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Abstract

Sulforaphane (SFN), an isothiocyanate found in cruciferous vegetables, is a potent inhibitor of
experimental mammary carcinogenesis and may be an effective, safe chemopreventive agent for
use in humans. SFN acts in part on the Keap1/Nrf2 pathway to regulate a battery of cytoprotective
genes. In this study transcriptomic and proteomic changes in the estrogen receptor negative, non
tumorigenic human breast epithelial MCF10A cell line were analyzed following SFN treatment or
KEAP1 knockdown with siRNA using microarray and stable isotopic labeling with amino acids in
culture (SILAC), respectively. Changes in selected transcripts and proteins were confirmed by
PCR and Western blot in MCF10A and MCF12A cells. There was strong correlation between the
transcriptomic and proteomic responses in both the SFN treatment (R=0.679, P<0.05) and KEAP1
knockdown (R=0.853, P<0.05) experiments. Common pathways for SFN treatment and KEAP1
knockdown were xenaobiotic metabolism and antioxidants, glutathione metabolism, carbohydrate
metabolism and NADH/NADPH regeneration. Moreover, these pathways were most prominent in
both the transcriptomic and proteomic analyses. The aldo-keto reductase family members,
AKR1B10, AKR1C1, AKR1C2 and AKR1C3, as well as NQO1 and ALDH3AL, were highly
upregulated at both the transcriptomic and proteomic level. Collectively, these studies served to
identify potential biomarkers that can be used in clinical trials to investigate the initial
pharmacodynamic action of SFN in the breast.
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Introduction

Breast cancer remains a significant worldwide public health concern despite advances in
early detection and treatment. In the United States breast cancer is currently the greatest
contributor to cancer incidence and the second cause of cancer mortality in women [1].
Combating this disease before it ensues can reduce incidence and deaths considerably. The
selective estrogen receptor (ER) modulators, tamoxifen and raloxifene, are the only United
States Food and Drug Administration approved chemoprevention drugs for women with
elevated breast cancer risk. The perception of adverse side effects with these drugs [2]
coupled with lack of well developed chemopreventive options for the often more aggressive
ER negative cancers, call for new molecular targets for breast cancer prevention.

A potential chemopreventive agent is sulforaphane (SFN), an isothiocyanate found in
cruciferous vegetables with particularly high levels in 3-day old broccoli sprouts [3]. It is
converted by hydrolysis of the glucosinolate, glucoraphanin, by the enzyme myrosinase.
SFN is an attractive chemopreventive agent because it is safe and can be distributed widely
as broccoli sprout extract (BSE) preparations [4,5]. The best characterized mechanism
through which SFN protects cells from endogenous and exogenous carcinogenic damage [6]
is by induction of detoxication and antioxidant enzymes such as NAD(P)H: quinone
oxidoreductase (NQOL), the aldo-keto reductase (AKR) family of enzymes, and heme
oxygenase-1 (HMOX1) [7-10]. Enzyme transcripts are induced when the Nuclear factor-E2-
Related Factor 2 (Nrf2) transcription factor binds to the Antioxidant Response Element
(ARE) at the regulatory regions of these genes [11]. Nrf2 is normally sequestered in the
cytoplasm by an inhibitory interaction with Kelch-like ECH-Associated Protein 1 (Keapl).
SFN interacts with critical cysteines in Keapl, thereby disrupting Keap1 facilitated
ubiquitination and subsequent proteasomal degradation of Nrf2 [12] and allowing Nrf2 to
translocate into the nucleus and modulate expression of its target genes. Other potential
mechanisms of SFN action include antiproliferative effects, NF-xB DNA binding inhibition,
apoptosis activation and histone deacetylase inhibition [13,14]. Based on its varied
molecular targets, SFN has the potential to prevent breast cancer irrespective of ER status.

When 3-day old BSE as given to female rats treated with 7-12-dimethylbenz[a]anthracene,
the number, size and rate of mammary tumor development were significantly reduced

[3,15]. Upregulation of Nigo1 and HmoxI transcripts, as well as NQO1 activity and HMOX1
protein levels was observed in rat mammary glands after SFN treatment [16].
Transcriptomic and proteomic studies analyzing SFN regulation have focused on rodent
cells [8,17,9,18-21] and human cancer cells [22-26]. However, the effects of SFN on non-
cancerous human cells are not known.

Standardized BSE preparations with defined concentrations of SFN and glucoraphanin have
been developed and the metabolism and elimination pharmacokinetics of SFN have been
measured [4,27,28]. However there is a need for biomarkers that effectively define the
pharmacodynamic action of SFN in human tissues. In this preclinical study we treated the
human ER negative [29] non tumorigenic [30] MCF10A cell line with SFN in order to
analyze global transcript and protein expression changes using microarray and SILAC
technologies, respectively. To affirm the role of Nrf2 signaling in the pharmacodynamic
action of SFN in non cancerous human cells, siRNA against KEAP1 was utilized to provide
a parallel genetic mechanism to increase Nrf2 signaling. Several genes and proteins with
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low constitutive expression, but with a broad dynamic range of induction following
pharmacologic or genetic stimulation, were identified. Such properties define potentially
useful biomarkers for evaluating the mechanism of action and optimizing the dose and
schedule of broccoli sprout preparations in clinical trials, especially those targeting the
breast.

Material and Methods

Chemicals

Cell Culture

Microarray

Quantiative

SILAC

R, S-Sulforaphane was purchased from LKT Laboratories (St. Paul, MN). Acetonitrile
(ACN) was from MP Biomedicals (Solon, OH).

MCF10A and MCF12A (American Type Culture Collection, Manassas, VA) cells were
cultured in (DMEM)/F12 minus L-lysine and L-arginine for SILAC. Medium was
supplemented with 5% horse serum, 20ng/ml epidermal Growth Factor, 0.5 pg/ml
hydrocortisone, 100 ng/ml cholera toxin and 10 pg/ml insulin at 37°C in a humidified
environment with 5% CO,. For light medium 12Cg L-lysine:2HCL and 12Cg L-arginine-HCI
were supplemented and for heavy medium 13Cg L-lysine:2HCI and 13Cg L-arginine:HClI
were added (Cambridge Isotope Laboratories, Andover, MA). Cells were transfected with
30nM KEAP1 or non targeting control (NTC) siRNA (Dharmacon, Lafayette, CO) in heavy
and light media respectively according to the Lipofectamine™ RNAiMax reagent
(Invitrogen) reverse transfection protocol. Cells were treated with 15 M SFN or ACN
vehicle in heavy and light medium respectively 24 hours after plating. RNA was collected
24 hours and protein collected 48 post transfection and SFN treatment (Figure 1 and 2).

Total RNA was isolated from cells using TRIZol reagent, and purified by the Qiagen
RNeasy mini kit. RNA quality assessment was carried out according to previously published
methods [31]. Agilent whole human genome chips (G4112F), with 41,000 unique probes,
representing 26,705 genes, were used according to the manufacturer’s instructions. The SFN
treatment and KEAP1 knockdown experiments each had four biological replicates. Data was
imported into GeneSpring GX 11.5 (Agilent Technologies) and differentially expressed
genes were identified by unpaired t-test with a cut-off p<0.05. Correction for false discovery
rate (FDR) of 5% was made using the Benjamini-Hochberg procedure and a 1.5 fold change
cut-off was implemented. The microarray data set has been deposited in the National Center
for Biotechnology Information’s Gene Expression Omnibus. Agilent probe identification
numbers and corresponding fold change values were exported to Ingenuity Pathway
Analysis (IPA) software (Ingenuity® Systems, Redwood City, CA).

Real time Polymerase Chain Reaction (QRT-PCR)

The gScript™ cDNA synthesis kit (Quanta BioSciences, Gaithesburg, MD) was used to
convert 1 g RNA to 50 ng/pl cDNA. TagMan Gene Expression Assays and Master Mix
(Applied Biosystems, Foster City, CA) were then used to amplify 10 ng/p.l cDNA with 7BP
as the endogenous control. Fold-change values were determined using the 2~AACt relative
quantification method [32]

Protein was extracted in 8 M Urea (Thermo Scientific) and the in-gel trypsin digestion
method for SILAC was followed according to previously published protocols [33]. Peptides
were analyzed using the Agilent 6538-accurate-mass QTOF mass spectrometer. A technical
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replicate was run under the same conditions. The MS data were searched and quantified at
an FDR of 1% using Spectrum Mill MS Proteomics Workbench (Agilent, Rev A.03.03)
using the Human RefSeq 35 protein sequence database (34, 906 sequences). Proteins with a
single unique peptide identification from Spectrum Mill were confirmed by manual
inspection of MS/MS spectra. The complete set of raw data (.raw files) generated from this
study has been made available through the Tranche server stable URL https://
proteomecommons.org/tranche/data. The protein accession numbers and their corresponding
protein fold changes were exported to IPA.

Immunoblot analysis

Results

Protein lysates were resolved on 4-20% gradient polyacrylamide gels and transferred to
nitrocellulose. Membranes were blocked in Odyssey® blocking buffer (LI-COR
Biosciences, Linocln, Nebraska), and then incubated with the following primary antibodies:
1:750 mouse anti-NQO1, 1:1500 rabbit anti-GAPDH (Cell Signaling Technology, Boston,
MA); 1:750 mouse anti-AKRIC1, 1:1000 I rabbit anti-AKRIC3, 1:750 mouse anti-AKRB10,
1:500 mouse anti-GCLC, 1:2000 rabbit anti-BACTIN (Abcam, Cambridge, MA); 1:1000
rabbit anti-ALDH3A1 and 1:750 rabbit anti-KEAP1 (Proteintech group, Chicago, IL);
1:1250 mouse anti-SQSTM1 (Santa Cruz Biotechnology, Santa Cruz, CA). The blots were
then incubated with IRDye® fluorescent secondary antibodies and scanned with the
Odyssey® Infrared Imaging System (LI-COR). The infrared fluorescence densitometry
ratios for treated samples compared to controls were determined for three biological
replicates and normalization was to GAPDH or BACTIN.

MCF10A cells were treated with SFN or KEAPI siRNA to provide pharmacologic and
genetic means to alter Nrf2 signaling; global gene and protein expression were then
analyzed by microarray and SILAC, respectively (Figure 1 and 2). KEAPI transcripts were
knocked down by 81% in the MCF10A cells (Online Resource (OR) 1-Table 3) while
KEAP1 protein levels decreased 79% (Figure 4, OR1-Table 4). For the microarray analyses
there were 6378 transcripts significantly regulated by SFN above and below the chosen 1.5
fold change cut off and 1710 transcripts significantly regulated by KEAP1 knockdown. The
overlap between these two experiments was 879 transcripts. The main focus for the
microarray pathway analyses were those transcripts shown to be regulated by both SFN
treatment and KEAP1 knockdown. The top pathways to emerge for this subset of genes
were xenobiotic metabolism and antioxidants, glutathione metabolism, carbohydrate
metabolism and NADH/NADPH regeneration.

The SILAC analysis indicated a normal distribution with the majority of proteins minimally
regulated and a small percentage of proteins upregulated and downregulated above and
below a 1.5 fold change cut-off (Figure 3). With SFN treatment, of the 666 proteins that
were detected by the mass spectrometer, 96 proteins were upregulated and 26 were
downregulated above and below a 1.5 fold change cut-off, respectively. For KEAP1
knockdown, of the 1,102 proteins that were detected, 50 were upregulated and 76 were
downregulated. The overlap for these two experiments, within the 1.5 fold change cut-off,
was 29 proteins. Pathway analysis of the genetic and pharmacologic SILAC experiments
yielded xenobiotic metabolism and antioxidants, glutathione metabolism, carbohydrate
metabolism and NADH/NADPH regeneration as top regulated pathways, in agreement with
the microarray analysis. The members of the top gene and protein IPA based functional
groups are summarized in Table 1.
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The Xenobiotic and Antioxidant Transcripts and Proteins were the Predominant Group
Regulated by SFN Treatment and KEAP1Knockdown

Key genes and proteins involved in xenobiotic metabolism were regulated by SFN treatment
and/or KEAPI knockdown in both microarray and SILAC experiments included AKR1
subfamily members, NQO1, CBR1, ALDH3A1 and EPHXI (Table 1). The antioxidant
genes TXNRDI, FTH, BLVRA and TXN were also coordinately regulated. The genes
NQOI, AKR1B10, AKRI1C1, AKRI1CZ, HMOX1, GPX2, TXNRDI1, TXN, FTH, FTL,
GSR, and PRDX1, have been shown to have AREs [34-37]. Strikingly, the most highly
upregulated transcripts and proteins were the AKR1 subfamily members. AKR1B10 was the
most highly upregulated transcript with 302.9 and 69.4 fold increases by SFN treatment and
KEAP1 knockdown respectively (Table 1). While AKR1B10 was not observed by SILAC,
Western blot analysis showed that this protein was dramatically upregulated by SFN
treatment and KEAP1 knockdown (Figure 4). AKR1C1 and AKR1C3 also had high
transcript levels compared to the other xenobiotic metabolism and antioxidant genes.
AKR1C3 was one of the most highly upregulated proteins in the SFN treatment SILAC
experiment at 39.3 fold, and was upregulated by 4.8 fold in the KEAP1 knockdown SILAC
experiment. The AKR1C1 and AKR1C2 family members were collectively referred to as
AKR1C1/2 because the mass spectrometry and immunoblot techniques were not able to
differentiate conclusively between them (OR1- Figure 1). AKR1C1 and AKR1C2 differ by
only 7 amino acids [38]. The differences in nucleotide sequence enabled the design of
specific primer probes used to detect AKR1C1 for the qRT-PCR experiment (OR1-Table 3).
AKR1C1/2 was highly upregulated in the SFN treatment SILAC experiment but less so in
the KEAP1 knockdown SILAC (Table 1). AKR1B1 was upregulated to lower levels
compared to the other AKR1 subfamily members in both the microarray and SILAC
experiments.

Of the 43 transcripts regulated in this class, 14 were correspondingly altered by SFN
treatment and/or KEAP1 knockdown using SILAC (Table 1, OR1-Table 1 and 2). The
transcript and protein levels correlated well in terms of the direction of the fold change. This
was clearly seen with the AKR1 subfamily members, NQO1, TXN, CBR1, ALDH1BI1 and
FTH1I for which the direction and magnitude of the fold change were well correlated. For
AKRICI, ALDH3A1, EPHXI and BL VRA, although the magnitude of the fold changes for
the microarray and SILAC were not strongly correlated, they were upregulated in all cases.
There were few downregulated transcripts and in one case, ALDHI1B1, both transcript and
protein decreased. In addition to the AKR1 subfamily other families that were coordinately
regulated by SFN treatment and/or KEAP1 knockdown included the ALDH, GST, FTH,
UBE, HSP and TXN families. Some transcripts and proteins that modulate the KEAP1/
NRF2 pathway were regulated by SFN treatment or KEAP1 knockdown as well. MAFG
transcript levels were upregulated by 2.3 and 2.9 fold in the SFN treatment and KEAP1
knockdown experiments, respectively (OR1-Table 3). SQSTMI was upregulated by 6.1 fold
and 2.1 fold by SFN treatment and KEAP1 knockdown, respectively (OR1-Table 1 and 2) in
the microarray. SQSTM1 was also upregulated by 4.3 fold with KEAP1 knockdown in the
SILAC and was shown to be upregulated by SFN treatment by Western blot analysis (Figure
4).

Expression of Glutathione and Carbohydrate Metabolism Transcripts and Protein

Half of the transcripts associated with gluthathione metabolism were also upregulated at the
protein level. GSR, GCLC and GCLM promoter regions have been shown to contain
functional AREs [36]. These genes were also regulated at the protein level, with GCLC and
GCLM upregulated by both SFN treatment and KEAP1 knockdown and GSR regulated by
SFN treatment only. GCLC and GCLM transcripts and protein were upregulated to similar
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levels as seen with previous studies [10,39]. GLRX was the only other transcript that was
upregulated at the protein level, and it is only regulated by SFN treatment.

Carbohydrate metabolism and NADH/NADPH regeneration are key functions that can be
regulated by the KEAP1/NRF2 pathway by genetic and pharmacologic intervention. G6FPD,
PGD and UGDH are typically observed in microarray analyses following activation of the
Nrf2 pathway [10,40,39,8,22]. In our study these enzymes exhibited correlated changes in
transcript and protein levels in terms of both direction and magnitude. Within the
carbohydrate metabolism and NADH/NADPH regeneration classes different aspects of
carbohydrate metabolism were represented. G6PD, PGD, TALDOL1 and TKT are key
enzymes of the pentose phosphate pathway, while PGAM1, HK1 and HDK1 are involved in
glycolysis. HKD1 is the second most highly upregulated transcript in the microarray with a
fold change of 146.9 with SFN treatment. Unlike the most highly upregulated transcript
AKR1B10, HKD1 did not show elevated protein level in the SILAC. The mitochondrial
electron transport chain proteins NDUFA4, COX2 and COX411 were regulated exclusively
in the SILAC experiments.

Correlation between Microarray and SILAC Responses

A Spearman rank order correlation analysis between the microarray and SILAC results
indicated a strong correlation for the SFN treatment (R=0.679, P<0.05) and KEAP1
knockdown (R=0.853, P<0.05) experiments in those instances where = 1.5 fold changes
were observed. A selected number of genes were validated by qRT-PCR in both MCF10A
and MCF12A cells, a second non malignant human breast epithelial cell line (OR1-Table 3).
There was good correlation in the MCF10A cells between the SFN treatment and KEAP1
knockdown microarray experiments (R=0.734, P<0.0001). There was also very good
correlation between MCF10A microarray and qRTPCR data for SFN treatment (R=0.953,
P<0.0001) and KEAP1 knockdown (R=0.977 P<0.0001). MCF10A microarray and
MCF12A gRTPCR were also well correlated for SFN treatment (R=0.762, P<0.0001) and
KEAP1 knockdown (R=0.782, P<0.0001). Lastly the gRT-PCR data for MCF10A and
MCF12A correlated well for SFN treatment (R=0.821, P<0.0001) and KEAP1 knockdown
(R=0.798, P<0.0001).

Correlation between Western blot and MS spectra

Western blots of MCF10A and MCF12As reproduced the protein fold changes observed in
SILAC experiments. The proteins, NQO1, AKR1C1/2, AKR1C3, AKR1B10, SQSTM1,
GCLC and ALDH3A1, were all shown to be upregulated, as seen by SILAC, whereas
KEAP1 was shown to be downregulated (Figure 4, OR1-Table 4). The MS spectra for four
proteins of interest, ALDH3A1, AKR1C1/2, AKR1C3, and NQO1, are shown in Figure 5
and the SILAC fold changes are represented with arrows. ALDH3A1 and SQSTM1 were
not detected in the SFN treatment SILAC and AKR1B10 was not detected in either SILAC
experiment at a FDR of 1%, however they were all shown to be upregulated by Western blot
(Figure 4). The MS spectra for these proteins at a FDR of 5% were searched for and
corresponding peaks for ALDH3AL (Figure 5a) were found but SQSTM1 and AKR1B10
were not.

Discussion

Although several clinical trials evaluating SFN are in progress, there has been little
characterization of its pharmacodynamic action in humans. Few studies have looked at
KEAP1/NRF2 mediated gene regulation in normal human cells using the strategy of
knocking down KEAP1 [41,10]. In one of the two published studies using this approach,
MacLeod et al [10] employed microarray analysis in human keratinocytes after KEAP1
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knockdown and SFN treatment. Many of the genes that were regulated in their study were
also regulated in ours study including AKR1B1, AKR1B10, AKR1C1/2, AKRIC3, NQOI,
LTB4DH, GCLC, GCLM, GSR, G6PD PGD, HMOX1, SRXN1, TXNRD1, FTL, FTHand
MAFG. These transcripts have also been shown to be upregulated in other microarray
experiments using pharmacologic and/or genetic regulation of the KEAP1/NRF2 pathway in
rodent tissues [8,10,22,40,39]. Whereas microarray analyses are common, quantitative
proteomic experiments have not, to our knowledge, been used as an unbiased approach to
study the proteins regulated by SFN treatment or in response to KEAP1 knockdown in non
cancerous human cells. There is one report of an unbiased proteomic study with isobaric tag
for relative and absolute quantitation (iTRAQ) analyzing KEAP1/NRF2 pathway regulation
in rodent cells [21]. Two proteome-based studies of SFN action have focused on cancer cell
lines [25,26]. We chose the SILAC strategy for our quantitative proteomic experiment
because it allowed comprehensive /n vivo labeling of the proteome of cultured cells that
could couple global protein expression with a transcriptomic analysis [33]. A
straightforward and efficient labeling process allows SILAC experiments to be highly
reproducible. Another major benefit of SLAC is virtually no physico-chemical difference
between the labeled and natural amino acid isotope, allowing the labeled cells to function
identically to the control cells. Apart from L 7B4DH, HMOX1, SRXNI1and MAFG, all the
transcripts commonly regulated in our study and the Macleod study [10] were also
upregulated in this SILAC experiment. IPA analysis showed that familiar cytoprotective
pathways were regulated in both the transcriptomic and proteomic data sets further
highlighting the fact that well known KEAP1/NRF2 modulated genes were regulated at both
levels. This result provided internal validation for our approach. Another form of validation
was the observed upregulation of MAFG transcripts and SQSTM1 transcripts and proteins,
which serve to positively modulate NRF2 signaling. Small Maf proteins are required for the
upregulation of cytoprotective transcripts [11]. The SQSTMI gene has a functional ARE
and positively modulates the KEAP/NRF2 pathway [42]. ALDH1 activity is a marker of
stem cells in normal and malignant human mammary cells [43]. ALDH1B1, has recently
been associated with stem cells in normal and cancerous colon tissue [44]. It was
downregulated at the transcript level and by Keapl knockdown at the protein level in our
study. SFN has previously been shown to downregulate ALDH positive breast cancer stem
cells [45]. ALDH3AL and A2 which are cytoprotective in normal tissues were upregulated
in our studies. The carbohydrate metabolism gene and protein expression correlated very
well. NADH is produced from glycolysis and is an essential cofactor for many of the
enzymes in the xenobiotic metabolism and antioxidant class. The electrons carried by
NADH are fed into the mitochondrial electron transport chain to ultimately produce ATP.
The mitochondrial electron transport chain proteins NDUFA4, COX2 and COX4I11 were
regulated exclusively at the protein level in our study. NADPH is produced from the pentose
phosphate pathway and is also an important coenzyme for xenobiotic metabolism and
antioxidant enzymes. NADPH is required for the regeneration of reduced glutathione, GSH,
by GSR.

For the microarray the overlap between the pharmacologic and genetic experiments was
51% of all the genes regulated by KEAP1 knockdown but only 14 % of the genes regulated
by SFN treatment. These results indicate that many SFN regulated transcripts were not
regulated through the KEAP1/NRF2 pathway. These is expected since SFN has been shown
to affect a number of pathways beyond KEAP1/NRF2 [13]. The number of proteins detected
by mass spectrometry in the SILAC experiments was strikingly lower than the number of
transcripts differentially regulated in the microarray experiment by SFN. Some proteins may
have undergone post translational modifications leading to diminished identification of
proteins. It is most likely that many of the transcripts regulated by SFN treatment were
translated to low abundance proteins not detected by mass spectrometery. Incomplete
recovery of proteins from all cell compartments is an additional concern.

Breast Cancer Res Treat. Author manuscript; available in PMC 2013 February 05.
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The AKR1 subfamily were the most highly upregulated family of genes and proteins. In a
small clinical trial subjects received a glucosinolate-rich broccoli soup had high levels of
AKRC1 and AKR1C2 in their gut mucosa [46]. In this study as well as other preclinical
studies [10,47], or KEAP1 disruption [41,10] in cell lines, members of the AKR family were
notably highly induced and suggested to be good biomarker candidates. Our studies
confirmed that AKR1B1, AKR1B10, AKR1C1 and AKR1C3 were upregulated by the
KEAP1/NRF2 pathway at both the transcript and protein level. Based on their dynamic
upregulation and low basal expression AKR1 family members are potential biomarkers for
SFN action in normal breast epithelial cells. AKR1B10 and AKR1B1 are aldose reductases
enzymes that generally reduce carbonyls, including cytotoxic a-fB-unsaturated carbonyls, to
alcohols using NADPH as a cofactor [48]. Members of the AKR1C subfamily of enzymes
are hydroxysteroid dehydrogenases (HSD) and have the ability to reduce steroids [49].
AKR1C1land C2 reduce progesterone to weak androgens that have been shown to have anti-
cancer effects in the breast [50,38]. AKR1C1 and AKR1C2 protein levels are decreased in
breast cancer cell lines and tissue compared to normal cells [51,52]. The AKR enzymes have
been implicated in carcinogenesis [53-55,49,56,57], with AKR1C3 and AKR1B10
overexpressed in breast cancers [49,58].

MCF10A and MCF12A cells are well established cell culture models for non malignant
human breast epithelial cells [30,59] and show marked upregulation of cytoprotective
enzymes as a result of SFN treatment or KEAP1 knockdown. Nevertheless it is important to
establish the context in which cytoprotective genes and proteins can be used as biomarkers.
In a chemoprevention trial, biomarkers will be used to determine whether the dose of
chemopreventive agent administered can reach the putative target cells and upregulate genes
and proteins that protect them. Biomarkers that can effectively reflect the pharmacodynamic
action of an agent must have specificity and sensitivity. The biomarker measurements
should also be robust and reliable and have a highly dynamic range with little baseline
activity. Detection of upregulation of genes and proteins is usually the focus for biomarker
discovery because measuring an increase in expression above baseline in biological samples
is typically easier and more reliable than measuring a decrease in expression. Based on our
preclinical studies AKR1C1, AKR1C2, AKR1C3, AKRB10, NQO1 and ALDH3AL fulfill
these criteria and are candidate biomarkers to assess the pharmacodynamic action of SFN in
human breast tissue.
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Abbreviations

SFN sulforaphane

SILAC Stable Isotopic Labeling with Amino Acids in Culture
ER Estrogen Receptor

Nrf2 Nuclear factor-E2-Related Factor 2

Keapl Kelch-like ECH-Associated Protein 1

ARE Antioxidant Response Element
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SIRNA small interfering ribonucleic acid
AKR aldo-keto reductase, HSD, hydroxysteroid dehydrogenase
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Figure 1.

Workflow for microarray and SILAC experiments. The vehicle used for SFN was
acetonitrile. NTC=Non Targeting Control. LC-MS/MS = Liquid Chromatography tandem
mass spectrometry. QTOF = Quadripole Time of Flight
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Breast Cancer Res Treat. Author manuscript; available in PMC 2013 February 05.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Agyeman et al. Page 15

Log (2) ratio (SFN/VC)

SFN Treatment KEAP1 siRNA Knockdown
10 1
8 -
— 6 1
o
£ 4]
2 [a)
/ <, :
1 2 ) :
666 proteins J E 1,102 proteins ‘—‘/
o -4
' ®
= 5 I
-4
6 -
Figure 3.

Right: Distribution of fold changes in proteins determined by SILAC between vehicle and
SFN treated MCF-10A cells. Highlighted are the 96 upregulated and 26 downregulated
proteins above and below a 1.5 fold change cut-off respectively. VC= Vehicle Control
Left: Distribution of fold changes in proteins determined by SILAC between Non targeting
Control and KEAP1 knockdown siRNA treated MCF-10A cells. Highlighted are the 50
upregulated and 76 downregulated proteins above and below a 1.5 fold change cut-off
respectively. NTC=Non Targeting Control. KEAP1 KD= KEAP1 knockdown.
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Western blots for proteins of interest from microarray and SILAC studies showing elevation
of protein levels with SFN treatment and KEAP1 knockdown.
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Figure 5h

MS spectra from SILAC analyses of candidate biomarker proteins: (a) ALDH3AL1:SFN
Treatment, (b) ALDH3AL:KEAP1 Knockdown, (c) AKR1C1/2: SFN Treatment, (d)
AKR1C1/2: KEAP1 Knockdown, (e) AKR1C3: SFN Treatment, (f) AKR1C3: KEAP1
knockdown, (g) NQOL1: SFN Treatment and (h) NQO1: KEAP1 Knockdown
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