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Abstract
Two opposing hypotheses were proposed to explain the lifecourse pattern in the effect of
education on mortality: “cumulative advantage,” where the education effect becomes stronger
with age, and “age-as-leveler,” where the effect becomes weaker in old age. Most empirical
studies bring evidence for the latter hypothesis but the observed convergence of mortality patterns
could be an artifact of selective mortality due to unobserved heterogeneity. A simulation shows
that unobserved heterogeneity can bias the estimated effect of education downward so that the
cohort-average effect of education decreases in old age regardless of the shape of the underlying
subject-specific trajectory.
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Does the effect of education on mortality increase with age or does it attenuate in old age?
The increasing pattern is consistent with a theoretical perspective referred to as “cumulative
advantage,” which suggests that socioeconomic inequalities in health increase with age. The
opposing “age-as-leveler” pattern describes converging mortality hazards in old age and is
better supported by empirical observations.

Vaupel (1979, 1985a, 1985b) showed that unmeasured heterogeneity in a cohort biases the
shape of the cohort mortality hazard. Heckman and Singer (1984) and Trussell and
Rodríguez (1990) described how heterogeneity systematically biases estimates of structural
parameters in survival models. Social epidemiological literature on determinants of
mortality has not, however, considered the extent to which unobserved heterogeneity can
affect the estimates of covariates such as education on mortality.

A simple simulation will show the possible role of unmeasured heterogeneity on the effect
of education on mortality across age: age-specific effects of education can increase for every
individual but decrease for the cohort as a whole. This finding lends indirect support to the
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“cumulative advantage” hypothesis and highlights how unobserved heterogeneity can distort
inferences about subject-specific processes from population-average estimates (Vaupel and
Carey, 1993).

Review of the literature
Under the “age-as-leveler” hypothesis, the effect of education on health and mortality
declines among the elderly (House et al., 1990, 1994). The weaker effect in old age is
hypothesized to be caused by two main factors. First, government support to the elderly in
the form of Social Security payments and Medicare is believed to counteract the
socioeconomic inequalities growing during adulthood. Second, biological frailty in later life
is assumed to level socioeconomic differences in health (House et al., 1994; Markides and
Black, 1996).

The explanations for the narrowing economic and health care inequalities, however, have
not been demonstrated empirically. Social Security has not reduced socioeconomic
differentials among the elderly (Easterlin et al., 1993) and Medicare has not diminished
socioeconomic differences in health care access (Crystal et al., 2000).

Under the alternative hypothesis, referred to as “cumulative advantage,” the effect of
education on health increases with age whereby the socioeconomic disadvantages and
advantages cumulate gradually to produce an increasingly diverse cohort (Dannefer, 2003;
O’Rand, 2001). Mediators of the education-health association include income and wealth,
health behaviors such as smoking, and psychosocial stress. Crystal and Shea (1990),
Easterlin et al. (1993), and O’Rand (1996) described the gradual growth of income
inequality in adulthood and old age: the effects of Social Security and other government
support to the elderly are outpaced by private income and wealth accumulation. The
detrimental effects of risky health behaviors such as smoking accumulate over time (Ferraro
and Kelley-Moore, 2003). A consistent higher exposure and vulnerability to chronic stress
has significant deleterious health consequences (Lynch and George, 2002; McEwen, 1998;
Turner et al., 1995). All these mediators are strongly socially stratified and may explain the
widening health differentials within cohorts.

The “cumulative advantage” perspective has counterparts in various social science
disciplines because as cohorts age, they tend to show increasing heterogeneity with respect
to many characteristics (O’Rand, 1996). This perspective has been successfully employed in
lifecourse studies for questions ranging from the faster health declines of disadvantaged
minority adults (Ferraro and Farmer, 1996), differentials in children’s academic skills which
increase with age (Scarborough and Parker, 2003), growing wage inequalities (Bernhardt et
al., 2001), to the Matthew effect which describes the diverging trajectories of academic
careers (Merton and Zuckerman, 1968).

While the “cumulative advantage” hypothesis is theoretically well-founded and resonates in
social sciences, most health research has supported the “age-as-leveler” hypothesis (Ferraro
and Kelley-Moore, 2003). Kitagawa and Hauser (1973) found that the differentials of
mortality with respect to education were considerably smaller for people 65+ compared to
younger adults. Using the National Longitudinal Mortality Study, others found a similar
pattern of smaller mortality differentials in older age (Backlund, Sorlie, and Johnson, 1996;
Elo and Preston, 1996; Preston and Elo, 1995; Sorlie, Backlund, and Keller, 1995). Using
different data, House and colleagues (1990, 1994), Christenson and Johnson (1995),
Feldman et al. (1989), Kunst and Mackenbach (1994), Mustard et al. (1997), and Zajacova
(2006) also found smaller effects of education on mortality in old age in U.S. and Europe.
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In contrast, little empirical support has been found for the “cumulative advantage””
perspective. Ross and Wu (1996) explored how educational attainment affects changes in
health over the course of one year and found that adults with less education evidenced
steeper declines in health than the better educated. Unfortunately, Ross and Wu did not
attempt to reconcile their findings with the literature, and they did not explain the observed
divergence. Lynch (2003) employed hierarchical models to analyze mortality rates among
adults and concluded that mortality selection and cohort effects could explain the observed
convergence of mortality hazards by education in old age. His analysis suggested that at the
individual level the effect of education on health increases during the lifecourse. A similar
conclusion was reached by Lauderdale (2001) who used indirect estimation with census data
and found that the effect of education on survival becomes stronger with age.

The missing link: unobserved heterogeneity
Vaupel and Yashin (1985b) proposed that unmeasured heterogeneity be considered when
theoretical predictions conflict with observed lifecourse patterns. Such inconsistency occurs
here. Our contention is that the observed convergence of mortality hazards by education in
old age may be an artifact of unobserved heterogeneity in risks of mortality.

Heckman and Singer (1984), and Trussell and Richards (1985) showed that failing to adjust
for cohort heterogeneity in hazard models may severely bias estimates of structural effects in
survival models. Moreover, unlike in linear regression, in hazard models the bias occurs
even when the omitted sources of variation are uncorrelated with the predictors included in
the model (Rodríguez, 1994).

To what extent does unmeasured heterogeneity bias the estimates of the effect of education
on mortality in hazard models? We show that given a set of plausible assumptions and
parameters, an underlying individual-level “cumulative-advantage” lifecourse process can
be observed as the opposite “age-as-leveler” pattern of converging cohort death rates at the
oldest ages.

Simulation
Suppose we measure the mortality risks for a cohort comprised of two groups of individuals,
one with a low educational attainment and another with a high educational attainment. The
population-average mortality risk at age x for the low education group is denoted by μ̄l(x)
and the risk for the high education group is μ̄h(x). The horizontal bars describe any
population-average factor. The population-average effect of low education on mortality at
age x, β̄(x), is the ratio of these two mortality hazards:

(1)

The subject-specific effect of education is defined correspondingly as the ratio of age-
specific mortality hazards. The effect β(x) is specified as multiplicative on the baseline high-
education mortality hazard at age x:

(2)

The central question is to what degree does β̄(x) represent the subject-specific effect β(x)
when additional heterogeneity in the cohort mortality risk, also referred to as frailty, is not
accounted for. Frailty, denoted by z, is defined as multiplicative on the baseline mortality
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hazard and assumed to remain constant across individuals’ lives. An individual whose frailty
z = 1 is referred to as the standard individual.

We simulate a cohort with two levels of educational attainment, and follow its mortality
process from age 25 to 100. We specify three parameters:

1. the subject-specific effect of low education relative to high education on the
mortality risk at age x, β(x);

2. the initial distribution of frailty f(x) in each education group, as a gamma
distribution with a mean of 1;

3. the mortality hazard function for the standard individual in the high education
group, μh(x).

The simulation requires an additional parameter, denoted by π, which specifies the
proportion of the cohort assigned to the high-education group at the start of the simulation.
This parameter is needed to calculate the cohort survival schedule in order to find a set of
plausible values for the baseline mortality function.

Using Eq. (2), we calculate the mortality hazard function for the standard individual in the
low education group μl(x). From these two standard-individual hazard functions and the
distribution of frailty f (z), we calculate the cohort-average mortality hazard functions for
both education groups, μ̄h(x) and μ̄l(x), using identities developed by Vaupel et al. (1979;
1985a; 1985b) and summarized in Appendix A. The ratio of the two functions equals the
population-average definition for the effect of education β̄(x), which we can then compare to
the predetermined subject-specific effect β(x).

The mean frailty in each education group at the start of the simulation equals the standard
individual’s frailty (z̄(0) = 1) and the average mortality hazard function in each group equals
the respective standard individual’s hazard function. As the cohort ages, individuals at
higher frailty levels die at a faster rate than individuals with a lower frailty. This mortality
selection causes the cohort-average hazard to increase more slowly than the individual
hazards. Appendix A describes the process more formally and Figure 3 shows two examples
of the subject-specific and average-hazard rates in frailty-heterogeneous cohorts.

The mortality selection process occurs more rapidly in the low education group compared to
the high education group. This is because the rate of mortality selection is proportional to
the standard-individual hazard rate, which is higher in the low education group. The
difference in the rates of mortality selection between the two groups causes μ̄l(x) to
converge to μ̄h(x). Because the cohort effect of education β̄(x) is determined by the ratio of
these two hazard functions, it will gradually decline with age. The goal here is to explore the
amount of convergence given a set of plausible parameter values.

The simulation covers ages 25 to 100 so x = 0 represents the starting age of 25. We proceed
conditionally on survival to 25 and assume that the assignment to one of the two education
levels is completed at that age. Individuals remain at their respective levels of education and
frailty throughout life. The distributions of education and frailty in the cohort are not
correlated, that is, the distribution of frailty f(z) is the same in both education groups at the
start of the simulation. This is an important assumption: in regression models, estimates of
the effects associated with predictors are unbiased when the residual is uncorrelated with the
predictors. In survival models, the orthogonality assumption does not guarantee unbiased
estimates.

Zajacova et al. Page 4

Math Popul Stud. Author manuscript; available in PMC 2013 February 05.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Parameter values
For the baseline hazard μh(x) we sought a functional form that, when combined with the
other model parameters, would yield a cohort mortality hazard function μ̄(x) which is
comparable to the schedule in the actual U.S. population. The U.S. survival data are based
on the 2002 U.S. life table (Arias, 2004). We used the inversion formula Eq. (18) presented
in Rodríguez (1994) to calculate the standard-individual hazard functions for each education
group from the U.S. data. From these standard-individual hazard rates we calculated the
cohort mortality hazard μ̄(x) and compared it with the U.S. data. The calculations are
described in Appendix C. The first plot in Figure 1 shows that the simulated cohort hazard
function matches the data well. The second plot shows the corresponding standard-
individual hazard rates in the high education and the low education groups.

The second component of the simulation is β(x). We examine three lifecourse trajectories of
the effect β(x) on mortality:

i. a constant effect of education across age;

ii. a decreasing effect (corresponding to the “age-as-leveler” pattern);

iii. an increasing effect (corresponding to the “cumulative advantage” pattern).

Sorlie, Backlund, and Keller (1995) found that men under 12 years of schooling had
mortality risks 1.9 times as high as men with 12 or more years of schooling. Young men
with the least education (0–4 years) had mortality risks 3.2 times as high as men with
graduate degrees. Elo and Preston’s (1996) results suggested a mortality risk for the low
education group 1.7–1.8 times as high as that for the high education group. Feldman et al.
(1989) found that among middle-aged men, the mortality risk was twice as high among men
with 0–7 years of education, and 1.6 times as high among men with 8–11 years, as compared
to their counterparts with a higher educational attainment.

We consider a comparable set of values for β(x). For the constant trajectory, β = 1.5 and 2.
For the increasing and decreasing trajectories, we use linear functions β(x) = β0 + β1x with
an average value of 2. For the increasing trajectory, β0=1.5 and β1=1/75. For the decreasing
trajectory, β0=2.5 and β1=−1/75.

The third component is the distribution of frailty at the start of the simulation f(z), specified
as a gamma distribution with mean one and shape parameter k, which is the inverse of the
variance. Values of k between 2 and 8 were considered by Vaupel et al. (1979) as plausible
for describing the mortality process of human populations. Horiuchi and Coale (1982)
suggested k = 4 as optimal for human aging, while others considered a higher variability of
frailty. Manton, Stallard and Vaupel (1981) and Manton and Stallard (1981) proposed k in
the range of 0.6–3.9. We consider more conservative values of k = 2, 4, and 8. Figure 2
shows gamma distributions with a mean of 1 and these three values of the parameter k.

Results
Table 1 presents the population-average effect of education on mortality β̄(x) for a constant
β = 1.5 and 2 and three values of the frailty parameter k: 2, 4, and 8. For instance, when
β=1.5 and k=2, the cohort-average effect of education is 50% higher mortality for the less
educated at age 25, but only 23% higher mortality at the oldest ages.

The more heterogeneity there is in the cohort, as determined by a smaller k, the greater is the
disparity between the subject-specific effect β and the population-average effect of
education β̄(x). The level of β also influences the disparity because a higher β causes the
mortality selection to occur at a faster rate.

Zajacova et al. Page 5

Math Popul Stud. Author manuscript; available in PMC 2013 February 05.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 4 displays the trajectories of β̄(x), juxtaposed against three underlying subject-
specific education effect functions: constant, decreasing, and increasing, for different levels
of the frailty parameter k: 2, 4, and 8. The first plot shows results for a constant β =2.
Throughout young adulthood and middle age, the baseline mortality hazard is fairly low, so
there is little mortality selection affecting the cohort. The subject-specific and population-
average effects β and β̄(x) are virtually indistinguishable. Later, an increased rate of
mortality hazard—and mortality selection—causes the two effects to diverge so that the
cohort effect of low education on the mortality hazard declines from 2 in early adulthood to
1.16–1.43 in old age, depending on the amount of residual heterogeneity in the cohort.

The second plot of Figure 4 depicts a decreasing β(x) function, which corresponds to the
“age-as-leveler” hypothesis. The difference between the subject-specific and cohort function
is sizeable; at the oldest ages where the subject-specific effect of education is β = 1.5, the
cohort-average effect is in the range of 1.05–1.21, depending on the amount of
heterogeneity. However, the cohort lifecourse pattern, like the subject-specific trajectory,
declines with age.

The third plot of Figure 4 shows a “cumulative advantage” pattern for β(x) increasing with
age. The cohort-average trajectory is different: it is not linear but grows through middle age
and decreases at older ages. Throughout most of adulthood, the subject-specific and
population-average effects are close to one another. For example, at age 50 and k = 4, the
subject-specific and population-average effects of education are 1.83 and 1.82, respectively.
At the oldest ages, however, while the subject-specific effect increases to 2.5, the
population-average effect declines sharply to only 1.24–1.61, depending on the parameter k.

The nonlinear population-average trajectories of the effect of education apparent in the third
plot are similar to the lifecourse shape observed by House et al. (1990, 1994). While these
authors considered this shape as inherent, we suggest that it may be an artifact of mortality
selection due to unobserved heterogeneity.

Conclusion
Literature on the lifecourse pattern of the relationship between education and mortality is
marked by a disparity. On one hand, a persuasive cumulative advantage hypothesis suggests
that the effect of education on mortality increases with age. This hypothesis offers a
coherent explanation for the “fanning out” mechanism and also resonates with lifecourse
theories on various cohort characteristics in other social science disciplines (Becker, 1975;
Dannefer, 2003; Merton and Zuckerman, 1968; O’Rand, 1996). On the other hand, empirical
evidence tends to support the opposite age-as-leveler perspective, according to which
mortality hazard rates for groups with different levels of educational attainment converge as
the effect of education weakens in old age (Adler et al., 1993; Kitagawa and Houser, 1973;
Sorlie, Backlund, and Keller, 1995).

We explored how unobserved heterogeneity could explain the disparity between theory and
data. We simulated a frailty-heterogeneous cohort with various trajectories of subject-
specific effects of education on mortality. We used mathematical relationships due to
Vaupel et al. (1979, 1985a, 1985b) to calculate and compare corresponding population-
average trajectories of the effect of education. Given a set of plausible assumptions and
parameter values, we find that unobserved heterogeneity can cause a convergence of
mortality hazard rates between high and low education groups in old age. This convergence,
corresponding to the age-as-leveler hypothesis, can be observed at old ages regardless of
how the underlying subject-specific effect of education changes with age—whether the
trajectory is constant, decreasing, or increasing. Even a moderate amount of residual
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heterogeneity in the cohort causes the “cumulative advantage” lifecourse pattern to appear
as the opposite, converging “age-as-leveler” pattern in old age.

The study has several limitations. Our conclusions are based on a simple model which fails
to capture the complexity of the mortality process in a real cohort. The results are
constrained by the assumptions underlying the model structure and by the values chosen for
the model parameters. For example, we assume frailty to be gamma-distributed. While this
is perhaps the most frequently used distribution, alternative specifications can be employed
as well, such as an inverse Gaussian. For the model parameters, we use estimates from the
literature. However, they are unobservable so we cannot be certain of how well they
represent the values in the actual population.

Survival models accounting for residual heterogeneity are employed in medical science and
epidemiology but little in social science. Frailty models can now be estimated in various
statistical software applications; for instance, Stata has powerful facilities for fitting
parametric and semi-parametric survival models with gamma or inverse Gaussian-
distributed heterogeneity. Other programs such as aML provide more flexibility in
specifying the baseline hazard, with linear splines and mixture distributions. S-plus
incorporates frailty even in proportional hazard models and Stata will likely offer a
comparable routine soon. Gutierrez (2002) discusses survival models with frailty and their
implementation in Stata. Examples of empirical studies with frailty include Keiding et al.’s
(1997) estimation of the effects of several predictors on survival after an operation for
malignant melanoma or Vaida and Xu’s (2000) study of the effect of experimental drug
treatment on time to death from lung cancer.

However, the essential identification problem remains. For single-spell data, one must make
assumptions about the shape of the distribution of unobserved heterogeneity or the shape of
the underlying mortality hazard (Heckman and Singer, 1984). A survival model without
covariates cannot distinguish between unobserved heterogeneity and the shape of the
subject-specific mortality hazard. A model with covariates such as education cannot
distinguish between heterogeneity and changes in the effect of the predictor over time. Two
converging hazards could result from a weakening effect of a predictor across age or faster
mortality selection due to heterogeneity in the higher risk groups. These two explanations,
which are equally consistent with empirical observations, cannot be distinguished from
single spell data.

An alternative approach to incorporating unobserved heterogeneity is the multivariate
survival model (Andersen et al., 1997; Rodríguez, 1994). These models are suitable for
multiple observations of an event, using either sibling or twin data, or multiple occurrence of
an event for an individual. These models rely on the strong assumption that multiple
occurrences have the same frailty, which solves the identification problem. Excellent
examples include Guo’s (1993) classic study of factors affecting childhood mortality in
Guatemala using sibling data, Gutierrez’ (2002) analysis of infection recurrence, or
Andersen et al.’s (1997) cogent discussion of shared-frailty models.

There is no simple strategy to address the problem of heterogeneity in the mortality
experience of a cohort. Our simulation provided indirect support for the cumulative
advantage theory by showing that the converging age-as-leveler pattern of the effect of
education on mortality can be an artifact of unobserved heterogeneity in the cohort.
Unobserved heterogeneity should be considered in research on socioeconomic determinants
of health in the life course.
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Appendix A: The Mortality Process in a Cohort with Heterogeneous Frailty
We review basic identities describing the survival and mortality schedules of a cohort with
heterogeneous frailty. A comprehensive discussion is in Vaupel et al. (1979, 1985a, 1985b)
and Hougaard (1995).

The mortality process can be described by three interrelated functions: the survival function
S(x), the mortality hazard μ(x), and the cumulative hazard H(x). The survival curve S(x)
represents the probability of surviving to age x. It is a strictly decreasing function, reflecting
the gradual dying out of a cohort. The mortality hazard is defined as the instantaneous death
rate at age x, and calculated as

(3)

The cumulative mortality hazard at age x is

(4)

In Eqs. (3) and (4), age is the only predictor of mortality and all individuals of a given age
are implicitly assumed to have the same hazard μ(x). The assumption of cohort homogeneity
is implausible (Manton, Stallard, and Vaupel, 1981). Many research efforts in health
analysis focus on identifying factors affecting individuals’ mortality risks: sex, race, income,
or education (Trussell and Rodríguez, 1990). The residual part of the variation in the
likelihood of dying comprises all unobserved genetic and nongenetic variability. This
mixture of factors is called frailty and denoted by z.

Frailty z is described by a random variable defining an individual’s mortality risk as
possibly different from other individuals’ mortality risks. An individual with a frailty level
z=1 is called a standard individual, with the mortality hazard denoted by μ(x, 1) or μ(x) for
parsimony. Frailty is defined as multiplicative on the baseline hazard:

(5)

From definition (4), frailty is also multiplicative on the cumulative hazard:
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(6)

The survival function for an individual at frailty level z is determined as

(7)

Frailty is usually assumed constant within individuals throughout the lifecourse—an
individual at any given frailty level at birth remains at that level throughout life. For
example, an individual with a frailty level z=2 has twice as high a mortality risk at any age,
compared to the standard individual.

Eq. (5), (6), and (7) describe the subject-specific mortality and survival functions in a frailty-
heterogeneous cohort. However, these trajectories are unobservable; for any individual, the
only observed value is the age at death. The ages at death for all individuals in a cohort can
be used to find the average mortality rate for a cohort at age x, denoted μ̄(x). The cohort
mortality rate is the mean mortality rate for survivors at each frailty level z:

(8)

where f(x, z) denotes the distribution of frailty in the cohort at age x. Using Eq. (5), we write
μ(x, z) in the numerator as zμ(x). Then

(9)

where the integral ∫z zf (x, z)dz represents the mean value of z at age x, z̄(x). From the
definition of frailty as a proper random variable, the p.d.f. in the denominator integrates to
one: ∫z f (x, z)dz = 1. Hence,

(10)

According to this identity, referred to as the fundamental theorem of heterogeneity, the
average mortality hazard for a cohort at age x is the product of the standard individual’s
mortality hazard μ(x) times the average frailty of survivors in the cohort z̄(x).

Eq. (10) contains an identification problem. The left-hand side of Eq. (10), μ̄(x), represents
the population-average mortality rate. On the right hand side of Eq. (10), there are two
unobserved functions: the mortality hazard function for the standard individual and the
average level of frailty in the cohort at age x. In order to determine these two unobserved
quantities from the one available function, we impose a particular distribution of frailty z.

A gamma distribution for frailty was shown to be an analytically tractable choice for the
study of mortality selection processes (Manton, Stallard, and Vaupel, 1981; Scheike and
Jensen, 1997; Zahl, 1997). A random variable z is gamma-distributed if its probability
density function is
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(11)

with mean  and variance .

Gamma distributions take different shapes with respect to the share parameter k. Without
loss of generality for calculating the effects of heterogeneity on the mortality process, we set
the mean frailty at the start of the simulation z̄(0) = 1 by constraining the scale parameter λ
to be equal to the shape parameter k (Vaupel, Manton, and Stallard, 1979). This constraint

also simplifies the initial variance to . Figure 2 shows such gamma probability
density functions, with k = 2, 4, and 8, the values used in the simulation. When k = 2, the
distribution is positively skewed. As the parameter k increases, the distribution becomes
similar to a Gaussian one. As k → ∞, the variance of the distribution approaches zero,
describing a homogeneous cohort.

Vaupel et al. (1979) showed that when the frailty at the origin is gamma-distributed with a
mean of 1, the frailty of the survivors to age x is also gamma-distributed, with parameters (k
+H(x), k). Two equalities for the mean frailty in the cohort z̄ at age x hold:

(12)

and

(13)

Eq. (12), together with the fundamental theorem of heterogeneity (10), show how the
population-average mortality hazard μ̄(x) depends on the baseline hazard and the gamma
parameter k:

(14)

Eq. (13) can be used to find the average cohort survival curve. Figure 3 shows two examples
of the divergence of the cohort mortality trajectories μ̄(x) from the mortality schedules of
the standard individuals μ(x). Frailty z is gamma-distributed in both examples, and the
subject-specific mortality hazard rates are constant in age and Gompertz, respectively.

Appendix B: The Relationship Between the Subject-Specific and the
Population-Average Effects of Education β(x) and β ̄(x)

β̄(x) is calculated as the ratio of the average mortality hazard rates in the low to high
education groups – see Eq. (1). From the theorem of heterogeneity (10) and the definition of
the subject-specific effect of education in Eq. (2), we get

(15)
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The ratio z̄l(x)/z̄h(x) is referred to as the attenuation ratio (Rodríguez, 1994). It quantifies the
dependence of the population-average effect of education on the average frailty levels in the
two education groups across age. At the start of the simulation, the average frailty in each
education group is z̄l(x) = z̄h(x) = 1 by design, so the population-average and subject-
specific effects of education are the same. As the cohort ages, the mortality selection process
occurs more rapidly in the low education group, and the average frailty in that group
declines faster than in the high education group. As a result, the attenuation ratio decreases
and the population-average effect of education β̄(x) becomes gradually smaller relative to
the underlying subject-specific effect β(x).

Using Eq. (12), we express the attenuation ratio with model parameters k and H(x):

(16)

Eq. (16) is valid for any function β(x), and for examples when β(x) is linear we refer to
Figure 4. Of particular interest is the case when β(x) increases monotonically and tends to a
limit greater than 1 or tends to infinity. Then β̄(x) may be decreasing for large x. When β(x)
is a constant function β0 > 1, Eq. (16) is expressed as

(17)

A simple calculation shows that β̄(x) = β0 for x = 0 and tends monotonically to 1 as x tends
to infinity.

Appendix C: Calculating the Baseline Hazard Rate μh(x)
We selected the baseline hazard rate μh(x) so that, with the other model parameters, the
simulated cohort mortality function μ̄(x) approximates the U.S. population schedule based
on the 2002 U.S. life table (Arias, 2004). From the survival data at ages 25–100, we
calculated the U.S. mortality rates at ages 25.5, 26.5,…, 99.5, using Eq. (3). We set the
additional parameters for the simulated cohort to β = 2, k = 4, and the proportion of the
cohort comprising the high education group at the start of the simulation π = 0.5.

To calculate the standard-individual hazard function μ(x) from the observed population-
average hazard, we assumed a gamma-distributed frailty and used the inversion formula
(Rodríguez, 1994):

(18)

where k* denotes the shape parameter for the distribution of heterogeneity in the cohort.

We account for observed (two levels of educational achievement) and unobserved (frailty)
heterogeneity. The total variance of heterogeneity in the cohort had to be larger than the
variance of unobserved heterogeneity in each education group, or k* < k. We found that for
k = 4 and β = 2, k* = 3 provided a good fit to the data. The subject-specific hazard rate μ(x)
calculated from Eq. (18) was multiplied by 2/3 to obtain the baseline standard-individual
hazard rate for the high education group μh(x), and by 4/3 for the low education baseline
rate μl(x). These two functions are shown in the second plot in Figure 1.
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We calculated the simulated cohort survival curve z̄(x) and the mortality rate μ̄(x) from
these two standard-individual hazard rates, in order to compare them with the 2002 U.S.
data. The cohort survival function is a function of the survival schedule in each education
group and the initial proportion of the groups in the cohort:

(19)

or

(20)

when π = 0.5. Expressed in terms of the parameter k and the standard individuals’
cumulative hazard rates Hh(x) and Hl(x),

(21)

Hh(x) and Hl(x) were approximated by summing up the respective hazard rates μh(x) and
μl(x). Finally, from the simulated cohort survival function z̄(x) we calculated the cohort
hazard rate μ̄(x) using Eq. (3). Figure 1 shows the close match between the U.S. mortality
rate and the simulated cohort schedule.

Zajacova et al. Page 14

Math Popul Stud. Author manuscript; available in PMC 2013 February 05.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 1.
The U.S. and simulated cohort hazard functions and the simulated standard-individual
hazard 0.4 functions. The first plot shows mortality hazard functions for the 2002 U.S.
population at ages 22.5, 23.5, …, 99.5 and the schedule for the simulated cohort, μ̄(x). The
second plot shows the hazard functions for simulated standard individuals in the high and
low education groups, μh(x) and μl(x).
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Figure 2.
Gamma density functions where the mean equals 1 and the shape parameter k = 2, 4, and 8.
These three densities are used to describe the distributions of frailty in each education group
at the start of the simulation.
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Figure 3.
Subject-specific and population-average mortality hazard functions for two hypothetical
cohorts with heterogeneous frailty. The plots highlight the divergence between the standard-
individual hazard μ(x) and the corresponding cohort hazard function μ̄(x). In both examples,
the frailty at the start of simulation is gamma-distributed with k=2. In the first plot, the
standard-individual hazard function is constant across age at μ(x) = μ = 0.08. In the second
plot, μ(x) is a Gompertz function with parameters b = 0.003 and c = 1.05.
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Figure 4.
Trajectories of the subject-specific β(x) and population-average β̄(x) effect of education.
The three plots show the results for constant, decreasing (“age-as-leveler”), and increasing
(“cumulative advantage”) subject-specific effects. The average values of β(x) across age
equals 2 in all three plots.
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Figure 5.
The attenuation function, Eq. (15). The function determines the relationship between β(x)
and β̄(x). The three trajectories correspond to a constant subject-specific effect β = 2, the
gamma parameter k = 2, 4, and 8, and the baseline mortality hazard calculated from the 2002
U.S. life table.
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Table 1

Cohort-average effect of education β̄(x) corresponding to a constant subject-specific effect β =1.5 and 2 and
three levels of heterogeneity. The baseline hazard function is calculated from the 2002 U.S. life table.

Age 25 Age 50 Age 75 Age 90

β=1.5

 k=2 1.5 1.49 1.41 1.23

 k=4 1.5 1.49 1.45 1.31

 k=8 1.5 1.50 1.47 1.39

β=2

 k=2 2.0 1.97 1.77 1.42

 k=4 2.0 1.98 1.87 1.59

 k=8 2.0 1.99 1.93 1.74
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