
A Goal-Directed Spatial Navigation Model Using Forward
Trajectory Planning Based on Grid Cells

Uğur Murat Erdem and Michael E. Hasselmo
Center for Memory and Brain and Program in Neuroscience, Boston University, 2 Cummington
Street, Boston, Massachusetts, 02215, USA.

Abstract
A goal-directed navigation model is proposed based on forward linear look-ahead probe of
trajectories in a network of head direction cells, grid cells, place cells, and prefrontal cortex (PFC)
cells. The model allows selection of new goal-directed trajectories. In a novel environment, the
virtual rat incrementally creates a map composed of place cells and PFC cells by random
exploration. After exploration, the rat retrieves memory of the goal location, picks its next
movement direction by forward linear look-ahead probe of trajectories in several candidate
directions while stationary in one location, and finds the one activating PFC cells with the highest
reward signal. Each probe direction involves activation of a static pattern of head direction cells to
drive an interference model of grid cells to update their phases in a specific direction. The
updating of grid cell spiking drives place cells along the probed look-ahead trajectory similar to
the forward replay during waking seen in place cell recordings. Directions are probed until the
look-ahead trajectory activates the reward signal and the corresponding direction is used to guide
goal-finding behavior. We report simulation results in several mazes with and without barriers.
Navigation with barriers requires a PFC map topology based on the temporal vicinity of visited
place cells and a reward signal diffusion process. The interaction of the forward linear look-ahead
trajectory probes with the reward diffusion allows discovery of never before experienced shortcuts
towards a goal location.

Keywords
Navigation; grid cell; place cell; hippocampus; prefrontal cortex

Introduction
The entorhinal cortex and hippocampus play a role in goal-directed behavior towards
recently learned spatial locations in an environment. Rats show impairments in finding the
spatial location of a hidden platform in the Morris water-maze after lesions of the
hippocampus (Morris et al., 1982; Steele and Morris, 1999), postsubiculum (Taube et al.,
1992) or entorhinal cortex (Steffenach et al., 2005). Recordings in these regions during rat
behavior show neural spiking activity relevant to goal-directed spatial behavior, including
grid cells in the entorhinal cortex that fire when the rat is in a repeating array of locations in
the environment falling on the vertices of tightly packed equilateral triangles (Hafting et al.,
2005; Moser and Moser, 2008). Recordings also show place cells in the hippocampus that
respond to mostly unique spatial locations (O’Keefe, 1976; McNaughton et al., 1983;
O’Keefe and Burgess, 2005), head direction cells in the postsubiculum that respond to
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narrow ranges of allocentric head direction (Taube et al., 1990a; Taube and Bassett, 2003),
and cells that respond to translational speed of running (Sharp, 1996; O’Keefe et al., 1998).
Models have simulated the generation of grid cell spiking responses using mechanisms
including interference (Burgess et al., 2007; Giocomo et al., 2007; Hasselmo et al., 2007;
Hasselmo, 2008) or attractor dynamics (Fuhs and Touretzky, 2006, 2006; McNaughton et
al., 2006; Guanella and Verschure, 2007; Guanella et al., 2007; Burak and Fiete, 2009). A
number of previous models have addressed mechanisms of goal-directed spatial behavior
using biological circuits. Some models drive goal-directed spatial behavior based on
modified connectivity between place cells (Touretzky and Redish, 1996; Redish and
Touretzky, 1998) or between place cells and units representing behavioral motor actions
(Burgess et al., 1997; Arleo and Gerstner, 2000; Foster et al., 2000; Hasselmo and
Eichenbaum, 2005; Zilli and Hasselmo, 2008; Sheynikhovich et al., 2009; Duff et al., 2011).
However, previous models have not used grid cells to perform goal directed planning of
trajectories. The model presented here performs goal-directed forward linear look-ahead
probes of potential trajectories through the environment using a circuit of head direction
cells, grid cells, and place cells similar to a previous model (Hasselmo, 2008). The circuit
drives the formation of a place cell map via Hebbian modification of connections between
prefrontal cortex (PFC) cells to encode the environment’s topology. A reward signal then
propagates through the place cell map originating from goal locations. The look-ahead
trajectory of grid cells that activates place cells associated with highest reward signal can
then be selected to guide behavior. The forward probing might be the underlying
phenomenon of the previously reported spiking replay seen during rat waking behavior at
choice points (Johnson and Redish, 2007). Both the spatial encoding and the best next
direction discovery recruit the same head-direction cell, grid cell, place cell, and PFC cell
circuit. One of the main contributions of our work is how the best next direction toward the
chosen goal is discovered probing the diffused reward signal via forward linear look-ahead
trajectory readouts emanating from the animal’s current location, while allowing discovery
of never before experienced shortcuts in the environment.

Methods
In this section we present the main ideas and constructs used to develop the goal-directed
navigation model of a virtual rat. First, for the sake of completeness, we explain the roles
and computational models of three different neuron types, i.e., the head direction cell, the
grid cell, and the place cell. We then elaborate on how these three neuron types give rise to a
place cell map based on interactions with PFC cortical columns and finally show how the
head direction cell, grid cell, and place cell neural circuit as shown in Figure 1, can exploit
the place cell map connectivity using forward linear look-ahead trajectory probes to guide
the virtual rat towards chosen goal locations.

Notation
We show scalar parameters by italic lowercase Latin characters, e.g., d, or in normal
lowercase Greek characters, e.g., θ. Vectors are shown by bold lowercase characters, e.g., d.
Vectors are row-wise unless specified otherwise. Matrices are shown by uppercase bold
characters, e.g., W. We show an item’s position in a collection with subscripts, e.g., θ5 or
pk. Superscript is reserved for power operations with the exception of the transpose
operation, e.g., dT. We show collections such as sets and populations by uppercase italic
characters, e.g., D. Lowercase italic bold characters represent the class of the item they refer
to, e.g., place cell p or grid cell g.
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Head Direction Cells
A head direction cell is a neuron type specialized to significantly increase its firing rate as
the allocentric head direction of the animal gets closer to a specific polar angle value which
we refer to as the tuned or the preferred direction of the cell. Extensive experimental data
describe head direction cells in the deep layers of the entorhinal cortex (Sargolini et al.,
2006) and in other areas including the postsubiculum (Taube et al., 1990a) and the anterior
thalamus (Taube, 1995). Our goal-directed navigation model uses head direction cells
generating speed modulated signals: the firing rate is proportional to both the current head
direction and the speed of the virtual rat. Note that in the simulations presented in this paper,
we assume that head direction matches the virtual rat’s movement direction. Previous
experimental data show that the tuned directions of all head direction cells of a single
subject tend to be locked to a specific main orientation (Taube et al., 1990b; Knierim et al.,
1995). Hence the preferred direction of the ith head direction cell can be represented as an
angular offset θi from a main orientation θ0, i.e,. (θi=1,...,m+θ0) , where m is the head
direction cell population size. Given the tuning kernel:

(1)

and the virtual rat’s instantaneous velocity v(t), the head direction signals can be obtained
using:

(2)

Where di(t) is the population’s ith member’s head direction signal at time t with preferred
direction θi, and wd is the error term representing the deviation from the main orientation
due to noise.

Grid Cells
A grid cell is a neuron type which increases its firing rate significantly when the animal
traverses a regular array of periodic places in the environment. The collection of locations
where an individual grid cell fires, i.e., the grid cell’s firing fields, forms a two dimensional
periodic pattern with regular inter-field intervals and similar field areas. Extensive
experimental data show the existence of grid cells with different inter-field spacing and field
areas along the dorsal to ventral axis of the medial entorhinal cortex (Hafting et al., 2005;
Sargolini et al., 2006). In this work we use the persistent spiking model (Hasselmo, 2008) to
generate grid cells’ spiking activity. The persistent spiking model belongs to the class of
phase interference models.

Phase Interference Models
The phase interference models generate the grid cell’s typical grid like spatial periodic
spiking activity by combining several speed modulated oscillations into a single interference
pattern. In an early, single cell version of the oscillation interference model by Burgess et al.
(2007) and Hasselmo et al. (2007) each dendrite of a grid cell receives its input from a
population of speed modulated head direction cells tuned towards the same preferred
direction. The speed modulated head direction cell inputs shift the oscillation phase of each
population relative to each other. Finally, the different network oscillations are combined to
drive the spiking activity of individual grid cells. Recent work suggests that this mechanism
could more realistically involve interactions of different network oscillations (Zilli and
Hasselmo, 2010).
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In the phase interference model based on the interaction of entorhinal persistent spiking cells
(Hasselmo, 2008), which is implemented and used in this work’s simulations, each
population of entorhinal persistent spiking cells receive synaptic inputs from their respective
head direction cell populations tuned towards the same preferred direction. Multiple
persistent spiking cell populations send convergent input to an individual grid cell.
Consecutively, a grid cell generates spiking activity when all its dendritic inputs receive
almost simultaneous spikes from their pre-synaptic persistent spiking cell populations. We
reproduce here a slight variation of the persistent spiking model from Hasselmo (2008) for
the sake of completeness since it will be used to develop and explain other concepts further
in this paper:

(3)

Where H() is the Heaviside step function with H(0)=0, gj(t) is the spiking output of the jth

grid cell at time t , Sj is the set of persistent spiking cells projecting to the jth grid cell, s(i,j)(t)
is the output of the persistent spiking cell receiving input from ith head direction cell and
projecting to the jth grid cell, sthr is the spiking threshold value of all persistent spiking cells,
and w(i,j) is the noise term. The persistent spiking cell has phase offset Ψ(i,j), intrinsic
baseline frequency f, and scaling factor bj. Note that in this model all persistent spiking cell
baseline frequencies are the same.

All the simulations presented in this work are based on our persistent spiking model
implementation.

Place Cells
One of the main requirements of many goal-directed navigation strategies is the existence of
a place cell map representation mechanism, i.e., the ability to associate real-world locations
to neuronal activities in a one-to-one fashion. Spatial representations generated by grid cells
are of many-to-one nature: the firing fields of a single grid cell correspond to several
periodic spatial locations. Place cells are effective candidates for the spatial representation:
they mostly tend to fire exclusively inside a specific spatial area (O’Keefe, 1976;
McNaughton et al., 1983; O’Keefe and Burgess, 2005) which allows the formation of a
place cell map by exploring an environment.

Model
There are several models trying to explain the formation of place cells from grid cell inputs
(McNaughton et al., 2006; Rolls et al., 2006; Solstad et al., 2006; Gorchetchnikov and
Grossberg, 2007). These include models in which grid cells can drive place cells without
requiring synaptic plasticity (Almeida et al., 2009, 2010). In our model a place cell acts as
an AND gate for converging inputs from several pre-synaptic grid cells. The kth place cell,
pk, receives its synaptic inputs from a population of grid cells, Gk, with different firing field
separation and sizes. A place cell generates spikes whenever all of its inputs receive almost
simultaneous spikes. The computational model for a single place cell signal is as follows:

(4)

Erdem and Hasselmo Page 4

Eur J Neurosci. Author manuscript; available in PMC 2013 March 07.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



While Equation 4 addresses the place cell activity mechanism, it does not yet clearly explain
how:

1. A place cell’s firing field can be tuned to a unique spatial location (selectivity),

2. A place cell’s firing field can be tuned to an arbitrary spatial location
(arbitrariness).

The model presented in Equation 4 accomplishes these two place cell properties by putting
together populations of grid cells, Gk , with special characteristics explained next.

Selectivity—Selectivity can be defined as how unambiguously a single spatial location can
be encoded by a place cell. In the ideal case a place cell should only spike at a single spatial
location creating zero ambiguity and maximum selectivity. In a significant number of cases,
however, physiological evidence shows multiple firing fields per place cell recorded in vivo
(Fenton et al., 2008). We measure the selectivity by the number of a single place cell’s firing
fields per a given area making selectivity dependent on the size and shape of the enclosed
environment: A place cell with multiple firing fields might be highly selective for a smaller
area but its selectivity might suffer as the environment grows larger. In our place cell model
the selectivity can never be optimally maximum by construction but it can be parameterized
by a number of factors, such as the number of converging grid cells and their intrinsic
properties, as presented below. Each population Gk contains grid cells receiving inputs from
persistent spiking cells having the same intrinsic frequency f but different scaling constants
bj. When unit-amplitude oscillations with different frequencies and identical initial phases
are summed together the result is an interference oscillation with amplitudes of its highest
peaks equal to the number of summed oscillations and with frequency of its highest peaks
smaller than any of its components. Consider the toy example with several 1D unit
amplitude cosine oscillations as shown in Figure 2. In this example, each cosine oscillation
with frequency f scaled by a constant bj has periodic peaks at instantaneous phase values
which are multiples of 2π. We can represent this as follows:

(5)

Equation 5 implies that two or more cosine oscillations with different scaling factors will be
in-phase when the terms (bjft) are simultaneously integers. If we sum these oscillations, the
resultant interference pattern will have highest peaks at instantaneous phase locations where
all the component oscillations simultaneously satisfy Equation 5 as shown in Figure 2
(Bottom row), with peak amplitudes equal to the number of its unit amplitude components.
Equivalently, the resultant oscillation’s highest peaks will occur at instantaneous phase
values equal to the common multiples of its components’ (bjft) terms. Hence, the period of
the resultant’s highest peaks will be equal to the least common multiple (lcm)
(Gorchetchnikov and Grossberg, 2007) of the individual components’ periods by definition,
i.e.:

(6)

Note that since least common multiple is defined for the set of rational numbers we limit the
domain of the frequencies to rational numbers. As a result of this analysis we observe the
following characteristics of the resultant signal:

1. The frequency of the resultant can be made arbitrarily smaller than any of its
components’ frequencies. The summation of oscillations with different scaling
factors creates a resultant oscillation with relatively dampened peak amplitudes in
the half-period neighborhood of its highest peaks. If we apply an appropriate
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threshold to the resultant signal (or to the component signals before summation),
we obtain a pulse wave with a much larger period than any of its components.

2. The presented analysis is also valid when the continuous sinusoid signals are
thresholded to produce pulse waves and the summation operation is replaced by the
product operation. The product of pulse waves with different scaling factors
generates a resultant pulse wave with frequency significantly smaller than any of its
components.

3. In the discrete case, the resultant pulse wave’s single pulse duration is equal to the
minimum of its components’ single pulse durations. This characteristic can be
exploited in the parameterization of a place cell’s firing field size.

Even though characteristics one and two do not provide a signal with a globally unique peak
or spike train location, they do guarantee an ideal selectivity up to some neighborhood range
which can be parameterized by the number and the scaling constants of its component
oscillations. The analysis provided for 1D cosine signals also extends to the 2D case where
the component cosine signals are replaced by grid cell firing fields and the resultant signal is
replaced by the place cell firing field(s).

Arbitrariness—We define the arbitrariness as the ability to tune a place cell’s firing field
to an arbitrary spatial location. We accomplish this by exploiting the translational effect of
the phase offset value Ψ(j,i) of Equation 3 on the grid cell firing fields. In the persistent
spiking model, each persistent spiking cell is in phase with a reference oscillation at a
baseline frequency. As the animal moves in the environment, the velocity modulated head
direction signals shift the phases of the respective persistent spiking cells relative to the
reference oscillation. While the raw spiking activity of a persistent spiking cell population
modulated by head direction cells tuned to the same direction will not show any location
selectivity, their phase shift relative to the spikes of the reference oscillation will show band
like patterns (Hasselmo, 2008). The grid cell receiving inputs from different persistent
spiking cell populations will fire only when all its inputs fire almost simultaneously, i.e., at
spatial locations where all the bands seen in Hasselmo (2008) coincide. In light of these
observations, we can conclude that by methodically translating the locations of these bands
(or equivalently by shifting the phase of persistent spiking cells by constant offsets), we can
translate the locations of a grid cell’s firing fields. Furthermore, by finding a mapping from
the phase offset amount onto the firing field translation amounts, we can parameterize the
firing fields’ spatial locations. The phase offset translating the grid cell j [Δx, Δy] units in
Cartesian space is:

(7)

The minus sign in front of the Equation 7’s right-hand-side is necessary since translating an
oscillation to the right is equivalent for its phase to shift at an earlier offset. In summary,
application of the Equation 7 to all persistent spiking cells converging to the jth grid cell
translates the grid cell’s firing fields by the given amount in the Cartesian space hence
achieving the arbitrariness.

Place Cell Map
In our navigation model the place cell map is a collection of prefrontal cortex cortical
columns bijectively connected to the hippocampal place cells as shown in Figure 3. Cortical
columns of the prefrontal cortex have been included in previous models of goal directed
behavior where, similar to our model, spread of reward activity drives selection of the next
motor activity towards the achievement of a goal state (Gorchetchnikov and Hasselmo,
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2005; Hasselmo, 2005). Previous experimental work reported observation of place-cell like
activity confined to specific regions of the behavioral environment in recordings from the
medial prefrontal cortex (mPFC) during goal directed navigation planning in rats (Hok et al.,
2005). Furthermore, experimental papers have also reported observations of anticipatory
firing of rat mPFC cells prior to achievement of a goal such as release of food pellets,
(Burton et al., 2009), similar to the anticipatory firing of dorsal hippocampal cells (Hok et
al., 2007). Bilateral lesions of the ventral and intermediate hippocampus reduce the mPFC
activity suggesting co-operation between the hippocampus and PFC during goal directed
activity (Burton et al., 2009). This co-operation is also supported by recordings showing that
firing of mPFC neurons is phase-locked to hippocampal theta rhythm (Hyman et al., 2005;
Jones and Wilson, 2005). Experimental data also supports a potential role of rat prefrontal
cortex neurons in maintenance of working memory during goal directed tasks (Baeg et al.,
2003).

In our model each PFC cortical column contains three cell layers connected to each other: A
recency cell layer Q, a topology cell layer U, and a reward cell layer R. The recency layer
cell qk maintains the recency signal qk associated to the place cell pk. The recency signals
are used to update the lateral connections among the topology layer cells. The topology cell
layer’s lateral connections are updated incrementally as the virtual rat experiences its
environment. They represent the environment’s spatial topology in the PFC. The reward
layer cell rk maintains the reward signal rk associated to the place cell pk The reward signals
play a crucial role in planning navigation directions towards previously visited goal
locations such as food sources or safe places. The functionality of all PFC cortical column
cell types and signals are explained in detail below.

The PFC cortical column’s topology layer cells are connected to each other via lateral
connections represented by the adjacency matrix Wu. The place cell map encodes the spatial
topology of the environment’s visited areas via lateral connections enabling the reward
signal diffusion process. When the virtual rat is first introduced to a never before
experienced environment the corresponding place cell map is incrementally generated by
recruiting new place cells and PFC cortical columns and updating the respective PFC signals
accordingly. While hippocampal place cells provide raw information about the virtual rat’s
location, e.g., “I am at location D”, the PFC cortical columns augment the hippocampal
information by the neighborhood context, e.g., “I am at location D which is close to
locations A, B, and F”. For the rest of the paper the recruitment of a new place will also
imply the recruitment of a new PFC cortical column and vice versa.

Place Cell Recruitment—When the virtual rat is introduced to a never before
experienced environment, a place cell p0 is recruited receiving its synaptic inputs from a
population of grid cells, G0, with zero phase offset vectors representing the virtual rat’s
original starting position. The G0’s grid cells’ phases act also as an anchor point in the
recruitment of the successive grid cells in the same environment. As the virtual rat explores
the new environment following a smoothed random walk trajectory, it incrementally recruits
new place cells. What triggers the exclusive representation of a spatial location by a place
cell is still an open question. In our implementations the virtual rat recruits new place cells
either deterministically or in a pseudo-random fashion: In the deterministic case the virtual
rat recruits a new place cell as soon as it enters a location in the environment which is not
represented by any other existing place cell. This approach creates a relatively dense
representation since all place fields are highly overlapping. In the pseudo-random case the
virtual rat recruits a new place cell when (i) the location is not represented by any other
place cell as in the deterministic case and (ii) a sample drawn at each time step from a
probability distribution is smaller than a given threshold value. In the pseudo-random case
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the density of the place cell firing fields is parameterized by the probability distribution and
the threshold value. Examples for both triggering mechanisms are given in Figure 4.

Recruitment of a new place cell also means recruitment of a new grid cell set and their
respective presynaptic persistent spiking cells. The virtual rat tunes the new place cell to its
current location by recruiting a new set of grid cells which are the translated versions of the
very first grid cell set G0. The translation is equivalent to setting the new grid cells’ phase
and phase offset vectors to G0 grid cells’ phase vectors and to their additive inverses, i.e.:

(8)

Where n is the number of grid cells feeding synaptic input to a single place cell and m is the
head direction cells.

Temporal Neighborhood Topology—We impose a topology on the place cell map by
creating lateral connections among PFC’s topology layer cells as shown in Figure 3. Each
newly recruited place cell pk is associated with a new PFC column containing a recency cell
qk with recency signal qk, a topology cell, and a reward cell rk with reward signal rk. The
recency signal value qk is proportional to the elapsed time from the virtual rat’s most recent
visit to the place cell pk. As long as the virtual rat is in the firing field of some place cell pk
the corresponding recency signal qk stays at 1. Otherwise, at each time step, qk slowly leaks
towards zero following an exponential decay with parameter ε and decay rate λ which are
constant for all recency cells. The value of the recency signal qk Δt time units after the
virtual rat’s last visit to place cell pk is:

(9)

Each time the virtual rat visits a place cell pk, the topology layer’s lateral connections are
reinforced by Hebbian updates using the following equation:

(10)

Where q=[qi]i=1,...,k is the recency signal vector, δ is the recency signal threshold, H() is
the Heaviside step function with H(0)=1, and V is the element wise OR operator. Equation
10 updates the topology layer’s lateral connections by introducing or reinforcing
connections between the currently visited PFC topology cells, represented by the indicator
vector H(q-1), and the recently visited PFC topology cells, represented by the indicator
vector H(qT-δ). The threshold δ determines the time window for a PFC topology cell to be
considered as recently visited. The use of the recency effect for the connection updates, in a
strictly algebraic sense, imposes a temporal neighborhood disc with radius δ surrounding
each place cell (recall that there is a one-to-one relationship between place cells and the PFC
cortical column cells). This neighborhood relationship is not necessarily metric so the graph
induced by Wu is not necessarily planar. The recency signals are time based and hence they
depend on the virtual rat’s speed and the arc-length of the trajectory taken while visiting
consecutive place cells.

Navigating To A Goal
So far we laid down the necessary foundation for the goal-directed navigation model by
showing:
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1. How grid cells emerge using head direction cell inputs and place cells emerge using
grid cell inputs.

2. How the presented place cell model is both selective and arbitrary.

3. How the place cell map can abstractly represent an environment’s topology using
PFC cortical columns as its main components.

4. 4. How a temporal recency effect can be used to connect PFC cortical columns by
Hebbian updates. In this section, we present our navigation model that can:

1. Pick a goal location by activating the corresponding place cells and PFC
reward cells.

2. Find the best next direction to proceed towards the goal location.

Goal Representation—We define a goal as a task specific spatial location in the
environment such that the virtual rat’s arrival to that location is considered success. The
virtual rat may reach a goal in two ways: i) By chance, during random exploration of a new
environment when the goal location is not yet represented in the place cell map, e.g.,
reaching a submerged platform in a Morris water-maze task during the first trial, ii) By
strategy, following a predefined deterministic strategy made possible by the virtual rat’s
recent interactions with the goal and the environment, e.g., reaching the same submerged
platform after several trials. In our navigation model we represent goals by PFC reward cells
and their respective reward signals r=[ri]i=1,...,k. In this context a place cell pk connected to
a PFC column with reward signal equal to 1 represents a goal location. Hence when the
virtual rat decides on a goal location it sets the corresponding reward cell’s reward signal
value to 1.

Forward Linear Look-Ahead Trajectory Probes—Once the reward signals are
activated, the virtual rat decides on what direction to proceed to reach the goal by probing
several forward linear look-ahead trajectory probes with different headings starting from its
current location with range ρprobe as shown in Figure 5. Note that each forward linear look-
ahead trajectory probe fully engages the head direction cell → persistent spiking cell → grid
cell → place cell circuit as if the virtual rat were physically moving along the probe
trajectory, but on a faster scale possibly in a couple of theta rhythm cycles, without any
behavioral locomotion. The location of the rat, during actual navigation or forward linear
look-ahead trajectory probing, is represented by shifts of the phase of individual persistent
spiking neurons relative to their baseline rhythm with frequency f. During the normal
navigation this baseline rhythm is in the theta band, 7Hz in our simulations. During forward
linear look-ahead trajectory probes each persistent spiking cell’s intrinsic baseline frequency
f jumps to around Gamma band, 200Hz in our simulations, while the velocity modulated
head direction input dj is scaled up significantly by increasing its respective scaling constant
bj. The scaling constant bj is inversely proportional to the duration of a forward linear look-
ahead trajectory probe. Hence manipulation of the scaling constant bj allows the model to
arbitrarily shorten the duration of a complete cycle of linear look-ahead trajectory probe
scan. For instance, at constant speed of 20 cm/s the virtual rat can travel 100 centimeters in 5
seconds on a straight line during actual navigation. During linear look-ahead trajectory scan
phase the same amount of distance (100cm) can be covered by a single probe in 100
milliseconds, Figures 6 and 7, if the scaling constant bj increases 50 times and in 10
milliseconds if bj increases 500 times. Furthermore, the number of linear look-ahead
trajectory probes might also be synchronized by the overall theta rhythm. For instance, if
theta frequency is 7Hz it would take less than 2 seconds to complete a complete scan of 20
probes at a rate of 2 probes per theta cycle. The use of theta rhythm during the model’s
forward linear look-ahead trajectory probing is supported by the presence of theta rhythm
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during forward replay in neurophysiological recordings (Johnson and Redish, 2007) and in
stationary animals attending to salient stimuli (Sainsbury et al., 1987). However, in our
simulations we do not use theta oscillation to synchronize the number of probes. Exceptions
to the virtual rat’s immobility during the probe may involve turning to different directions as
in vicarious trial-and-error (Johnson and Redish, 2007). The forward linear look-ahead
trajectory probes generate spiking activity that can be observed as the virtual rat “thinking of
following” a linear trajectory. In these simulations, during each forward linear look-ahead
trajectory probe the speed modulated head direction activity represents a constant radial
direction and speed (though they could conceivably be shifted). The constant speed
modulated head direction activity causes a linear shift in the phase of persistent spiking cells
that cause periodic activity of different grid cells. This causes sequential activation of place
cells that are on the linear trajectory coded by the grid cell phase as shown in Figure 7.

If the place cell(s) connected to reward cells with active reward signals (representing the
goal location) start to spike during a forward probe then the virtual rat proceeds in the
direction of the forward probe directly leading to the goal location. Note that activation of
goal place cell(s) by a forward probe conveys only directional information but not range. As
soon as any goal place cell starts to spike during the virtual rat’s translational motion the
goal is considered to be achieved.

The full engagement of the head direction cell → persistent spiking cell → grid cell →
place cell circuit during forward linear look-ahead trajectory probes requires a mechanism to
store the actual state of the network, i.e., oscillation phases, etc., before the probe and to
restore it after the probe. We assume this mechanism but do not explicitly model it.

One of the advantages of this probing approach is that it does not require the explicit long-
term storage of any directional information in the place cell map concerning the navigation
direction from one place cell firing field to another as proposed in some of the previous
approaches (Redish and Touretzky, 1998; Foster et al., 2000). Our model requires a very
short-term storage of the navigation network state during the forward probing. Furthermore,
our model does not require storage of fixed route vectors between place cells and goal
locations. Instead, the virtual rat can pick any place cell as a goal location and decide on its
next movement direction based on the topology of the place cell map. The discovered goal
direction is a close approximation to the real integrated direction from the virtual rat’s
current location towards the goal, thereby allowing the virtual rat to find shortcuts in the
environment.

Reward Signal Diffusion—Nevertheless, there is an important limitation with this
version of the goal-directed navigation approach: The goal place cell is not necessarily
guaranteed to be in the range ρprobe of the forward probes. Thus, a full scan might be unable
to activate the goal place cell hence forcing the virtual rat into random exploration. One way
of dealing with this issue is to expand the probe range, increasing a probe’s chances to reach
the goal location. However, this approach has the following caveats:

1. We could guarantee activation of the goal place cell by at least one probe if we
would be able to set the probe range to half the diameter of the graph induced by
place cell map’s topology layer’s lateral connections. But since the place cell map
topology is not necessarily planar any computed graph diameter would be
meaningless for this purpose.

2. A longer probe range would require a longer engagement of the head direction cell
→ persistent spiking cell → grid cell → place cell circuit which would be highly
prone to the degrading effects of accumulated signal noise in the absence of
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corrective inputs from other sensor modalities, e.g., visual, tactile, olfactory, etc.,
(Zilli et al., 2009).

3. The direction towards the goal might be obstructed.

We address these issues by allowing the virtual rat to reach the final goal in several steps
following a reward signal gradient obtained by a diffusion process.

The main idea of reward diffusion is to create a gradient in the place cell map allowing the
virtual rat to iteratively hill-climb through intermediate goals and finally reach the hill’s
summit, i.e., the final goal. Starting with the reward signal vector where only the reward
cells associated with the goal place cells have value 1 and all others 0, the diffusion process
update equations are as follows:

(11)

Where a(t) is the indicator vector for PFC reward cells visited at tth diffusion iteration, H() is
the Heaviside step function with H(0)=0, and α(t) is the diffusion decay value which can be
any monotonically decreasing function. The diffusion is implemented in a breadth-first
fashion visiting all connected reward cells of the place cell map. The adjacency matrix Wu is
not necessarily symmetric by construction. If preferred, this can be accomplished by an OR
operation between H(Wu) and its transpose. The maximum operator in Equation 11
guarantees that the reward signal is updated only during the first diffusion visit of each
reward cell, since the place cell map is not necessarily acyclic.

The diffusion process happens once just after the selection of a new goal location. After
diffusion, the virtual rat performs several forward linear look-ahead trajectory probes and
moves toward the probe direction that activates place cell associated with PFC reward cell
having maximum reward signal among all place cells activated by all probes. A probe is
parameterized by its egocentric direction θi and range ρprobe. More specifically, the direction
θ satisfying the following equation, where PROBEθ is the set of indices of the place cells
(equivalently of the PFC reward cells) activated by the probe emanating towards egocentric
heading θ, is selected as the next movement direction towards the goal:

(12)

While the number of unique probe headings during each full scan is an important parameter
of the model, directions activating maximum reward signal are agnostic to the actual order
in which the probes are executed. In our simulations, a complete forward linear look-ahead
trajectory scan involves 100 linear look-ahead trajectory probes with egocentric directions
(θ) uniformly distributed from -140 degrees to 140 degrees where 0 degrees is the virtual
rat’s egocentric heading angle. More details are in the section on Simulation Environment.

If the goal place cell is not in the range of the current forward linear look-ahead trajectory
probe, the virtual rat proceeds in the direction of the discovered probe for a fixed amount of
distance (4 cm) and then starts another scan. Since the reward signal gradient has its peak at
the final goal location by construction, the virtual rat is guaranteed to reach the goal after a
finite number of steps. When the virtual rat should initiate a new probe is an open question.
One potential answer is when the virtual rat encounters a novel stimulus, e.g., a novel path
in the previously experienced part of the environment, another answer is when the virtual rat
encounters decision points, e.g., turning points or junctions in a maze.
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The reward signal diffusion approach avoids the previously noted caveats as follows:

1. The probe range can be relatively small keeping the degrading effects of signal
noise accumulation at manageable levels.

2. The reward signal gradient naturally allows the virtual rat to pick the best next
direction circumventing obstructions in the environment.

Shortcut Discovery—It is a natural capability of the goal-directed navigation strategy
presented so far to find a shortcut to the goal location in an open field, i.e., in the absence of
any obstacles in the environment. The forward linear look-ahead trajectory probe direction
activating the goal place cell(s) provide the most direct way to the goal location from the
virtual rat’s current location by construction. If the range of the probe is not long enough to
activate the goal place cells from the virtual rat’s current location, then the virtual rat
follows a piece-wise linear trajectory towards the goal visiting transient waypoints using the
reward signal gradient. Even though the piece-wise trajectory is not guaranteed to be the
shortest path, it is guaranteed to be not longer than any other path taken previously to the
goal location from the same starting location.

The presented goal-directed navigation strategy is also capable of exploiting new shortcuts
in an environment with obstacles: First the virtual rat creates a representation of the
environment in its place cell map by random exploration. We assume that the virtual rat is
able to detect and avoid obstacles by using sensory inputs such as its whiskers and/or its
eyes. Once the virtual rat has sufficient information about the goal location it engages the
forward linear look-ahead trajectory probe mechanism to reach the goal. The virtual rat
probes only directions which are not obstructed in its immediate vicinity (2 cm) by an
obstacle. If we remove some obstacles or parts of obstacles from the environment then the
virtual rat would also be able to generate forward probes in the direction of the missing
obstacles. If any of these forward probes, which were previously blocked by the removed
obstacles, activates a place cell with maximum reward signal then the virtual rat will move
through the newly available shortcut to reach the goal location. One important caveat in this
approach is that if the range of the forward probes is less than the length of the new shortcut
then the virtual rat will not be able to exploit the shortcut since no probe will be able to
completely cross through the new opening. Recall that the space previously occupied by the
obstacle is not yet represented by any place cell, but the forward linear look-ahead trajectory
probe mediated by grid cell phase can move through regions of space not encoded by place
cells until the forward probe reaches a location previously coded by a place cell.

Simulation Environment
All simulations are coded and performed using MATLAB version R2009b. For all
simulations the simulations’ single iteration epoch is set to 0.02 seconds. Each place cell in
the place cell map receives inputs from three unique grid cells generating firing fields with
diameters around 20 cm, 40 cm, and 60 cm. During actual navigation the three grid cells
receive bijective inputs from three unique persistent spiking cells having frequency (f) 7Hz,
spiking threshold value (sthr) 0.9, and scaling factors (bj) 0.01, 0.004, and 0.002. During
forward linear look-ahead trajectory probes the three persistent spiking cells’ frequencies
jump to 200Hz and their scaling factors increase 100 times to 1, 0.04, and 0.02. Finally, the
three persistent spiking cells receive bijective inputs from three head direction cells with
preferred directions 0, 120, and 240 degrees. The recency threshold Δ is chosen such that
connections between all place cells visited in the last 3 seconds and the current place cell get
reinforced according to Equation 10. During each complete scan 100 forward linear look-
ahead trajectory probes sequentially occur at 2.82 degrees intervals starting from -140

Erdem and Hasselmo Page 12

Eur J Neurosci. Author manuscript; available in PMC 2013 March 07.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



degrees and ending at 140 degrees where 0 degrees is the virtual rat’s egocentric heading
angle. All forward linear look-ahead trajectory probe lengths are set to 200 cm.

Virtual Rat Model
We use a virtual rat for all our synthetic experiments. The virtual rat uses first order motion
dynamics, i.e., constant speed and no acceleration. It also has the capability of detecting and
avoiding obstacles in the environment by a limited line-of-sight mechanism. The line-of-
sight mechanism can only classify the virtual rat’s egocentric directions as obstructed if an
obstacle is closer than 2 cm to the virtual rat or as free if no obstacle is present in the range
of 2 cm. The virtual rat has two predefined behaviors: Exploration and target seeking. The
exploration behavior enables the virtual rat to experience its current environment by
iteratively picking random transient waypoints in its limited line-of-sight area. The target
seeking behavior directs the virtual rat to a given location in its current environment. We
would like to emphasize that even though the virtual rat uses a line-of-sight based obstacle
avoidance mechanism, the only inputs for the construction and utilization of the place cell
map for goal navigation purposes are the virtual rat’s velocity vectors. The speed of the
virtual rat throughout the simulation experiments is constant at 20 cm/s except during the
forward linear look-ahead trajectory probes during which the virtual rat is stationary.
Furthermore, the virtual rat performs a full scan of forward linear look-ahead trajectory
probes after each 4 cm of travel during test trials.

Results
In this section we provide the results obtained by conducting several synthetic experiments
using the proposed goal navigation framework in a simulated Morris water-maze (Morris et
al., 1982), a Tolman maze (Tolman et al., 1992), and a hairpin maze (Alvernhe et al., 2008).
More specifically, we report four sets of simulations. The first set uses simulated Morris
water-maze (Morris et al., 1982) where all conditions are ideal, i.e., no noise, no obstacles.
In the second set of experiments we inject noise in the head direction signals or the grid cell
signals independently and compare Morris water-maze escape latencies versus the amount
of noise. In the third and fourth sets of experiments, we show our system’s ability to exploit
the never before experienced shortcut paths in a simulated Tolman maze (Tolman et al.,
1992) and a hairpin maze (Alvernhe et al., 2008). In all trials we end the simulation and
classify it as success when: i) The virtual rat touches the goal platform or ii) the virtual rat
enters the firing field of a goal place cell. The virtual rat starts each set of experiments with
an empty place cell map and continues to update its place cell map during both the training
and test trials. The first trial of each set of experiments is a training trial where the virtual rat
is expected to discover the goal platform for the first time by random exploration. We do not
impose a time limit for the training trials. During each test trial we end the simulation if the
virtual rat is not able to find the goal platform in less than 30 seconds.

Morris Water-maze Simulations
We conduct the virtual Morris water-maze simulations with the goal platform placed in the
upper-right quadrant. The water-maze is a circular pool with diameter equal to 120 cm and
the escape platform is a square area with each side equal to 18 cm.

In the first set of experiments all signals in the head direction cell, grid cell, and place cell
circuit are ideal with no noise as shown in Figure 8. During the training trial of this
simulation, the virtual rat performs a random exploration of the Morris water-maze until it
finds the hidden platform. After the training trial, as shown in Figure 8 left, we test the
performance of the model for two conditions: i) Starting from the same location as the
training trial, as shown in Figure 8 center, ii) starting from several locations other than the
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one used in the training trial, as shown in Figure 8 right. After the random exploration of the
training trial, the virtual rat is able to find a direct route towards the platform with a single
scan, as expected, using the forward linear look-ahead trajectory probe approach for both
test conditions, because the probe range is long enough to activate the goal place cell
recruited during the training trial.

Noise Effect—The second set of experiments show the behavioral effect of head direction
cell or grid cell signal noise on the performance of the navigation model. We chose to inject
zero mean independent and identically distributed Gaussian noise with exponentially
increasing standard deviations to the head direction signals and the grid cell signals in
different experiments. We performed 100 trials for each noise standard deviation value and
place of injection, i.e., grid cells vs. head direction cells. The noise is injected only during
the forward linear look-ahead trajectory probes to simulate the absence of sensory inputs
which most probably would be used to correct the signal corruption. The signals are
noiseless during actual movement of the virtual rat. We aim to simulate the uncertainty in
the self-perceived orientation with the head direction signal noise and the uncertainty in the
spatial coding with the grid cell signal noise. The behavioral effects of the signal noise are
shown in Figure 9. Both the head direction signal noise and the grid cell signal noise
illustrations show their disruptive effects on the navigation performance. The navigation
model seems to be more resilient to the head direction signal corruption than the grid cell
signal corruption caused by the same amount of noise. This tendency becomes clear in the
uniformity test statistics plot of Figure 10. Note that while the relation between signal noise
and navigation model performance is also dependent on many other parameters, e.g., signal
thresholds, grid cell field spacing, place cell field size, etc., the presented analysis is a first
step in showing the relative effect of the signal noise at different stages of the navigation
circuit.

Tolman Shortcut Maze Simulations
The third set of experiments show the navigation model’s intrinsic ability to exploit never
before experienced shortcuts in the environment to reach a previously discovered goal
location using simulated versions of Tolman’s shortcut mazes (Tolman et al., 1992). In these
experiments we let ten virtual rats perform a single training trial each in the first Tolman
maze as shown in Figure 11 left. After the training trial each virtual rat performs a test trial
in the second Tolman maze as shown in Figure 11 right. During the test trials each virtual rat
is able to exploit the correct new shortcut to reach the goal location as shown in Figure 11
right. The forward linear look-ahead trajectory probe along a pathway not represented by
any place cell is made possible by the continuous periodic nature of the grid cell signals
coding the environment hence allowing short-cut discovery. As described in the methods
section, the forward linear look-ahead trajectory allows sequential probing of different
individual head directions, with each different head direction causing shifts in the phases of
persistent spiking cells to cause progressive shifts in grid cell activity representing different
locations in a line along that specific head direction. This allows the rat to sequentially
sample a series of different head directions corresponding to the direction of each arm of the
radial arm in the second Tolman maze, until it finds the direction that activates the goal
representation. The virtual rat can then select that specific head direction to correctly
approach the goal location.

Hairpin Shortcut Maze Simulations
The fourth set of experiments further demonstrate the ability of the navigation model to
discover and exploit never before experienced shortcuts in the environment using a Hairpin
maze (Alvernhe et al., 2008). In these experiments we let 10 virtual rats perform each a
single training trial in the Hairpin maze as shown in Figure 12. After the training trial each
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virtual rat performs five test trials in a maze with a specific shortcut opened between the
segments of the maze. Each hairpin maze used for the test trials allows a different shortcut
towards the goal platform as shown in Figure 12. All virtual rats are able to exploit the
shortcuts in all test trials.

Discussion
The model presented in this paper demonstrates goal-directed behavior for finding a spatial
goal such as a hidden platform in the Morris water-maze or food reward in the Tolman task
or the hairpin task, addressing the potential circuit mechanisms underlying the role of
different regions demonstrated by lesion data in rats. The circuit demonstrates how
mechanisms of goal-finding can be supported by spatial representations provided by grid
cells in entorhinal cortex (Steffenach et al., 2005; Moser and Moser, 2008), head direction
cells in the postsubiculum (Taube et al., 1990b, 1992), and place cells in the hippocampus
(Morris et al., 1982; Steele and Morris, 1999). The model also shows the selection of a route
through barriers such as the pathway to reward in the hairpin task (Alvernhe et al., 2008;
Derdikman et al., 2009). The spatial behavior of the model uses input from cells coding head
direction (Taube et al., 1990b) and speed (Burgess et al., 1998) to update a phase
interference model of grid cell activity (Burgess et al., 2007; Hasselmo, 2008) that then
drives the activity of simulated hippocampal place cells.

One important new feature of this model relative to other models is the sampling of forward
linear look-ahead trajectory probes through the environment, based on head direction
activity driving a progressive shift in spiking phase in the grid cell model. Sequential
readout of possible forward trajectories based on a sequential shift in head direction allows
look-ahead sampling of multiple possible forward trajectories to find the one that intersects
with the goal location. This could allow a rat to select its direction based on possible
pathways through the environment, even if the trajectory crosses a portion of the
environment that the rat has not previously visited. The forward trajectory readout could
underlie the spiking replay seen during rat waking behavior at choice points in a tone-cued
alternation task (Johnson and Redish, 2007). This type of forward trajectory readout could
also underlie replay during sleep (Skaggs and McNaughton, 1996; Louie and Wilson, 2001)
as modeled previously using a variation of this network (Hasselmo and Brandon, 2008;
Hasselmo, 2008). It is possible that the forward probes would include circuits for generation
of sequences of activity within the hippocampal formation (Hasselmo and Eichenbaum,
2005; Lisman et al., 2005).

The proposed navigation model is not dependent exclusively on the head direction cell–
persistent spiking cell–grid cell network. Any mechanism giving rise to the formation of
place cells and continuous coding of the space could potentially work seamlessly in the
proposed goal directed navigation model. Our aim here is to show that the previous grid cell
models based on phase interference are good candidates fulfilling both requirements: They
can be used to generate place cell representations and they have the ability to represent the
space in a continuous way allowing linear look-ahead along specific trajectories to evaluate
possible directions of movement in a task. This flexible sampling of possible forward
trajectories through the environment allows goal directed behavior in open field
environments with only sparse place cell coding and allows the finding of shortcuts in a
variety of different tasks.

The question of when to recruit place cells to represent locations is an open and important
question relevant to the proposed model’s performance. In the current implementation place
cells are recruited following an ad-hoc pseudo-random method which might not result in a
good representation. One potential idea is the use of salient contextual changes in the
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environment such as sharp turns or choice points (Fibla et al., 2010) together with coverage
constraints, i.e., guaranteeing minimum distance between closest place cells. This is one of
our current research areas to improve our model’s performance. Another question is when to
perform a full scan of forward linear look-ahead trajectory probes in order to find the next
direction to follow on the way to the goal location. Currently, the virtual rat performs a full
scan after each 4 cm travel during test trials. A plausible idea is to let the novelty in the
environment to trigger the forward linear look-ahead trajectory probes, e.g., the virtual rat
performs a new forward linear look-ahead trajectory scan when it encounters a novel path in
a familiar location. This way the virtual rat would also have a chance of discovering new
shortcuts by probing the novel potential routes.

The proposed model also offers some interesting predictions. If the hippocampal place cells
are formed by projections from the entorhinal grid cells and persistent spiking cells then the
forward linear look-ahead trajectory probing mechanism would suggest compressed re-play
activation of grid cells in the entorhinal cortex and of head direction cells whenever
hippocampal place cells show replay activity during sharp wave ripple activity in the
hippocampal EEG. Furthermore, due to the bijective connection between place cells and
PFC cells, the model would also predict such simultaneous spiking replay activity in the
PFC during sharp wave ripple activity in the hippocampal EEG. Another prediction is the
role of the PFC in the goal directed navigation. According to the suggested model, any
disruption, such as a lesion, to the PFC topology layer should also impair the ability of the
virtual rat to reach the goal location.

Another new feature of the model concerns the interaction of trajectory planning with
barriers in the environment. The inclusion of barriers in the environment has been shown to
alter the firing of hippocampal place cells (Muller and Kubie, 1987) and entorhinal grid cells
(Alvernhe et al., 2008; Derdikman et al., 2009). The framework described here shows how
the selection of a trajectory that reaches the goal location while avoiding the barrier
locations could result in differential place cell representation formed in environments with
barriers. Similar to many previous models, this model requires exploration of the
environment for creation of place cell representations, but can discover new shortcuts
between these place cell representations by forward linear look-ahead trajectory probes
through regions without place cells. By using random distribution of place cells, and absence
of place cells in a new short cut, our simulations clearly show the importance of being able
to use the grid cells to bridge across gaps in the map of the environment provided by place
cells and PFC.

The mapping of space during exploration is similar to many previous models (Touretzky and
Redish, 1996; Burgess et al., 1997; Redish and Touretzky, 1998; Foster et al., 2000). In
some cases, these models have used Hebbian modification of concurrently active units
(Redish and Touretzky, 1998), in other cases they have gated the synapse modifications
based on a reward signal influence (Burgess et al., 1997; Arleo and Gerstner, 2000),
sometimes using temporal difference learning (Foster et al., 2000; Hasselmo and
Eichenbaum, 2005; Zilli and Hasselmo, 2008). The current model has the advantage that it
does not require association of each place cell with the direction of actions leading to other
place cells or the goal location. Instead, this model can compute the direction by forward
sampling of possible trajectories through the environment.

The forward scanning could also provide a mechanism for greatly increasing the speed of
exploration of the environment, which is an important problem for creation of maps (Kollar
and Roy, 2008). This could be accomplished by allowing the scanning of forward look-
ahead trajectories during exploration, and creating place cells and associations between
place cells during the activation of place cells by the grid cell network by scanning of
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forward trajectories during exploration. In addition, if there is some mechanism for internal
computation of the change in visual feature angle during forward scanning, then the network
could form associations between the place cells and visual features during exploration even
for unvisited locations. This model of spatial behavior using grid cells is well-suited as a
biologically-inspired model for Simultaneous Localization And Mapping (SLAM) in robotic
navigation (Milford et al., 2004; Eustice et al., 2006; Guanella et al., 2007; Milford, 2008;
Fibla et al., 2010; Duff et al., 2011). As shown in the simulations, the model can perform the
Morris water-maze in the absence of noise, selecting the correct trajectory to the goal
location from starting points that were not previously visited. The model shows sensitivity to
noise in the grid cell representation indicating the need for low levels of noise during
probing of forward look-ahead trajectories, and the need for resetting of grid cell phase by
environmental stimuli (Burgess et al., 2007). This resetting could involve feedback from the
hippocampal formation where neuronal responses are influenced by sensory features of the
spatial environment (Leutgeb et al., 2007; Rennó-Costa et al., 2010).

A similar work to ours addressing the mechanisms of goal directed navigation is by Duff et
al. (2011) where the model is mainly rule based where sensory inputs trigger actions and the
result of the triggered actions are fed back through the network to reinforce the chain of
actions leading to the goal state. One of the main differences between (Duff et al., 2011) and
our model is the need for multiple trials for the learning rules to converge for a particular
goal contingency. When the goal contingency switches, e.g., changing the goal location
from left to right arm of a T-maze, the system parameters have to converge to the new fixed
point following several trials. Our model, however, is able to perform the goal finding task
without the need of additional training trials even if the the goal location changes once the
environment’s spatial topology is sufficiently acquired. This difference is mainly based on
the fact that while their work relies mainly on the learned rules using past experience, our
model relies on the sampling of future states given a gradient on the state space, i.e., the
reward diffusion. Furthermore, even though (Duff et al., 2011) do not provide any shortcut
finding analysis it seems like their model would not be able to exploit shortcuts in the
environment. In a recent work (Fibla et al., 2010) propose a goal directed navigation model
utilizing gradient fields for path planning towards goal locations. In (Fibla et al., 2010) the
robot moves in the direction with the highest gradient value similar to our model where the
gradient is represented by the diffused reward value through simulated PFC cells. However,
there are two main differences between (Fibla et al., 2010)’s model and our model: i) In
their model the place cell map necessary to construct the gradient fields is required to be
dense (almost overlapping). Otherwise, potential gaps between gradient fields centered at
place cell firing fields might force the robot to stop or to random exploration and ii) (Fibla et
al., 2010) model would not be able to exploit never before experienced shortcuts in the
environment since the gradient field is strictly confined to the existing place cell map.
Hence, any area of the environment not represented by any place cell will not have any
gradient value associated.

The primary input to the grid cell models utilizes only heading angle and speed of
movement, which is very similar to the data obtained from inertial sensors in a robot. In
addition, grid cells are proposed to drive hippocampal place cells that code individual
locations (McNaughton et al., 2006; Rolls et al., 2006; Solstad et al., 2006; Hasselmo, 2008;
Almeida et al., 2009, 2010) analogous to grid mapping in robotics (Moravec and Elfes,
1985; Fox et al., 1999; Milford, 2008). The technical challenge is bridging the spatial
representations that autonomous systems use and the representation created by grid cells in
the entorhinal cortex and place cells in the hippocampus. Grid cells show stable firing over
long time periods (10 min) even in darkness, indicating robust path integration despite the
noise inherent in neural systems which is an extremely challenging feature for the state-of-
the-art robotic navigation. If the biological mechanisms of grid cells could be implemented
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in robots they would provide a dramatic advance over current capabilities of autonomous
systems.
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PFC Prefrontal Cortex

LCM Least Common Multiple

mPFC Medial Prefrontal Cortex

SLAM Simultaneous Localization And Mapping
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