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Abstract
Physiological data are routinely recorded in intensive care, but their use for rapid assessment of
illness severity or long-term morbidity prediction has been limited. We developed a physiological
assessment score for preterm newborns, akin to an electronic Apgar score, based on standard
signals recorded noninvasively on ad- mission to a neonatal intensive care unit. We were able to
accurately and reliably estimate the probability of an individual preterm infant’s risk of severe
morbidity on the basis of noninvasive measurements. This prediction algorithm was developed
with electronically captured physiological time series data from the first 3 hours of life in preterm
infants (≤34 weeks gestation, birth weight ≤2000 g). Extraction and integration of the data with
state- of-the-art machine learning methods produced a probability score for illness severity, the
PhysiScore. PhysiScore was validated on 138 infants with the leave-one-out method to
prospectively identify infants at risk of short- and long-term morbidity. PhysiScore provided
higher accuracy prediction of overall morbidity (86% sensitive at 96% specificity) than other
neonatal scoring systems, including the standard Apgar score. PhysiScore was particularly
accurate at identifying infants with high morbidity related to specific complications (infection:
90% at 100%; cardiopulmonary: 96% at 100%). Physiological parameters, particularly short-term
variability in respiratory and heart rates, contributed more to morbidity prediction than invasive
laboratory studies. Our flexible methodology of individual risk prediction based on automated,
rapid, noninvasive measurements can be easily applied to a range of prediction tasks to improve
patient care and resource allocation.

Introduction
Early, accurate prediction of a neonate’s morbidity risk is of significant clinical value
because it allows for customized medical management. The standard Apgar score has been
used for more than 50 years to assess neonatal well-being and the need for further medical
management. We aimed to develop a modern tool akin to an “electronic” Apgar assessment
that reflects a newborn’s physiological status and is predictive of future illness severity.
Such an improvement in neonatal risk stratification may better inform decisions regarding
aggressive use of intensive care, need for transport to tertiary centers, and resource
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allocation, thus potentially reducing the estimated $26 billion per year in U.S. health care
costs resulting from preterm birth (1). Gestational age and birth weight are highly predictive
of death or disability (2) but do not estimate individual illness severity or morbidity risk (3).
These perinatal risk factors, in addition to laboratory measurements, have been incorporated
into currently used algorithms for mortality risk assessment of preterm infants (4–6). These
algorithms, however, predict mortality rather than morbidity (3). They also rely on invasive
testing and require extraction of data from multiple sources to make a risk assessment.

Although it has been recognized that changes in heart rate characteristics (7) or variability
(8) can suggest impending illness and death in a range of clinical scenarios, from sepsis (9)
in intensive care patients to fetal intolerance of labor (10), the predictive accuracy of a single
parameter is limited. Intensive care providers observe multiple physiological signals in real
time to assess health, but certain informative patterns may be subtle. To achieve improved
accuracy and speed of individual morbidity prediction for preterm neonates, we developed a
new probability score (PhysiScore) based on physiological data obtained non- invasively
after birth along with gestational age and birth weight. Two recent advances enabled the use
of multiple complex physiological signals for this purpose: the digitization of medical
records, which allows linking of real-time physiological signals with later outcomes, and the
increasing sophistication of machine learning and pattern recognition algorithms, which
allows optimization of PhysiScore in an automated, unbiased manner. We evaluated
PhysiScore’s use for predicting overall morbidity and mortality, specific risk for infants with
infection or cardiovascular and pulmonary complications, and a combination of
complications associated with poor long-term neurodevelopment and compared its
performance to standard scoring systems in a preterm neonatal cohort.

Results
PhysiScore Development Based on Patient Characteristics and Morbidities

To develop our prediction tool, we studied a total of 138 preterm neonates that were 34
weeks gestational age or less and <2000 g in weight without major congenital malformations
and with baseline characteristics and morbidities as shown in Table 1. Mean birth weight
was 1367 g at an estimated mean gestational age of 29.8 weeks, placing these infants at
significant risk of both short- and long-term complications.

Patients were then classified as high morbidity (HM) or low morbidity (LM) on the basis of
their illnesses. The HM group was defined as any patient with major complications
associated with short- or long- term morbidity. Short-term morbidity complications included
culture- positive sepsis, pulmonary hemorrhage, pulmonary hypertension, and acute
hemodynamic instability. Long-term morbidity was defined by moderate or severe
bronchopulmonary dysplasia (BPD), retinopathy of prematurity (ROP) stage 2 or greater,
intraventricular hemorrhage (IVH) grade 3 or 4, and necrotizing enterocolitis (NEC) on the
basis of the strong association of these complications with adverse neurodevelopmental
outcome. Death was also included in the long-term morbidity group. Most infants in the HM
category had short- and long-term complications affecting multiple organ systems. Infants
with only common problems of prematurity such as mild respiratory distress syndrome
(RDS) and patent ductus arteriosus (PDA) without major complications were classified as
LM.

Probabilistic Score for Illness Severity
We developed a method to estimate the probability that an infant would be in the HM
category on the basis of physiological signals recorded in the first 3 hours of life plus
gestational age and birth weight. This time period was selected for analysis because it is less
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likely to be confounded by medical interventions and provides prediction early enough in
the infant’s life to be useful for planning therapeutic strategy.

First, we processed the physiological signals (heart rate, respiratory rate, and oxygen
saturation) that were recorded for all infants for the first 3 hours after birth. Mean values
plus baseline and residual variability signals (capturing both short- and long-term
variability) were calculated for heart and respiratory rates. Mean oxygen saturation and the
ratio of hypoxia (oxygen saturation <85%) to normoxia over the 3-hour span were
calculated.

We then defined the probability for illness severity with a logistic function that aggregated
individual risk features as

(1)

where n was the number of risk factors and c = log P(HM)/P(LM) was the a priori log odds
ratio. The ith characteristic, vi (physiological parameter, gestational age, or weight) was
used to derive a numerical risk feature f (vi) via nonlinear Bayesian modeling (detailed in
Materials and Methods). The score parameters b and w were learned from the training data
for use in prospective risk prediction. The parameter wi represents the weight of the
contribution of the ith characteristic to the computed probability score, with higher weight
characteristics having a greater effect.

PhysiScore is a probability score that ranges from 0 to 1, with higher scores indicating
higher morbidity. PhysiScore is calculated by integrating the following 10 patient
characteristics into Eq. 1: mean heart rate, base and residual variability; mean respiratory
rate, base and residual variability; mean oxygen saturation and cumulative hypoxia time;
gestational age and birth weight. Each of these patient characteristics carries a specific
learned weight, as denoted by w in Eq. 1. Plotting the receiver operating characteristic
(ROC) curve (Fig. 1A) and associated area under the curve (AUC) values (Table 2) shows
that PhysiScore exhibits good discriminative ability for prediction of morbidity and
mortality risk and compares it to other risk assessment tools. Specifically, PhysiScore was
compared to the Apgar score, long used as an indicator for the base physiological state of the
newborn (11), as well as to extensively validated neonatal scoring systems that require
invasive laboratory measurements [Score for Neonatal Acute Physiology-II (SNAP-II) (5),
SNAP Perinatal Extension-II (SNAPPE-II) (5), and Clinical Risk Index for Babies (CRIB)
(6)]. For making predictions with the Apgar score, we constructed a model as in Eq. 1 using
the 1- and 5-min Apgar scores as the only two inputs; this combined model outperformed
either of the two Apgar scores when used in isolation. PhysiScore (AUC 0.9197) performed
well across the entire range of the ROC curve and significantly better (P < 0.003) (12) than
all four of the other comparison scores (Table 2). PhysiScore’s largest performance gain
occurred in the high-sensitivity/specificity region of the ROC curve. Setting a user defined
threshold based on desired sensitivity and specificity allows optimization for individual
settings. For example, in our neonatal intensive care unit (NICU), a threshold of 0.5
achieves sensitivity of 86% at a specificity of 95% for HM as seen in Fig. 1A (inset panel).
Alternately, using a lower threshold would improve sensitivity at the expense of specificity.

We added the values obtained from laboratory tests to determine the magnitude of their
contribution to risk prediction beyond the PhysiScore alone (Fig. 1B), incorporating
parameters included in standard risk prediction scores (for example, SNAPPE-II): white
blood cell count, band neutrophils, hematocrit, platelet count, and initial blood gas

Saria et al. Page 3

Sci Transl Med. Author manuscript; available in PMC 2013 February 05.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



measurement of PaO2 (partial pressure of oxygen, arterial), PaCO2 (partial pressure of
carbon dioxide, arterial), and pH (if available at <3 hours of age). No additional
discriminatory power was achieved, suggesting that laboratory information is largely
redundant with the patient’s physiological characteristics.

To further assess performance of PhysiScore, we analyzed prediction performance for major
categories of morbidities contained in the HM categorization. Specifically, we extracted two
categories: infection – NEC, culture positive sepsis, urinary tract infection, pneumonia (Fig.
1C); and cardiopulmonary complications – BPD, hemodynamic instability, pulmonary
hypertension, pulmonary hemorrhage (Fig. 1D). Plotting data from the HM category infants
who had a specific complication against all infants in the LM category yields ROC curves
for discriminative ability for these independent morbidity categories (Fig. 1C, D).
Comparison to SNAPPE-II (the best performing standard score) is also shown; AUCs were
calculated for all scoring methods (Table 2) in these specifically defined sets. At a threshold
of 0.5, PhysiScore achieves near-perfect performance (infection: 90% sensitivity at 100%
specificity, cardiopulmonary: 96% at 100%).

Morbidity is most difficult to predict in patients with isolated IVH, for which all scores
exhibit decreased sensitivity. The PhysiScore AUC for any IVH was 0.8092, whereas
SNAP-II, SNAPPE-II, and CRIB had AUCs of 0.6761, 0.6924, and 0.7508, respectively.
PhysiScore did not identify three infants who had severe IVH (grade 3 or 4) in the absence
of any other HM complications. However, most infants who developed IVH can be found on
the left side of the ROC, suggesting that PhysiScore offers high sensitivity without
significant compromise in specificity (Fig. 2).

Importance of Physiological Features
Ablation analysis (comparison of model performance when different subsets of risk factors
are included) was used to examine the contribution of score subcomponents in predicting
HM versus LM. As expected, gestation and birth weight alone achieved reasonable
predictive performance (AUC 0.8517). However, these two characteristics are not sufficient
for individual risk prediction (3). Notably, physiological parameters alone were more
predictive than laboratory values alone (AUC, 0.8540 versus 0.7710, respectively). Adding
physiological parameters to gestation and birth weight (that is, PhysiScore) increased the
AUC to 0.9129, a significantly (P < 0.01) (12) better prediction than gestation and birth
weight alone. Addition of laboratory values and physiologic characteristics did not
significantly increase the AUC (0.9197), again suggesting that these parameters are
redundant with the laboratory data in morbidity prediction.

Examination of the learned weights (wi in Eq. 1) of individual physiological parameters
incorporated into PhysiScore (Fig. 3A) demonstrated that short-term heart and respiratory
rate variability make a significant contribution to the value of the PhysiScore, but long-term
variability did not. Thus, short-term variability patterns – often difficult to see by eye, but
easily calculated by PhysiScore – carried significant physiological information that long
term variability patterns did not.

Only three categories of commonly obtained physiological measurements were required for
PhysiScore: heart rate, respiratory rate and oxygen saturation. From these measures, using
Bayesian modeling, individual curves were obtained that convey the probability of high
morbidity associated with individually calculated physiological parameters (Fig. 3B).

As expected, a respiratory rate between 35 and 75 breaths per minute had a greater
probability of being associated with health, while higher or lower rates had greater
probability of being associated with health, whereas higher or lower rates carried a greater
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probability of morbidity. A decreased short-term heart rate variability also indicated
increased risk, consistent with previous findings linking this parameter to sepsis (9). This
visual analysis of the nonlinear relationships seen in Fig. 3B also suggests unexpected
associations. Short-term respiratory rate variability, not commonly used as a physiological
marker, was associated with increased morbidity risk. Unlike residual heart rate variability,
its effect was nonmonotonic. Risk curves describing oxygen saturation suggest, respectively,
that risk increases significantly with mean saturations less than 92% and prolonged time
spent (>5% total time) at oxygen saturations below 85%. Oxygenation is routinely
manipulated by physician intervention, suggesting that intervention failure (for example, the
in- ability to keep saturations in a specific range) that allows desaturations lasting for >5%
of total time is associated with higher morbidity risk, a threshold that can now be
prospectively assessed in clinical trials.

Discussion
We have developed a risk stratification method that predicts morbidity for individual
preterm neonates by integrating multiple continuous physiological signals from the first 3
hours of life. This score is analogous to the Apgar score (11), in that only physiological
observations are used to derive morbidity and mortality predictions. However, the use of
time series data combined with automated score calculation yields significantly more
information about illness severity than is provided by the Apgar score.

Discriminative Capacity
Past efforts have resulted in several illness severity scores that use laboratory studies and
other perinatal data to achieve improved dis- criminative ability over the Apgar score alone.
For all of the available neonatal illness scores, much of the discriminative ability comes
from gestational age and birth weight. Nevertheless, it is well-recognized that age- and
weight-matched neonates may have significantly different morbidity profiles (3). The CRIB
score uses logistic regression to define six factors and their relative weights in predicting
mortality: birth weight, gestational age, congenital malformation, maximum base deficit in
the first 12 hours, plus minimum and maximum FiO2 (fraction of inspired oxygen) in the
first 12 hours (6). SNAP-II and SNAPPE-II were both derived from SNAP. SNAP uses 34
factors identified by experts as important in the first 24 hours of life (specific laboratory
data, minimum and maximum vital sign values, and other clinical signs). The resulting score
correlated well with birth weight, mortality, length of stay, nursing acuity, and physician
estimates of mortality, but was complex to calculate (4). Logistic regression performed on
the 34 factors in SNAP identified six variables most predictive of mortality that were
recorded in the first 12 hours of life (lowest mean blood pressure, lowest core body
temperature, lowest serum pH, multiple seizures, urine output, and FiO2/PaO2 ratio); these
were retained in SNAP-II. SNAPPE-II is calculated with the same data as SNAP-II, along
with the 5-min Apgar score, small for gestational age status, and birth weight. The additional
variables present in SNAPPE-II were found to be independent risk factors for mortality (5).
None of these scores, however, discriminate morbidity risk as well as PhysiScore, which
integrates a small set of continuous physiological measures calculated directly from standard
vital sign monitors.

An intriguing aspect of our findings is that PhysiScore provides high-accuracy predictions
about morbidity risk from limited initial data (only 3 hours), even when such outcomes
manifest days or weeks later (for example, BPD or NEC). PhysiScore gives positive weight
to loss of short-term heart rate variability, much in the way that fetal heart rate monitoring
uses loss of short-term heart rate variability to predict fetal distress and guide delivery
management (13). PhysiScore addition- ally identifies short-term respiratory variability as
having high predictive value, suggesting that further exploration of this factor in other
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settings might be warranted. Although the precise source of variability loss—either pre- or
postnatally—is unknown, autonomic dysregulation likely plays a role. Whether short-term
variability loss causes morbidity or is simply a marker of illness is not clear at this point.

Unlike fetal heart rate monitoring or heart rate spectral analysis (14) in the neonate, our
approach uses multiple physiological parameters to improve accuracy and provide long-term
predictions that extend beyond acute risk. Unlike biomarkers, such predictions are made
with data that are already being collected in NICUs. Patient oxygenation, heart rate, and
respiratory rate can be automatically processed to compute a score, and a predetermined
sensitivity/specificity threshold can be used to make morbidity predictions to guide clinical
actions, thereby removing the need for end-user expertise. When integrated into a bedside
monitor, the algorithm would indicate the statistical likelihood that an individual patient is at
high risk of major morbidities, allowing real-time use of the PhysiScore calculation. This
method of deployment would effectively provide an automated electronic Apgar score, with
significantly higher predictive accuracy regarding neonatal morbidity.

The PhysiScore’s ability to assess physiologic disturbances before it can be confounded by
medical intervention makes it particularly descriptive of initial patient acuity; thus it is
particularly well suited as a tool for quality assessment between NICUs. Identification of a
patient’s future risk of developing high morbidity complications may be particularly useful
for decision-making in primary nurseries to make more informed decisions regarding
aggressive use of intensive care, need for transport to higher levels of care and resource
allocation. Such economic, social and medical advantages should be evaluated in a large-
scale clinical trial.

Technical Considerations
Although we have a relatively small sample size, analysis methods appropriate to small
sample sizes (15) were used, and ROC curves were made only for morbidities seen in >10%
of our population. Our model, with its automatic factor modeling and selection, requires
essentially no parameter tuning, which greatly helps to prevent overfitting in small samples.

In addition, our sample is from a single tertiary care center and was limited to patients born
in our institution to ensure that continuous physiological data were available for the first
hours of life. Validation in other settings will be required.

Detection of IVH remains elusive in the field of neonatal medicine. Previous work reported
that fractal analysis of the original newborn heartbeat may be an early indicator of IVH (14),
but yielded no better sensitivity than PhysiScore. It is possible that the underlying
pathophysiology of IVH is variable (16), particularly in infants in whom severe IVH is the
only morbidity. Although IVH is usually associated with cardiopulmonary instability, recent
literature suggests that there may be genetic predisposition to isolated IVH, potentially
limiting the role of antecedent physiological signals before large hemorrhages (17). Thus, it
is possible that the small number of infants with isolated IVH that were not identified as
high risk by PhysiScore represents a distinct subpopulation.

Advanced Computational Techniques in Modern Medical Settings
The use of computer-based techniques to integrate and interpret patterns in patient data to
automate morbidity prediction has the potential to improve medical care. The current U.S.
governmental mandate to improve electronic health record use and gain economic benefit
from using digital data (18) facilitates the use of computer-based tools. Flexible Bayesian
modeling with almost no tunable parameters allows our approach to be easily applied to a
range of different prediction tasks, allowing use of the highly informative but underused
data obtained daily for thousands of acutely ill patients.
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Materials and Methods
Ethics Statement

All work was performed under protocol 8312 approved by Stanford’s Panel on Human
Subjects. Waiver of Individual Authorization was approved under 45 CFR 164.512(i)(2)(ii)
(A),(B),(C) on the basis that the data collection was part of routine care, no intervention or
interaction with the patients occurred and the data was processed anonymously.

General Study Strategy
After enrollment, we used a subset of patients (n = 12) to develop physiologic data
processing methods. We combined state-of-the-art techniques from machine learning to
build our framework that (i) processed these physiological parameters using nonlinear
models, (ii) used regularization to do automatic feature selection, and (iii) combined relevant
weights using multivariate logistic regression to produce the predictive PhysiScore
(physiological features plus birth weight and gestational age). This framework has
essentially no tunable parameters. Thus, un- like traditional frameworks that require separate
feature selection and modeling steps followed by model testing using data, our framework
combined these steps to allow direct testing of the predictive ability of this score on all 138
subjects by the leave-one-out method (15) to prospectively identify infants at high risk of
severe complications.

Study Population
Inborn infants admitted to the NICU of Lucile Packard Children’s Hospital from March
2008 to March 2009 were eligible for enrollment. A total of 145 preterm infants met
inclusion criteria: gestational age ≤ 34 completed weeks, birth weight ≤ 2000 grams, and
availability of cardiorespiratory (CR) monitor data within the first three hours of birth.
Seven infants found to have major malformations were subsequently excluded.

Inborn infants admitted to the NICU of Lucile Packard Children’s Hospital from March
2008 to March 2009 were eligible for enrollment. A total of 145 preterm infants met
inclusion criteria: gestational age ≤34 completed weeks, birth weight ≤2000 g, and
availability of cardio-respiratory (CR) monitor data within the first 3 hours of birth. Seven
infants found to have major malformations were subsequently excluded. Thirty-five
neonates had HM complications. Of these, 32 had long- term morbidities (moderate or
severe BPD, ROP stage 2 or greater, grade 3 or 4 IVH, and/or NEC). Four neonates died
after the first 24 hours of life. There were 103 preterm neonates with only common
problems of prematurity (RDS and/or PDA) and so were considered LM. Five infants with a
< 2-day history of mechanical ventilation for RDS, but no other early complications, were
transferred before ROP evaluation and marked as LM.

Outcome Annotation
Electronic medical records, imaging studies, and laboratory values were reviewed by
pediatric nurses and verified by a physician. All significant illnesses during the
hospitalization were recorded. Morbidities were identified with previously described
criteria: BPD (19), ROP (20), NEC (21), and IVH (22). For IVH and ROP, the highest
unilateral grade or stage was recorded, respectively. Acute hemodynamic instability was
also noted: hypotension (defined as a mean arterial blood pressure less than gestational age
or poor perfusion) requiring ≥3 days of pressor support or adrenal insufficiency requiring
hydrocortisone.
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Physiologic Signal Processing
Time series heart rate, respiratory rate, and oxygen saturation data are collected from all CR
monitors. Heart and respiratory rate signals are processed to compute a base and residual
signal. The base signal represents a smoothed, long-term trend; it is computed with a
moving average window of 10 min. The residual signal is obtained by taking the difference
between the original signal and the base signal; it characterizes short-term variability most
likely linked to sympathetic function (Fig. 4). The variance features were motivated by
analysis using the model in (23) on our preliminary set of 12 patients. For heart and
respiratory rates, we compute the base signal mean, base signal variance, and residual signal
variance. For the oxygen saturation, we compute the mean and the ratio of the time the
oxygen saturation is below 85%.

Statistical Methods
Sensitivity, specificity, AUC, and significance values (12) were computed for all
comparisons. All statistical analyses were performed with software developed for this
project (available for academic use upon request.) We used the leave-one-out method for all
evaluations. With this method, predictive accuracy was evaluated for each patient
separately. For each patient, we learned the model parameters with the data from all other
patients as the training set and evaluated predictive ac- curacy on the held-out patient. This
technique was repeated for each subject, so that each subject’s clinical data were
prospectively obtained. This method of performance evaluation is computationally intensive
but is a well-established statistical method for measuring performance when the sample set
size is limited (15).

Nonlinear Models of Risk Factors
To implement Eq. 1, we must determine how to integrate continuous- valued risk factors,
including the physiological measurements, into our risk model. Several approaches exist in
the literature. One common approach is to define a “normal” range for a measurement and
use a binary indicator whenever the measurement is outside that range. Although this
approach can most easily be implemented in a clinical setting, it provides only coarse-
grained distinctions derived from extreme values. Another approach is to predetermine a
particular representation of the continuous- valued measurement, usually either the feature
itself, or a quadratic or logarithmic transformation, as selected by an expert (24, 25).

We used a different approach based on a Bayesian modeling paradigm (26). This approach
captures the nonlinear relationships be- tween the risk factor and the outcome and takes into
account that the overall behavior of a factor can vary greatly between sickness categories.
For each risk factor vi, we separately learned a parametric model of the distribution of
observed values in the training set P(vi|C) for each class of patient C (HM and LM). The
parametric model is selected and learned with maximum-likelihood estimation (Fig. 5) from
the set of long-tailed probability distributions of exponential, Weibull, lognormal, normal,
and gamma. Specifically, for each parametric class, we fit the maximum likelihood
parameters and then select the parametric class that provides the best (highest likelihood) fit
to the data. The log odds ratio of the risk imposed by each factor was incorporated into the
model.

An important advantage of our approach is that explicit missing data assumptions can be
incorporated. When standard laboratory results (e.g., complete blood count) are not
recorded, we assume that they are missing at random and not correlated with outcome. Their
contribution if missing is 0 and log P(vi|HM)/P(vi|LM) otherwise. Blood gas measurements,
however, are likely obtained only for profoundly ill patients and hence are not missing at
random. Thus, for each measurement type i we define mi=1 if measurement vi is missing
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and mi=0 otherwise. We now learn the distribution P(mi|C) – the chance that the
measurement i is missing for each patient category C, and P(vi|C, mi= 0) – the distribution
of the observed measurements as described above. The factor contribution for measurement
i is computed as

This formulation allows us to account both for the observed measurement, if present, and for
the likelihood that a particular measurement might be taken for patients in different
categories.

This approach has additional advantages. Putting all factors in a probabilistic framework
provides a comparable representation for different risk factors, allowing them to be placed
within a single, integrated model. Utilizing a parametric representation of each continuous
measurement alleviates issues arising from data scarcity. Uncovering the dependence
between the risk factor and the illness category automatically reduces data requirement by
eliminating the need for cross-validation to select the appropriate form. Unlike most
previous methods, we utilized different parametric representations for patients in different
categories, better capturing disease-induced changes in patient physiology. Finally, we
obtained an interpretable visual summary of the likelihood of low patient morbidity over the
range of values for each factor (Fig. 3B).

Learning the PhysiScore parameters
To learn the score parameters b and w’s, we maximized the log likelihood of the data in the
training set with a ridge penalty as

(3)

The ridge penalty reduces spurious data dependence by enabling automatic factor selection
to control model parsimony and prevents over- fitting (27, 28). The hyperparameter 1
controls the complexity of the selected model and was set to 1.2 in our experiments. This
value was selected early in our development by random 70/30 cross-validation splits, based
on experimental analysis showing that the results were not sensitive to the choice of this
parameter.
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Fig. 1. Receiver-operating-characteristic curves demonstrating PhysiScore’s performance in
predicting high morbidity as it relates to
(A) conventional scoring systems (B) PhysiScore’s performance with laboratory studies (C)
predictions for infants with infection-related complications (D) predictions for infants with
major cardiopulmonary complications.
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Fig. 2. Receiver-Operating-Characteristic (ROC) curve demonstrating the limited sensitivity of
PhysiScore in predicting morbidity for infants with IVH
Each circle represents the IVH grade of a preterm neonate overlaid on their respective score.
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Fig. 3. The significance of different physiological parameters in predicting high morbidity
(A) The learned weight (wi in Eq. 1) for each physiological parameter incorporated in
PhysiScore; error bars indicate variation in the weight over the different folds of the cross-
validation. (B) The nonlinear function associating the parameter with the risk of high versus
low morbidity.
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Fig. 4. Processing signal subcomponents
Differing heart rate variability in two neonates matched for gestational age (29 weeks) and
weight (1.15 kg ± 0.5 kg). Original and base signals are used to compute the residual signal.
Differences in variability can be appreciated between the neonate predicted to have HM
(right) versus LM (left) by PhysiScore.

Saria et al. Page 15

Sci Transl Med. Author manuscript; available in PMC 2013 February 05.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 5. Distribution of residual heart rate variability (HRvarS) in all infants
Learned parametric distributions overlaid on the data distributions for HRvarS displayed for
the HM versus LM categorization.
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Table 1

Baseline and disease characteristics of the study cohort.

Category Subcategory N

Subjects 138

Birth weight, g 1367±440

Gestational age, wks 29.8±3

Gender, female 68

Apgar Score at 5 min 7±3

SGA (≤5th percentile) 7

Multiple Gestation Total 46

Twins 20

Triplets 6

Respiratory distress syndrome 112

Pneumothorax 10

Bronchopulmonary dysplasia Total 29

NOS* 2

Mild 12

Moderate 5

Severe 10

Pulmonary hemorrhage 2

Pulmonary hypertension 3

Acute hemodynamic instability 11

Retinopathy of Prematurity† Total 25

Stage I 9

Stage II 12

Stage III 4

Intraventricular hemorrhage‡ Total 34

Grade 1 19

Grade 2 7

Grade 3 3

Grade 4 5

Post hemorrhagic hydrocephalus 6

Culture positive sepsis 11

Necrotizing enterocolitis Total 8

Stage 1 2

Stage 2 4

Stage 3 2

Expired 4

SGA, small for gestational age; NOS, not otherwise specified.

*
Infants with oxygen requirement at 28 days for whom oxygen requirement was not known at 36 weeks post menstrual age.

†
ROP is counted by the most severe stage in either eye during the hospitalization.
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‡
IVH is counted by the most severe grade in either cerebral hemisphere by Papile classification.
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