vastus
lateralis after local anesthesia of the skin and muscle fascia
(Lidocain 5 mg∕ml; SAD, Copenhagen, Denmark) using the
Bergström technique with suction.26 Part of the biopsy was
pinned down at resting length in a Petri dish coated with
Sylgard 184 (Dow Corning Corporation, Midland, Michigan),
incubated with Krebs-Henseleit bicarbonate buffer containing
procaine hydrochloride (1 g∕l) for 3 min followed by 2%
freshly depolymerized paraformaldehyde and 0.15% picric
acid in 0.1 M phosphate buffer for 5 h. The fixed fibers were
then stored in 50% glycerol in PBS at −20°C. The study adhered
to the Helsinki II declaration, was approved by the Ethical
Committee of Copenhagen (H-4-2009-089) and registered at
the Danish Data Protection Agency (2009-41-3682).

Muscle biopsies from Pompe patients described in Refs. 24
and 27, and from a child with a mitochondrial disease unrelated
to Pompe, were used in this research. The study was approved
by local institutional review boards at all sites. Mouse muscle
fibers were from the tibialis anterior (TA) muscle of wild-type
mice. After euthanasia by CO2 inhalation (following NIH
guidelines), the whole leg was fixed by immersion into 4%

parformaldehyde in 0.1 M phosphate buffer. Human muscle
biopsies were also fixed with 4% parformaldehyde in 0.1 M
phosphate buffer as soon as possible after collection. All muscle
samples were kept at −20°C in 50% glycerol in PBS until used.
Bundles of ∼5 to 100 fibers were mounted on glass slides in
50% glycerol in chambers made with one or two self-adhesive
spacers and sealed with a no. 1.5 cover glass.

2.2 SHG Microscopy

All images were collected on a Leica SP5 NLO confocal micro-
scope with a 3W Mai Tai HP Ti:Sapphire laser (Newport/
Spectra-Physics, Irvine, California). The excitation wavelength
was 870 nm and a 40 × 1.25 NA oil immersion objective was
used. The forward SHG signal was collected in the transmitted
light detector after a 435∕20 band-pass and a 680 short-pass
filter (Chroma Technology, Bellows Falls, Vermont). Images
were acquired with Leica LASAF 2.3.1 software.

2.3 Imaging Processing

A flowchart of our analysis procedure is shown in Fig. 1. All the
procedures are performed in MATLAB 7.11 (MathWorks,
Natick, Massachusetts). The images’ brightness and contrast
are adjusted by histogram equalization to standardize the input
to the program. Each image’s average sarcomeric separation
(SS) and orientation relative to the muscle fiber axis are detected
automatically by analyzing the location and orientation of the
peaks corresponding the sarcomeres in the Fourier spectrum
of the original image. For fibers in extremely bad condition,
manually measuring the SS and orientation is also necessary.
Because these two parameters are very important for the final
scores, the values will also be verified at later steps. The pro-
gram then generates a set of gray-level, cooccurrence matrices
(GLCM), a quantitative measure for the texture features pro-
posed by Haralick et al.21 The dimensions of the matrices are
the number of gray levels in the images (i.e., 256 for 8-bit
images). To avoid artefacts due to very small intensity fluctua-
tions and to accelerate calculations we bin the gray levels into
eight values. For each pixel of the image we then compare its
gray level i to the gray level j of a pixel separated in the fiber
axis direction by a distance d (the offset). This is repeated for
each value of d from d ¼ 1 to d ¼ 4 × SS (in pixels). One
matrix is built for each value of d. The elements of the matrices
are the relative frequencies Pij with which two pixels separated
by d, have gray levels i and j. The offset d depends on the image

Original 
images

Detect the muscle 
orientation and period

Plot the texture 
correlation

Fourier transform 
method

Calculate S value

Evaluate muscle 
conditions

Curve fitting 
method

Calculate R value

Fig. 1 Flow chart of the imaging processing. See Sec. 2 for details.

Journal of Biomedical Optics 026005-2 February 2013 • Vol. 18(2)

Liu, Raben, and Ralston: Quantitative evaluation of skeletal muscle defects in second harmonic. . .



resolution and magnification; for a 40× objective, zoom 2, and
1024 × 1024 pixel images on the SP5, pixel size is 190 nm;
assuming a 2-μm SS there are 10.5 pixels∕sarcomere and the
length of the array will be 42 pixels. We have generated up
to 150 GLCM matrices for images acquired with a magnifica-
tion 40× or higher. Several textural features, such as homo-
geneity, contrast, correlation, and entropy, can be extracted
from these gray-level, cooccurrence matrices.22 In this study
we use the texture correlation, which quantitatively measures
joint probability occurrence of the specified pixel pairs, and
is defined by

Td ¼
X

i

X

j

pijði − μxÞðj − μyÞ
σxσy

;

in which μx, μy, σx, and σy are the means and standard deviations
of px and py [px ¼

P
ipij and py ¼

P
j pij]. The texture cor-

relation, Td, ranges from −1 to þ1, where þ1 means that two
pixels separated along fiber axis by the distance d have the same
gray level, while −1 means that when one pixel’s brightness
reaches maximum, the other pixel’s is minimum. In conse-
quence, a striated muscle image will have a periodic pattern
in the texture correlation plot (Td versus d), which is shown
in the middle column of Fig. 2. The mean peak distance is mea-
sured for verifying the sarcomere spacing obtained at the ear-
lier step.

We then extract two numerical scores. First, in order to
extract a numerical score from this graph, a curve-fitting method
is used. The fitting function is defined as

TFit ¼ ae−bx þ ce−bx cosðnxÞ:

The first term is the decay component of the texture corre-
lation, and the second term corresponds to the periodic compo-
nent. The coefficients (a and c) are the strengths of each
component. The relative strength S ¼ c∕a is then used as a
score. The coefficient b in the fitting function is the rate of
decay, which is also related to the muscle condition, but is
not as sensitive as S. The value n is related to the mean sarco-
mere spacing calculated directly from the previous step. The
software determines a, b, and c for each muscle image, then
calculates S. We find that S ranges from 100 for a close to per-
fect striated muscle fiber to as low as 0.0001 for a severely dam-
aged one. The r square value, an indicator of the goodness of the
curve fit, is over 0.95 for most cases.

Our second approach applies a Fourier transform to the tex-
ture correlation plot. In the right column of Fig. 2, the plots
represent the amplitude of the Fourier transform (Tu) of the
texture correlation plot. A periodic texture tends to have a strong
signal at the first fundamental frequency and a weak one at
the origin in the frequency plot. R score, defined as: R% ¼
jðT�1∕T0Þj � 100%, is retrieved from the figure automatically.
T0 is the peak amplitude at the origin and T�1 the amplitudes
at the first fundamental frequency. For an ideal periodic pattern,
the intensity at the origin of the spatial frequency plot tends to be
close to zero so, in theory, R could go to infinity. In practice, the
highest R value we have observed for a real-life sample is over
5000. As a result, this score is extremely sensitive to subtle
changes of the muscle striated structure.

The only manual input during the whole process is to draw
the region of interest (ROI) to be analyzed, which should
exclude artifacts from sample handling, mounting, or imaging.

Once that choice is made, the software runs automatically to
produce R and/or S. MARS can run on any computer platform
with access to MATLAB. The program can analyze images with
various sizes and bit depths. In this paper, most images are
512 × 1024 8-bit images. The average processing time for an
image acquired with a 63× objective lens and 2× zoom is around
5 s with a standard iMac computer (2.8 GHz Intel i5 processor,
4 GB 1333 MHz DDR3 memory).

Image J, an imaging processing software developed at NIH
by Wayne Rasband and freely accessible (http://rsbweb.nih.gov/
ij/), was used for some direct image processing and measure-
ments. KaleidaGraph (Synergy Software, Reading, PA) was
used for data analysis and graphing.

3 Results

3.1 MARS Can Assess a Wide Range of Muscle
Conditions

To test the applicability of the two scoring algorithms to detect
and quantify muscle defects, we collected SHG images from
fixed human biopsies. To have a range of conditions, we started
with biopsies from presumably healthy adults that have large
fibers with regular striations of even spacing, orientation, and
intensity. We finished with biopsies from infants with Pompe
disease, which contain thin fibers with irregular striations, in
places interrupted with large “holes.” The left column of Fig. 2
shows a selection of images from nearly perfect (A) to badly
damaged fibers (E). The deterioration of the sarcomeric pattern
is reflected in a ∼2000-fold decrease in S (middle column) and a
∼1000-fold decrease in R (right column) from A to E. Even
small defects such as those observed in B significantly affect
R and S. MARS still managed to evaluate image E (Pompe
infant biopsy before treatment) despite large interruptions in
the sarcomeres and other deviations from an ideal striated pat-
tern: mis-orientation, skewing, contortion of bands, loss of SHG
intensity, and so on. These results indicate a large dynamic range
and show that R and S respond to both subtle and massive
defects in muscle fiber organization.

3.2 MARS is Insensitive to Changes in Image
Brightness and Contrast

There are several imaging parameters that could affect the qual-
ity of the original image, such as brightness, contrast, signal-to-
noise ratio, magnification, and so on. The purpose of this study
was to develop a widely applicable rating system, sensitive to
the image pattern but insensitive to the imaging parameters,
which can vary from day to day.

We decided to verify this directly. The first parameters con-
sidered (Fig. 3) are brightness and contrast. The image bright-
ness and contrast can be adjusted by changing the laser power
and/or PMT gains/offsets in the imaging acquisition. However,
the adjustments would usually also affect noise level. To exam-
ine the brightness and contrast impact on final scores, we ana-
lyzed the same image in which the histogram was modified in
ImageJ. With the average gray level changing from 103 in the
original image [Fig. 3(a)] to 151 in the brighter image [Fig. 3(b);
∼50% difference], and to 70 in the darker image [Fig. 3(c);
∼30%], the final R and S scores vary by less than 0.2%. After
testing some extreme cases, we found that the R and S scores
are significantly affected only when the images are so over- or
under-exposed that the striation patterns are no longer visible
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(data not shown). In practice, such extreme situations are easily
avoidable. Therefore, the final scores in most conditions would
not be affected by brightness and contrast of the muscle images.

3.3 Image Noise Has Little Impact on MARS Results

Noise effects, due to instruments or light, are another source of
image degradation.28,29 Although noise can be reduced by some
imaging processing methods, it would be preferable to have
a robust rating system that can handle different levels of noise.
To test MARS’s sensitivity to noise, a muscle image from a

Pompe patient biopsy was degraded on the computer with differ-
ent levels of Gaussian noise in MATLAB, and then fed into the
rating system (Fig. 4).

The applied noise levels are 0 mean Gaussian noise with vari-
ance of 0%, 5%, and 50%. The values in the texture correlation
plot decrease significantly with larger noise. The amplitudes in
the space and frequency domain for the 50% noise level image
shrink to about 20% of the amplitudes for the original image.
However, the shape of the correlation plots remains similar
in both domains. The final R and S scores only vary by a small
percentage: 1.3% for R and 2.1% for S.

(a) 

(c) 

(b) 

(d) 

(e) 

Fitted curve 

R = 5180  

R = 1550 

R = 316 

R = 32.0 

R = 5.83 

S=98.1

S=14.9

S=6.30

S=0.657

S=0.0541

Texture correlation curve 

d (pixel) u (pixel-1) 

Tu

Tu

Tu

Tu

Tu

Td 

Td 

Td 

Td 

Td 

Fig. 2 R and S are sensitive to small and large defects in muscle fiber images. The left column shows SHG images from five human muscle biopsies.
(a–c) are from normal adults; (d) and (e) from infants with Pompe disease. The image sizes are all 512 × 1024. The middle column shows the texture
correlation plots in space domain (solid line) with curve fitting (dotted line) and the S scores. All figures were plotted with texture correlation (Td ) against
the spacing (d) in pixels. The right column shows the texture correlation plots in the frequency domain and the R scores. The plots are the amplitude (Tu)
of the Fourier transform of the texture correlation against the spacing frequency (u) in pixel−1. From (a), which is a practically perfect muscle fiber, to (e),
which is a very damaged muscle fiber, both R and S decrease by about three orders of magnitude. The stippled boxes in (d) and (e) show the region
of interest which was selected for analysis in order to exclude the gap between fibers. The images were acquired under very similar magnification.
The mean sarcomere spacing is 28 to 33 pixels and the number of GLCM matrices is close to 120. Scale bar: 10 μm.
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Image Histogram  Brightness Score R Score S 

103±48 21.1 0.479 

151±33 21.2 0.479 

70±29 21.2 0.480 

(a) 

(b) 

(c) 

Fig. 3 R and S are unaffected by changes in brightness. Panel a shows an SHG image whose average brightness was increased (b) or decreased (c) in
ImageJ while keeping pixel brightness values between 0 and 255. Histograms are shown in the second column. The average brightness and standard
deviations are in the third column. Both R and S show only negligible changes from (a) to (c).

(a) 

5% noise 

50% noise 

Fitted curve Texture correlation curve 
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Fig. 4 R and S are little affected by image noise. Panel a shows an SHG image before addition of 5% (b) or 50% (c) Gaussian noise. R and S change less
than 2% as the noise level increases.
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Salt-and-pepper noise is another type of noise observed in
microscopy images, especially with charged coupled device
(CCD) detectors. Some dead pixel dots appear either black or
white in the image. We used MATLAB to artificially add 5%
and 50% noise level to an SHG image. Table 1 shows that
again the changes for R and S remain in a very narrow range,
although the noise is so high at the 50% level that the fiber
details are hardly visible. We got similar results when we calcu-
lated R and S scores for muscle fibers with fewer interruptions
and defects (data not shown).

We also tested the combined effects of the brightness and
noise level, by recording images of the same muscle fiber area
with different laser powers, PMT gains, and image averaging
(Fig. 5). Again, R and S vary little.

3.4 Large Magnification Changes Affect MARS Scores

Magnification is another imaging variable that needs to be
assessed, since it is sometimes necessary to compare images
recorded on different instruments. The images may have been
taken at slightly different magnifications (for example, with a
60× versus 63× lens without zoom compensation). To examine
the effect of magnification on R and S, we imaged the same
sample under various zooms (from 1× to 6×) with the same
40× oil immersion objective. To make sure the same area
was selected under different magnifications, we drew propor-
tionately smaller ROIs for smaller zooms. The R and S scores
for three different muscle fibers under different magnification
are shown in Table 2. Based on R and S values, fiber 3 is in
very good condition while fibers 1 and 2 are in relatively poor
condition. The results for these three fibers (Table 2) all
demonstrate a slight decline of the scores with decreased mag-
nification. For a more graphic representation of the results, we
plotted R and S values normalized to zoom 6× values as 100%
(Fig. 6). On average, R and S drop by 25% when the magnifi-
cation changes from 6× to 3× zoom. The decrease is not linear,
and each of the images has its own curve. Whether the initial
score is high or low does not make a difference. These results
indicate that images taken with small magnification differences
can be pooled together for MARS quantitation, but that images

taken with larger differences such as >1.5-fold should not be
pooled.

3.5 Comparison Between R and S Scores

Both R and S scores are very sensitive to structural defects in
muscle fibers and similarly resistant to deterioration of image
quality. So far, they appear interchangeable. In order to push
the comparison further, we have carried out calculations for
more than 150 muscle fiber images covering a large range of

Table 1 R and S scores for images with salt-and-pepper noise.

S value R value Sample image

Original image 0.479 23.5

With 5% noise 0.478 23.5

With 50% noise 0.482 21.3

Fig. 5 R and S values for the same muscle fiber under different imaging
conditions. (a) Muscle fiber was imaged under different conditions by
adjusting laser power, PMT gain, and averaging method. Laser power
was doubled from image a to b; R and S had less than 3% difference.
PMT gain was set from 1075, to 800, to 600 in images b, c, and d, and
the dramatic changes in the average brightness (from 150 to 19) did not
lead to major changes in R and S values (within 20%). Most confocal
and two-photon microscopes have line and frame averaging methods to
reduce noise level. Two-line average and two-frame average were used
in image c, which has obvious improvement on image quality by com-
paring to image e, which had no average method used while other
conditions were the same. The R and S difference is very small (within
10%).

Table 2 R and S scores for 3 muscle samples at different magnifica-
tions with a 40× oil objective.

Sample 1 Sample 2 Sample 3

Zoom R S R S R S

6× 21.9 0.438 29.3 0.569 276 4.76

5× 23.0 0.463 28.7 0.552 231 4.22

4× 21.8 0.441 22.3 0.457 244 4.48

3× 19.1 0.388 16.6 0.398 217 4.01

2× 16.8 0.350 15.3 0.410 198 3.86

1× 11.3 0.288 15.7 0.421 211 3.85
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conditions. R and Swere then plotted against each other (Fig. 7).
Logarithmic data were used for both scores because of the broad
dynamic range. In the middle part (for R values from 1000 to 10
or S values from 10 to 0.1), the dots almost fall on a straight line,
which is log S ¼ log R − 1.7, or S ≈ R∕50. Divergence hap-
pens at the two ends.

3.6 MARS Successfully Highlights Differences
Between Samples as well as Fiber-to-Fiber
Variability

In human muscle diseases, the degree of damage varies between
fibers. For example, biopsies from adult subjects with late-onset
Pompe disease show normal-looking fibers next to seriously
damaged ones.23,27 This factor complicates the evaluation of
a biopsy.

To test how MARS deals with such variation and whether it
is able to detect differences between heterogenous samples, we
collected SHG images from the following samples: (1–2) two
biopsies from an infant whose genetic make-up was consistent

with late-onset Pompe disease, the first biopsy taken just before
starting ERT at 2.5 mo of age and the other one taken after 6 mo
of ERT (Pt. NBSL15 in Ref. 30); (3) a biopsy from a 10-year-old
child with a mitochondrial disease; (4) a biopsy from a healthy
adult; and (5–6) samples from two wild-type mice. For each
sample, a minimum of 15 SHG images were collected, each
image covering one to three fibers, regardless of the degree of
damage. Two to three regions of interest were selected from each
image and scored with MARS.

Since R and S scores can differ by orders of magnitude
between different fiber images [Fig. 2(a) and 2(b)], the regular
average or the arithmetic mean would not be a good represen-
tation to evaluate the condition as a whole for the individual,
because the higher score results would dominate the final score
and the lower scores would have a much smaller impact. To have
balanced contributions from both high and low scores, we used
the log-average or geometric mean.

The results are presented in Fig. 8 and Table 3. Within the
limited sample size of this pilot study, R and S scores give very
similar results. For the infant with late-onset Pompe, there is
a large significant increase after treatment, although a group
of fibers remain at the lower scores, no better than the worst
of the untreated fibers. The log-average for R increases from
0.95� 0.36 to 1.52� 0.43 (P < 0.001) and S from −0.66�
0.33 to −0.14� 0.41 (P < 0.001). Without access to true con-
trol biopsies of matched age, it is not possible to assess more
exactly the respective contributions of muscle maturation and
of ERT to the improvement of the scores. This was not the goal
of the present study. The scores for the child and adult control
subjects are significantly higher than both scores for the patient
with Pompe, and the scores for the healthy adult control subject
are significantly higher than those of the child control subject.
Therefore, MARS has no problems detecting differences be-
tween samples, even in the presence of a large spread in the
quality of the fibers. The heterogeneity of the samples is re-
flected in the large standard deviation. Furthermore, the two
control mouse samples obtained scores in the same range as
those from healthy humans, although with differences between

Fig. 6 R and S are affected by large magnification changes. Three sam-
ples with different muscle condition were imaged. To assess the effect of
magnification, the same area was imaged with one objective lens (40×)
and six different zoom values from 1 to 6. The plots show the scores
expressed in %, with the 6× magnification results taken as 100%. R
and S decrease gradually as a function of magnification. The changes
vary among different samples and are stronger between 6× and 3×
(26% average decrease for R; 19% for S). The results are also presented
in Table 2.

Fig. 7 R and S scores are strongly correlated. To generate this plot, all R
and S values compiled in the present work were pooled. A logarithmic
plot was used to ease the representation of the large dynamic range of
values. For the middle part of the plot (S values from 10 to 0.1), the
dots practically fall on a straight line which is along log S ¼ log R − 1.7,
indicating a strong correlation. However, the distributions are scattered
at the two ends, especially for fibers in very bad condition (S < 0.1)
indicating different sensitivities of R and S.
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the two of them. It will take a larger study to determine whether
these differences indicate health problems in one of the animals
or normal variations between animals. Such work will help
determine how many images should be quantitated and how
much fibers vary in healthy animals.

4 Discussion
The software presented here, MARS, fills a void by offering an
automated, quantitative analysis of light microscopy images of
skeletal muscle fibers to assess conditions that can cover a wide
range of defects and of damage degree.

In the analysis of muscle biopsies, it is often necessary to
compare and analyze light microscopy images collected over
many sessions, possibly by different microscopists. It is

therefore important to understand how limited variations of im-
aging parameters, such as image brightness, contrast, signal-to-
noise ratio, magnification, and so on, affect the analysis. We
have thus carried out an analysis of the effects of several of
these parameters on the results obtained by MARS.

Image brightness and contrast are largely determined by
the laser power and the detector gain and offset. A histogram
equalization process is applied to all images as a first step
of the MARS calculations. Thus, brightness and contrast, in
theory, should not impact the final scores as long as the images
were collected with proper exposure, that is, without any
saturation.

Images can also be affected by instrument noise and by light
noise. Dark current is a small electric current that flows through
detectors even when no photon is present, and it is one of the
main noise sources for detectors such as CCD, PMT, and photo-
diode.28,29 Shot noise is caused by the uncertainty of detecting
one photon when small numbers of photons are present. It may
be dominant in imaging with low laser power or low quantum
yield from fluorophores and can be reduced by increasing the
light intensity. The distribution of shot noise is a Poisson dis-
tribution, and is not very different from Gaussian noise.31

Impulsive noise, also called salt-and-pepper noise, is also ob-
served in some confocal images when dead pixels are present
in CCD detectors.32 To assess MARS, we have added high
noise levels. For example, the 50% variance in Gaussian noise
is greater than the noise level usually seen in SHG imaging,
because the level of noise is so significant that any microscopist
would try to adjust laser power and detector gain to achieve
better images. Figure 4 and Table 1 demonstrate that the scores
R and S are little affected by noise.

Laser power, detector gain, and averaging are commonly
used in optimizing image quality in SHG. The conditions
have a direct influence on the image brightness and SNR. We
already demonstrated, by modifying images after acquisition,
that brightness and noise level have very limited impacts on
R and S scores. Thus, the combination of these two factors
should not have a major influence either, as confirmed in Fig. 5.

Larger magnification (zoom change without numerical aper-
ture change) usually offers finer cellular structure, slower scan-
ning, and better signal-to-noise ratio, but at the cost of higher
laser damage. The striation interval for muscle fibers is of
the order of 2 μm, which is resolved by 20× or higher magni-
fication objectives. MARS calculates the striation separation
and angle at the beginning of the processing, then generates
a certain number of matrices (GLCMs, as explained in Sec. 2)
and calculates texture correlation for each of them. The number
of matrices built in this step is directly related to the striation
distance in pixels. Therefore, MARS creates more GLCMs for
larger zooms. The number of data points in the texture correla-
tion plot with a 6× zoom is 6 times the number with a 1× zoom.
Fewer data points in the texture correlation plots lead to larger
data fluctuation, especially when the collecting frequency is
close to the Nyquist rate.33 As a result, the periodical compo-
nents decrease and both R and S are affected. Our analysis sug-
gests that images differing in magnification by 2× should not be
compared directly, although one could argue that a 20% to 25%
change in R and S is not compelling considering their broad
dynamic range.

We developed two different scores, R and S, as MARS out-
puts. In general the R values tend to fluctuate more, especially
for close to perfect striated fibers, because the calculation of R

Fig. 8 S values highlight differences in muscle condition in a variety of
human and mouse samples. SHG images were collected from different
human and mouse samples, as indicated below the horizontal axis.
From each sample at least 35 fiber images were analyzed and plotted
in KaleidaGraph. The middle line in the box represents the median and
the height of the box represents the standard deviation. Since S and R
values show very similar trends, only S is displayed here.

Table 3 Log values of R and S for four human biopsies and twomouse
muscle samples. Value in each cell represents the average value�
standard deviation in that group.

Log R LogS

Pompe patient, before ERT 0.95� 0.36 −0.66� 0.33

Pompe patient, before ERT 1.52� 0.43 −0.14� 0.41

Child control 1.84� 0.50 0.15� 0.46

Adult control 2.50� 0.46 0.74� 0.37

Mouse control #1 2.34� 0.37 0.62� 0.34

Mouse control #2 3.01� 0.56 1.20� 0.48
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uses the central peak in the frequency domain as the denomi-
nator. A striated fiber has a small central frequency peak and a
small change in that value leads to significant fluctuations in R.
On the other hand, a severely damaged muscle fiber has a very
weak signal at the first frequency peak (the numerator); in some
extreme cases the peak is not detectable and consequently R
score becomes less accurate. S score also has its own limitations,
because it involves curve fitting. On some rare occasions
MATLAB Curve Fitting Toolbox cannot find the best fit but
generates a false minimum instead. In such cases, the factor
r square, which indicates how good the fit is, is a smaller num-
ber. We only use the S results when the r square is over 0.70.
Although the fitting failure only happens occasionally (about
once every 30 fibers), it could be a problem with precious biop-
sies. However, because of the relation S ≈ R∕50 (see Fig. 7), we
then can use R score to get an estimation of S value and avoid
the curve-fitting step.

As discussed above, each score alone will have some occa-
sional limitations. However, these two scores are comple-
mentary and, therefore, are more robust to handle all kinds of
muscle samples. In practice, we recommend using S score as the
major indicator, and converting R to S when the curve-fitting
method fails.

The only part of the software input that is not automated is
the choice of the ROI to analyze. Because of the high sensitivity
of the software, it is important to exclude all features that result
from sample handling and mounting that could be viewed by
MARS as defects. In images such as those obtained by SHG, we
normally view several muscle fibers in one field of view. Each
fiber must be evaluated individually since SHG images have a
well-demarked interruption between neighboring fibers,27

which would be considered by the software as a muscle defect.
The development of a module that would automatically deter-
mine the limit of muscle fibers by taking into account another
imaging modality such as phase contrast or 2-PE (2-photon
emitted fluorescence) has been difficult to implement, so far.
However, given the high degree of variability in muscle damage
between fibers, it makes sense from a biological point of view to
image ROIs for each available fiber.

MARS is robust when imaging conditions such as bright-
ness, noise, and magnification are changed. However, sample
preparation and handling, which cannot be totally controlled,
must also be taken into account. We store paraformaldehyde-
fixed muscle samples at −20°C in 50% phosphate-buffered glyc-
erol without apparent loss of the myosin SHG signal. However,
glycerol storage affects collagen SHG by causing unwinding of
its triple helix structure.34 Areas with damage from handling
such as pinching with forceps, or making a hole with micro
needles, can be identified in transmitted light and avoided.
Damage such as stretching, on the other hand, may result both
from manual stretching on a support before fixation, or from a
disease state.19 Other imaging parameters must still be consid-
ered. For example, in thick samples the SHG signal may be
reduced by absorption and diffraction. Furthermore, SHG signal
is also affected by the polarization angle of the incident light.35

Therefore, a standardized sample preparation and imaging
procedure are needed.

Finally, MARS can be used both to estimate variability
between fibers within a muscle sample, and to compare different
samples, as shown in Fig. 8 and Table 3. The condition of the
muscle fibers of the patient used in this study was good com-
pared to that of patients with early onset Pompe. MARS was still

able to detect a significant improvement in the muscle condition
after 6 mo of ERT, in agreement with clinical observations for
this patient.30 However, the scores remain significantly lower
than those of control subjects, because of the disease itself,
because of the age difference, or because of both. Ideally, several
biopsies from healthy individuals of matching age should be
assessed and a “normal range” defined. For obvious ethical rea-
sons there are no or very few open muscle biopsies from healthy
infants. In the absence of such control biopsies, the best range of
values was obtained from child and adult control subjects. From
the data we analyzed so far, S ¼ 2 and R ¼ 100 (or log S ¼ 0.3
and log R ¼ 2) approximately mark the transition between
healthy and diseased muscle. The scores for both adult and
mouse controls are well above these values; the scores for
the patients with Pompe before ERT well below; and the scores
for the same patient after treatment and for the child control
below and above, respectively, but closer to the borderline.
Even for animal muscles or for healthy human muscles, we
know in fact little of the variation to be expected and whether
high-resolution techniques such as SHG can be diagnostic of
new conditions. MARS should be helpful in this regard.

5 Conclusions
We demonstrate that MARS is highly sensitive to both subtle
pattern disruptions and major interruptions in muscle fiber struc-
tures. The results from the two-score rating system show strong
correlation to the muscle conditions. Our results also suggest
that MARS results are robust when imaging parameters such
as brightness, contrast, noise level, and magnification vary, so
it is feasible to compare the scores acquired under different con-
ditions. Except for picking up the ROI, which is done by users,
MARS performs the detection and evaluation automatically.
Therefore, MARS can give fast and unbiased assessment for
evaluating muscle conditions regardless of the type of muscle
defects. Overall we propose MARS as a robust tool to assess
the condition of individual skeletal muscle fibers and also to
address wider questions of muscle disease assessment.

Acknowledgments
The authors thank Drs. Kristien J. M. Zaal (NIAMS) and
Christian Combs (NHLBI) for many stimulating discussions,
Dr. Thorkil Ploug (Univ. of Copenhagen) for adult human
muscle fibers and a reviewer for the inspiring comments. This
work was supported by the Intramural Research Program of
the National Institute for Arthritis and Musculoskeletal and
Skin Diseases.

References
1. R. J. Talmadge, R. R. Roy, and V. R. Edgerton, “Muscle fiber types and

function,” Curr. Opin. Rheumatol. 5(6), 695–705 (1993).
2. A. J. McComas, Skeletal Muscle: Form and Function, Human Kinetics

Publishers, Champaign, IL (1996).
3. W. Scott, J. Stevens, and S. A. Binder-Macleod, “Human skeletal

muscle fiber type classifications,” Phys. Ther. 81(11), 1810–1816
(2001).

4. A. F. Huxley and R. Niedergerke, “Structural changes in muscle during
contraction: interference microscopy of living muscle fibres,” Nature
173(4412), 971–973 (1954).

5. H. Huxley and J. Hanson, “Changes in the cross-striations of muscle
during contraction and stretch and their structural interpretation,”
Nature 173(4412), 973–976 (1954).

6. M. A. Geeves and K. C. Holmes, “Structural mechanism of muscle
contraction,” Ann. Rev. Biochem. 68(1), 687–728 (1999).

Journal of Biomedical Optics 026005-9 February 2013 • Vol. 18(2)

Liu, Raben, and Ralston: Quantitative evaluation of skeletal muscle defects in second harmonic. . .

http://dx.doi.org/10.1097/00002281-199305060-00002
http://dx.doi.org/10.1038/173971a0
http://dx.doi.org/10.1038/173973a0
http://dx.doi.org/10.1146/annurev.biochem.68.1.687


7. E. Ralston et al., “Detection and imaging of non-contractile inclusions
and sarcomeric anomalies in skeletal muscle by second harmonic gen-
eration combined with two-photon excited fluorescence,” J. Struct. Biol.
162(3), 500–508 (2008).

8. E. P. Hoffman, R. H. Brown Jr., and L. M. Kunkel, “Dystrophin: the
protein product of the Duchenne muscular dystrophy locus,” Cell 51(6),
919–928 (1987).

9. B. J. Petrof et al., “Dystrophin protects the sarcolemma from stresses
developed during muscle contraction,” Proc. Natl. Acad. Sci. U.S.A.
90(8), 3710–3714 (1993).

10. N. Raben et al., “Suppression of autophagy in skeletal muscle uncovers
the accumulation of ubiquitinated proteins and their potential role in
muscle damage in Pompe disease,” Hum. Mol. Genet. 17(24),
3897–3908 (2008).

11. O. Friedrich et al., “Microarchitecture is severely compromised but
motor protein function is preserved in dystrophic mdx skeletal muscle,”
Biophys. J. 98(4), 606–616 (2010).

12. D. O. Furst et al., “The organization of titin filaments in the half-
sarcomere revealed by monoclonal-antibodies in immunoelectron
microscopy: a map of 10 nonrepetitive epitopes starting at the Z-line
extends close to the M-line,” J. Cell Biol. 106(5), 1563–1572 (1988).

13. E. Ralston and T. Ploug, “Pre-embedding staining of single muscle
fibers for light and electron microscopy studies of subcellular organi-
zation,” Scanning Microsc. Suppl. 10, 249–259; discussion 259–260
(1996).

14. T. Ploug et al., “Analysis of GLUT4 distribution in whole skeletal
muscle fibers: identification of distinct storage compartments that are
recruited by insulin and muscle contractions,” J. Cell Biol. 142(6),
1429–1446 (1998).

15. R. M. Williams, W. R. Zipfel, and W. W. Webb, “Interpreting second-
harmonic generation images of collagen I fibrils,” Biophys. J. 88(2),
1377–1386 (2005).

16. P. J. Campagnola and C. Y. Dong, “Second harmonic generation micros-
copy: principles and applications to disease diagnosis,” Laser Photon.
Rev. 5(1), 13–26 (2011).

17. M. Both et al., “Second harmonic imaging of intrinsic signals in muscle
fibers in situ,” J. Biomed. Opt. 9(5), 882–892 (2004).

18. M. E. Llewellyn et al., “Minimally invasive high-speed imaging of sar-
comere contractile dynamics in mice and humans,” Nature 454(7205),
784–788 (2008).

19. S. V. Plotnikov et al., “Measurement of muscle disease by quantita-
tive second-harmonic generation imaging,” J. Biomed. Opt. 13(4),
044018 (2008).

20. C. S. Garbe et al., “Automated multiscale morphometry of muscle dis-
ease from second harmonic generation microscopy using tensor-based
image processing,” IEEE Trans. Biomed. Eng. 59(1), 39–44 (2012).

21. R. M. Haralick, K. Shanmuga, and I. Dinstein, “Textural features for
image classification,” IEEE Trans. Syst. Man Cybern. SMC3(6),
610–621 (1973).

22. H. Tamura, S. Mori, and T. Yamawaki, “Textural features corresponding
to visual perception,” IEEE Trans. Syst. Man Cybern. 8(6), 460–473
(1978).

23. N. Raben and P. H. Plotz, “A new look at the pathogenesis of Pompe
disease,” Clin. Therap. 30(Suppl. 3), S86–S87 (2008).

24. N. Raben et al., “Differences in the predominance of lysosomal and
autophagic pathologies between infants and adults with Pompe disease:
implications for therapy,” Mol. Genet. Metab. 101(4), 324–331 (2010).

25. Y. H. Chien et al., “Pompe disease in infants: improving the prog-
nosis by newborn screening and early treatment,” Pediatrics 124(6),
e1116–e1125 (2009).

26. J. Bergstrom, “Percutaneous needle-biopsy of skeletal-muscle in phy-
siological and clinical research,” Scand. J. Clin. Lab. Invest. 35(7),
606–616 (1975).

27. E. Ralston et al., “Detection and imaging of non-contractile inclusions
and sarcomeric anomalies in skeletal muscle by second harmonic gen-
eration combined with two-photon excited fluorescence,” J. Struct. Biol.
162(3), 500–508 (2008).

28. D. R. Sandison et al., “Quantitative comparison of background rejec-
tion, signal-to-noise ratio, and resolution in confocal and full-field
laser scanning microscopes,” Appl. Optics 34(19), 3576–3588 (1995).

29. R. H. Webb, “Confocal optical microscopy,” Rep. Prog. Phys. 59(3),
427–471 (1996).

30. Y. H. Chien et al., “Early pathologic changes and responses to treatment
in patients with later-onset pompe disease,” Pediatr. Neurol. 46(3),
168–171 (2012).

31. H. Qian and E. L. Elson, “On the analysis of high order moments of
fluorescence fluctuations,” Biophys. J. 57(2 I), 375–380 (1990).

32. P. P. Mondal, K. Rajan, and I. Ahmad, “Filter for biomedical imaging
and image processing,” J. Opt. Soc. Am. A 23(7), 1678–1686 (2006).

33. A. J. Jerri, “The Shannon sampling theorem—its various extensions and
applications: a tutorial review,” Proc. IEEE 65(11), 1565–1596 (1977).

34. S. Plotnikov et al., “Optical clearing for improved contrast in second
harmonic generation Imaging of skeletal muscle,” Biophys. J. 90(1),
328–339 (2006).

35. F. Vanzi et al., “New techniques in linear and non-linear laser optics in
muscle research,” J. Muscle Res. Cell M. 27(5–7), 469–479 (2006).

Journal of Biomedical Optics 026005-10 February 2013 • Vol. 18(2)

Liu, Raben, and Ralston: Quantitative evaluation of skeletal muscle defects in second harmonic. . .

http://dx.doi.org/10.1016/j.jsb.2008.03.010
http://dx.doi.org/10.1016/0092-8674(87)90579-4
http://dx.doi.org/10.1073/pnas.90.8.3710
http://dx.doi.org/10.1093/hmg/ddn292
http://dx.doi.org/10.1016/j.bpj.2009.11.005
http://dx.doi.org/10.1083/jcb.106.5.1563
http://dx.doi.org/10.1083/jcb.142.6.1429
http://dx.doi.org/10.1529/biophysj.104.047308
http://dx.doi.org/10.1002/lpor.v5.1
http://dx.doi.org/10.1002/lpor.v5.1
http://dx.doi.org/10.1117/1.1783354
http://dx.doi.org/10.1038/nature07104
http://dx.doi.org/10.1117/1.2967536
http://dx.doi.org/10.1109/TBME.2011.2167325
http://dx.doi.org/10.1109/TSMC.1973.4309314
http://dx.doi.org/10.1109/TSMC.1978.4309999
http://dx.doi.org/10.1016/S0149-2918(08)00364-0
http://dx.doi.org/10.1016/j.ymgme.2010.08.001
http://dx.doi.org/10.1542/peds.2008-3667
http://dx.doi.org/10.3109/00365517509095787
http://dx.doi.org/10.1016/j.jsb.2008.03.010
http://dx.doi.org/10.1364/AO.34.003576
http://dx.doi.org/10.1088/0034-4885/59/3/003
http://dx.doi.org/10.1016/j.pediatrneurol.2011.12.010
http://dx.doi.org/10.1016/S0006-3495(90)82539-X
http://dx.doi.org/10.1364/JOSAA.23.001678
http://dx.doi.org/10.1109/PROC.1977.10771
http://dx.doi.org/10.1529/biophysj.105.066944
http://dx.doi.org/10.1007/s10974-006-9084-3

