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Abstract
Remarkable progress has been made in the last decade in new methods for biological
measurements using sophisticated technologies that go beyond the established genome, proteome,
and gene expression platforms. These methods and technologies create opportunities to enhance
cancer epidemiologic studies. In this article, we describe several emerging technologies and
evaluate their potential in epidemiologic studies. We review the background, assays, methods, and
challenges, and offer examples of the use of mitochondrial DNA and copy number assessments,
epigenomic profiling (including methylation, histone modification, microRNAs (miRNAs), and
chromatin condensation), metabolite profiling (metabolomics), and telomere measurements. We
map the volume of literature referring to each one of these measurement tools and the extent to
which efforts have been made at knowledge integration (e.g. systematic reviews and meta-
analyses). We also clarify strengths and weaknesses of the existing platforms and the range of type
of samples that can be tested with each of them. These measurement tools can be used in
identifying at-risk populations and providing novel markers of survival and treatment response.
Rigorous analytical and validation standards, transparent availability of massive data, and
integration in large-scale evidence are essential in fulfilling the potential of these technologies.

Keywords
Epigenetics; methylation; mitochondria; risk assessment; telomerase

Introduction
Tremendous progress has been made recently in the development and use of sophisticated
technologies for enhancing biological measurements beyond the classic platforms of
genomics, proteomics, and gene expression profiling. The advent of these tools offers
unique opportunities and challenges for their use in human studies, and cancer epidemiology
may benefit from incorporating such measurements. In this review, we assess the landscape
of this emerging literature, and discuss several of these methods. We specifically address
mitochondrial DNA and copy number assessments, epigenomic profiling (including
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assessments of methylation patterns, histone modification, microRNAs (miRNAs), and
chromatin condensation), metabolite profiling (metabolomics), and telomere measurements.
For each measurement platform we offer a background introduction, describe the main
assays and methods, and list the main remaining challenges. Finally, we overview the use of
these methods in the cancer epidemiology literature, the types of samples they can be used
on, and their overall strengths and weaknesses.

Overview of the literature landscape
Table 1 shows the advent of these measurement platforms in the overall literature, and also
focused on cancer, human studies, and specific types of designs. As shown, the volume of
publications is still relatively limited compared with the massive literature on genomics/
genetics and gene expression profiling, but many of these measurements already have as
large literatures as proteomics with several tens of thousands of papers overall, and several
thousands of papers focused on cancer in particular. Methylation and telomere-related
papers have an especially strong cancer focus, with approximately 40% of the literature
focusing on cancer (as compared with 13% of the overall PubMed). Moreover, 78–85% of
the cancer literature on all these platforms is on humans. Their use in traditional
epidemiologic studies is still relatively limited, accounting for a small fraction of this rapidly
expanding literature, with only methylation-related epidemiologic studies exceeding 1,000.
Many systematic reviews have also started being published, but meta-analyses remain
uncommon, with only a few dozen being available. Most of these meta-analyses focus on
single markers, and they almost ubiquitously depend on published summary data. This raises
concerns about the breadth of coverage of the evidence and the reliability of inferences.

Mitochondrial DNA
Background

Mitochondria play an important role in cellular energy metabolism, free-radical generation,
and apoptosis. During neoplastic transformation the mitochondrial genome may be damaged
with accumulation of somatic mutations in the mitochondrial DNA (mtDNA). These
mutations could represent a means for tracking tumor progression. Mitochondria contain
their own genome (16.5 kb), along with transcription, translation, and protein assembly
machinery and maintain genomic independence from the nucleus (1, 2). Both germline and
somatic alterations in mtDNA have been observed in cancer and other diseases (3–6). For
example, the polymorphism G10398A within the NADH dehydrogenase (ND3) subunit of
Complex I has been probed for association with breast cancer, neurodegerative diseases,
Alzheimer’s disease, Friedreich’s ataxia, longevity, and amyotropic lateral sclerosis (7).
Somatic mitochondrial mutations have been detected in different tumor types, including in
breast, colon, esophageal, endometrial, head and neck, liver, kidney, lung, oral, ovarian,
prostate, and thyroid cancers, leukemia and melanoma (3–10). Most somatic mutations are
homoplasmic in nature (i.e., all mitochondria carry the same mutations), with mutant
mtDNA becoming dominant in tumor cells. Furthermore, the number of copies of mtDNA
per cell can vary in normal and disease states (8). The mitochondrial genome lacks introns
and is organized in 21 major haplogroups named after the letters of the alphabet (4, 9–12).
Some haplogroups have been associated with specific cancers in specific populations (3, 4).
Tools for characterizing and measuring mtDNA characteristics (including MitoChip) are
available and are sufficiently high-throughput for assessing large numbers of
epidemiological samples (13, 14). Numerous epidemiologic studies have been conducted
using mitochondria information to examine cancer risk factors, natural history, screening
markers, response to therapy and/or long term outcomes.
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Assays and methods
Tissues, blood cells, exfoliated cells, and biofluids are a good source of mtDNA. To
measure alterations in mtDNA (deletions, single nucleotide polymorphisms [SNPs],
mutations, copy number), total DNA is usually isolated, followed by polymerase chain
reaction (PCR) and nucleotide sequencing. The entire mitochondrial genome is amplified
first in two long-range PCR reactions, followed by sequencing. Using MitoChip, mtDNA
fragments are amplified and prepared for array hybridization according to the Affymetrix
protocol for the GeneChip Customseq array (15). Investigators also have used restriction
fragment length polymorphism (RFLP) analysis for mtDNA variations in tissue samples
(16).

For haplogroup analysis, a hierarchical system combines multiplex PCR amplification,
multiple single-base primer extensions, and capillary-based electrophoretic separation (17).
The output of the GeneChip DNA analysis generates a report of the individual and total
numbers of SNPs. Sequence variations are verified against reference mtDNA. Typically
samples with call rates <95% are discarded. mtDNA molecules and the virtual number of
mitochondria per cell are calculated with reference to a nuclear housekeeping gene (18).
Laser capture microdissection can be used to separate different cell types, e.g. epithelial
cells from stroma in for ovarian cancer (19, 20). A transparent thermoplastic film is attached
to the tissue on the histopathology slide and cells are localized by microscopy. Different cell
types are identified and targeted through the microscope with a 15–30 μm carbon dioxide
laser beam pulse. The strong focal adhesion allows selective procurement of targeted cells
suitable for mtDNA isolation and characterization.

Challenges
Determining an accurate mtDNA copy number is difficult, because in some situations
mtDNA becomes integrated into the nuclear genome at nonspecific sites (8, 21–23). Another
challenge is the simultaneous characterization of nuclear and mtDNA in cases and controls.
Although technically possible, such studies have not yet been conducted within large
epidemiologic studies. Selection of sample source is another problem. When mutations in
blood DNA were compared with mutations in breast cancer tissue from the same patient, the
mutations did not match. This suggests that blood might not be the most appropriate
biospecimen (24).

Epigenomics
Background

Epigenetics may affect gene expression without changing the nucleotide sequence. The four
major components of epigenetic machinery include DNA methylation, histone modification,
microRNA (miRNA) expression and processing, and chromatin condensation (25, 26).
Methylation and histone markers have been used in studies trying to determine the etiology
of breast, colon, esophageal, gastric, liver, lung, pancreas, ovary, prostate, renal, and other
cancers (25–31).

miRNA profiling has been used in cases and controls in some epidemiologic studies (e.g.
disease survival in lung cancer and therapy outcome in bladder cancer) (32–35). High-
throughput miRNA quantification technologies such as the miRNA microarray (36–41),
bead-based flow cytometry (42), and real-time (RT)-PCR-based Taqman miRNA assay (43,
44) can be used for miRNA profiling.

Epigenetic biomarkers may offer advantages over other types of biomarkers because they
reflect a person’s genetic background plus environmental exposures. Most epigenetic events
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occur early in cancer development and thus can be used for early detection. Epigenetic
alterations also respond to environmental changes, and technologies are available to measure
these changes (45, 46). Altered epigenomic profiling can be seen in response to toxins and
environmental pollutants (47–50). Different environmental exposures may affect different
components of the epigenetic machinery. For example, exposure to metal carcinogens such
as nickel, chromate, arsenite, and cadmium has increased recently because of occupational
exposures, the massive growth of manufacturing activities, increased consumption of
nonferrous materials, and disposal of waste products (51). These metals are potentially weak
carcinogens: although they do not damage DNA directly (as does radiation), they may exert
carcinogenic effects by epigenetic mechanisms, especially after chronic exposure (50).

Epigenetic alterations can be reversed by chemicals and can activate gene expression. Thus
multiple potential uses have been proposed for epigenetic biomarkers in cancer intervention
and treatment (25, 26, 29, 30, 42, 52–64). Observational, experimental, and clinical studies
in different diseases, especially cancer, have shown that nutrients may influence epigenetic
regulation, e.g. folic acid can supply methyl groups (57, 59, 65–68). Ingredients in some
natural foods show properties similar to the inhibitors of histone acetylation.

Epidemiologic studies have been conducted in bladder (30), breast (69, 70), cervical (71),
colon (72), gastric (26, 73, 74), head and neck (55, 75), liver (25, 52, 76), and renal (77–79)
cancers using methylation profiling and/or polymorphisms in genes involved in initiating or
maintaining methylation (53, 54, 78, 80, 81). These studies have suggested associations
between methylation markers and cancer development that need further validation. In most
studies blood rather than tissue was used for analysis.

Assays and methods
Both tissues and biofluids have been used for epigenetic analysis. MethyLight technology,
pyrosequencing, and chromatin immunoprecipitation-on-chip (ChIP-on-chip) can measure
epigenetic alterations in cancer (82, 83). For methylation profiling, quantitative methylation-
specific polymerase chain reaction (QMSP) assays are performed, followed by
pyrosequencing (84). All assays use sodium bisulfite followed by alkali treatment (85).
Bisulfite reacts with unmethylated cytosines and converts them to uracil. Methylated
cytosines and other bases are not affected by bisulfite treatment. In the PCR reaction, all
converted cytosines behave like uracils. MethyLight is the most common method used to
determine the methylation profile in real-time (82, 86–88). MethyLight is a high-throughput,
quantitative methylation assay that utilizes fluorescence-based, real-time PCR technology
and requires no manipulation after the PCR reaction. It can detect a methylation allele
among 1,000 unmethylated alleles.

The most common method for miRNA profiling in cancer samples is the GeneChip
microarray technology developed by Affymetrix. For histone profiling, monoclonal
antibodies against specific histone modifications are used for chromatin
immunoprecipitation (89, 90). Another popular epigenetics technique is the ChIP assay
followed by next-generation sequencing (ChIP-seq) analysis, which can detect genome-wide
histone modifications and methylation (91).

Challenges
Unlike the genome, which is the same for all types of cells, the epigenome is dynamic and
changes with cell type and age. Therefore, the epigenome should be evaluated several times
to follow cancer-associated alterations. The biggest challenge is the choice of sample (tissue
vs. blood). Blood, which is collected in most epidemiologic studies, may not be an adequate
sample, because epigenetic profiles and alterations of blood cells do not match those of
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tissue. Use of blood cells is also problematic because blood is a mixture of cells with
different half-lives, ranging from 6 hours for neutrophils to months and years for
macrophages and memory cells. Epigenetic changes are dynamic and continuously evolve
during cancer development. Epigenetic changes are tissue-specific and cell type-specific.
The research question itself determines the most appropriate tissue to be selected for
epigenetic analyses.

Histone profiling uses ChIP assays that employ antibodies against post-translational
modifications of histones (92–94). Obtaining high-quality monoclonal antibodies for use
against cancer-associated histone modifications is challenging, because monoclonal
antibodies show batch effects (92). A central resource of large amounts of high-affinity,
high-quality monoclonal antibodies is needed.

Proteins that bind to the methylated regions have been characterized, along with methylation
patterns. These proteins are identified by methylated DNA immunoprecipitation (methyl
DIP), which involves the hybridization of immunoprecipitated methylated DNA to
microarrays or deep sequencing of the DNA in the immunoprecipitated DNA complex (95).
Improvements are required, however, to adapt this process for large-scale use in addressing
such problems as low resolution when using microarrays, difficulty in obtaining sufficient
coverage when deep sequencing is used, and high false-discovery rates.

Taking precautions while collecting and storing samples for miRNA analysis can be
challenging in epidemiologic studies. Ideally tissue samples are snap-frozen and stored at
−70°C (96, 97). Fixed tissues can be problematic for miRNA analyses if proper protocols
are not applied (98, 99). In miRNA analysis, different control RNAs are run simultaneously.
During miRNA profiling, primers to the internal controls should be included to avoid false-
positive results (100).

Metabolomics
Background

The metabolome measures directly the output of biological pathways and thus may be more
representative of the functional state of cells than other “omics” measures. Metabolomics is
the study of low molecular weight molecules or metabolites produced within cells and
biological systems. Metabolomic profiling may help discover new disease-risk, screening,
diagnostic, and prognostic biomarkers. This technology also provides novel insights into
disease mechanisms (101–103). The metabolome reflects cellular activity at the functional
level and, hence, can be used to discern mechanistic information during normal and disease
states (104–107). In clinical samples (serum, urine), metabolites are more stable than
proteins or RNA. The number of epidemiologic studies that use metabolomic profiling is
still small compared with other technologies (Table 1), but applications are developing
quickly (103, 104, 108) and validation studies are expected in the near future.

Assays and Methods
Metabolomic profiling is performed in blood or urine. Metabolomics involves two major
technologies—mass spectrometry (MS) and nuclear magnetic resonance spectroscopy
(NMR)—that can measure hundreds to thousands of unique chemical entities (101). The
advantages of NMR include comprehensive generation of metabolite profiles by a single
nondestructive method, full automation with high-throughput capacity, a well-established
mathematical and statistical tool box, and very high analytical reproducibility (104).
Disadvantages of NMR are its relative insensitivity in detecting metabolites with
concentrations in the micromole range and above; and dependence on the quality of sample
collection and handling, and on the available metadata. MS-based metabolomics typically
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consist of three basic components: (i) the “front end” fractionation of complex mixtures, (ii)
mass spectral data acquisition, and (iii) metabolite identification and characterization by
database searching. Advantages of MS include that the technique is highly sensitive and can
detect metabolites with picomole concentrations, it requires small biospecimen volumes,
separation by chromatography enables metabolites to be individually identified and
quantified, and high-throughput automation is feasible (109, 110). Disadvantages of MS
include expensive consumables, relatively lower analytical reproducibility, poor
representation of highly polar metabolites when using standard chromatography protocols,
and more complex software and algorithms required for routine data analysis (111, 112).

Challenges
Special attention must be paid to optimize protocols for maximizing the reproducibility,
sensitivity, and quantitative reliability of metabolomics analysis. Furthermore, multivariate
statistical modeling approaches are needed for better visualization and analysis of data.
False-positive results can make interpretation difficult unless multiplicity is properly
accounted for. Advancements in automatic sample preparation and handling, robotic sample
delivery systems, automatic data processing, and multivariate statistical approaches can help
streamline and standardize the process, but there are a number of different platforms (113–
120) and familiarity is required for their proper use.

Despite early promise, the full potential of metabolomics cannot be fully realized at the
present time. Challenges include the limited availability of high-quality metabolite reference
standards and of facilities that provide high-quality metabolomics services. To characterize
unknown metabolites, standard, well-characterized metabolites are spiked with the clinical
samples. The idea is to develop both isotopically labeled (i.e., 15N, 13C, or 2H) and
unlabeled metabolite standards for use with MS and/or NMR, respectively. Compounds
need to be synthesized in GLP laboratories with ISO 9000 certification and purified either
by chromatographic methods or crystallization to > 95% purity. Classes of metabolites that
require reference standards for metabolite identification include but are not limited to
glycolytic and other energy intermediates, amino acid metabolism, lipids (phospholipids,
glycerolipids, sphingolipids, glycolipids, oxylipins), acylcarnitines and acylglycines,
secondary drug metabolites, secondary food metabolites, and fatty acids. The lack of widely-
used robust automation tools and techniques in MS-based platforms remains a major
limiting factor in high-throughput discovery and in transitioning such platforms to clinical
chemistry laboratories (121)

Telomerase
Background

Telomeres, the ends of chromosomes, are specialized nucleoprotein structures that consist of
guanine (G)-rich repetitive DNA sequences complexed with proteins (122–124). Telomeres
are required for maintenance, proper replication, and segregation of chromosomes. Without
telomerase caps, human chromosomes undergo end-to-end fusion, forming dicentric and
multicentric chromosomes that break during mitosis, leading to the activation of DNA
damage checkpoints and initiation of the p53 pathway with growth arrest and cell death
(125). Somatic cell telomeres shorten by 50–200 bp with each cell division, leading to
replicative senescence and irreversible growth arrest. Telomere length is maintained by the
protein telomerase, which adds TTAGGG repeats at the ends of chromosomes (126).
Telomerase encompasses a catalytic subunit with telomerase reverse transcriptase (TERT)
activity, a telomerase RNA component (TERC) that acts as a template for DNA synthesis,
and the protein dyskerin (Dkc1), which binds and stabilizes TERC. Telomerase protects the
chromosome ends from unscheduled DNA repair and degradation. Both the length of the
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telomere repeats and the integrity of telomere-binding proteins are important for telomere
protection. Telomere shortening below a certain threshold length and/or alterations in the
functionality of telomere-binding proteins can result in loss of telomere protection, leading
eventually to apoptosis (127). Telomere dysfunction has been hypothesized to promote the
acquisition of genetic lesions essential to cancer progression. Several epidemiologic studies
have examined the average relative telomere length (RTL) as a potential biomarker for
predisposition to bladder, colon, head and neck, lung, renal, and skin cancers (126, 128,
129). Biospecimen collection response rates are greater for buccal cells than for blood
samples. PCR-based assays have been developed to measure telomerase activity in
epidemiologic samples (130). In addition, the area around the TERT gene has been
hypothesized to be a cancer polymorphism “hot spot” in different cancers (131–134).

Assays and Methods
DNA from any type of cells is suitable for telomerase assays and can be isolated as
described in reference (130). The PCR-based assay includes controls for inter-plate and
intra-plate variability of threshold cycle values. RTL is calculated as the ratio of telomere
repeat copy number to single-gene copy number in samples, compared with the reference
DNA sample. Telomere length also can be determined by quantitative fluorescent in situ
hybridization (TQ-FISH) (135, 136) where paraffin-embedded tissues are hybridized with
fluorescence-tagged telomere probes.

Challenges
When studying the association between disease risk and telomere length, it is critical to
determine the telomere length accurately. Discrepancies have been reported between
telomere length-based studies and telomerase activity-based studies. In contrast to the belief
that reduced telomere length reflects a risk of cancer, contradictory results were obtained by
different investigators (134, 137–139). Nonsignificant RTL shortening was observed in a
breast cancer nested case-control study (130, 138). Study limitations that affect all
epidemiologic observational studies, such as subject selection procedures, confounding,
measurement errors, analysis, or selective reporting, might explain discrepancies.

Comments and Conclusions
Table 2 summarizes some strengths and weaknesses for each of the methods discussed
above. Not all samples are suitable for these methods and technologies. A list of
biospecimens and the appropriate technology for analyzing samples is provided in Table 3.
Selected examples where technologies described in this article are applied for different
epidemiologic studies are given in Table 4.

We have described the advent of several new biological measurement methods that may be
of use in cancer epidemiology and beyond. We make some final comments here about the
evolution of this evidence.

First, while we discussed each platform in isolation, it is possible that information obtained
from multiple markers and multiple platforms may be most informative in some
circumstances. Detecting multiple markers in cancer epidemiology has been suggested from
time to time (140–143). For example, El-Tayeh et al. (141) suggested evaluating alpha-
fetoprotein (AFP), alpha-L-fucosidase (AFU), transforming growth factors alpha and beta
(TGF-α and TGF-β), and interleukin-8 (IL-8) simultaneously to enhance the sensitivity and
specificity of hepatocellular carcinoma. Large-scale assessment at multiple times of the
genome, proteome, transcriptome, and metabolome has been recently described (144), and
as platforms become less expensive, such combined assessments may become feasible in
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larger samples of patients. Selecting between complexity and parsimony remains a
prominent challenge.

Second, for most of the platforms that we described, most of the ongoing research is
discovery-oriented and replication efforts are still at their infancy. Not surprisingly, no meta-
analysis to-date is available on any mtDNA topic and only few have been performed on
epigenetic or telomere markers. This poses challenges in interpreting the reliability of the
published results. Validation efforts should include not only cross-validation or
bootstrapping on the same samples and datasets, but also external validation in independent
diverse datasets, preferably also by different teams of investigators (145–148). Reporting of
these complex studies is also not standardized and would benefit from adoption of relevant
reporting guidelines (149–151).

Third, handling complex omics and related data collected in cancer epidemiology presents
another challenge. The vast amount of data and biases that are introduced create a need for
fast and effective computer analysis programs and for transparent large-scale data
repositories. Most studies using the discussed platforms are done by single teams, but there
is an increasing interest in larger coalitions of teams and consortia. Public availability of raw
data, protocols, and analysis codes for these complex investigations could go a long way
towards improving the transparency, reliability, and reproducibility of this research (145,
152).

In summary, progress continues to be made in emerging technologies in the cancer
epigenetics and epidemiology fields, and some of the technologies are ready to be used in
larger scale while others need improvements in analytical validity, high-throughput
performance and sensitivity of detection. In the coming years, we expect that these emerging
technologies may be used for different epidemiologic studies to contribute to a more
comprehensive understanding of cancer risk factors, understand natural history and evaluate
screening markers, and understand responses to therapy and/or evaluate longer term
outcomes. Epidemiologic studies may also inform future randomized controlled trials to
explore clinical utility for different applications in practice.
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mtDNA mitochondrial DNA

RTL Relative Telomerase Length

TERT Telomerase reverse transcriptase

References
1. Czarnecka AM, Golik P, Bartnik E. Mitochondrial DNA mutations in human neoplasia. J Appl

Genet. 2006; 47(1):67–78. [PubMed: 16424612]

2. Czarnecka AM, Czarnecki JS, Kukwa W, Cappello F, Scinska A, Kukwa A. Molecular oncology
focus - is carcinogenesis a ‘mitochondriopathy’? J Biomed Sci. 2010; 17:31. [PubMed: 20416110]

Verma et al. Page 8

Cancer Epidemiol Biomarkers Prev. Author manuscript; available in PMC 2014 February 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



3. Canter JA, Kallianpur AR, Parl FF, Millikan RC. Mitochondrial DNA G10398A polymorphism and
invasive breast cancer in African-American women. Cancer Res. 2005; 65(17):8028–33. [PubMed:
16140977]

4. Darvishi K, Sharma S, Bhat AK, Rai E, Bamezai RN. Mitochondrial DNA G10398A polymorphism
imparts maternal Haplogroup N a risk for breast and esophageal cancer. Cancer Lett. 2007; 249(2):
249–55. [PubMed: 17081685]

5. Mims MP, Hayes TG, Zheng S, Leal SM, Frolov A, Ittmann MM, et al. Mitochondrial DNA
G10398A polymorphism and invasive breast cancer in African-American women. Cancer Res.
2006; 66(3):1880. author reply 1880–1. [PubMed: 16452251]

6. Yu M. Somatic mitochondrial DNA mutations in human cancers. Adv Clin Chem. 2012; 57:99–138.
[PubMed: 22870588]

7. Ross OA, McCormack R, Curran MD, Duguid RA, Barnett YA, Rea IM, et al. Mitochondrial DNA
polymorphism: its role in longevity of the Irish population. Exp Gerontol. 2001; 36(7):1161–78.
[PubMed: 11404057]

8. Yu M. Generation, function and diagnostic value of mitochondrial DNA copy number alterations in
human cancers. Life Sci. 2011; 89(3–4):65–71. [PubMed: 21683715]

9. Fang H, Shen L, Chen T, He J, Ding Z, Wei J, et al. Cancer type-specific modulation of
mitochondrial haplogroups in breast, colorectal and thyroid cancer. BMC Cancer. 2010; 10:421.
[PubMed: 20704735]

10. Ebner S, Lang R, Mueller EE, Eder W, Oeller M, Moser A, et al. Mitochondrial haplogroups,
control region polymorphisms and malignant melanoma: a study in middle European Caucasians.
PLoS One. 2011; 6(12):e27192. [PubMed: 22174736]

11. Verma M, Kagan J, Sidransky D, Srivastava S. Proteomic analysis of cancer-cell mitochondria.
Nat Rev Cancer. 2003; 3(10):789–95. [PubMed: 14570046]

12. Verma M, Naviaux RK, Tanaka M, Kumar D, Franceschi C, Singh KK. Meeting report:
mitochondrial DNA and cancer epidemiology. Cancer Res. 2007; 67(2):437–9. [PubMed:
17213255]

13. Maitra A, Cohen Y, Gillespie SE, Mambo E, Fukushima N, Hoque MO, et al. The Human
MitoChip: a high-throughput sequencing microarray for mitochondrial mutation detection.
Genome Res. 2004; 14(5):812–9. [PubMed: 15123581]

14. Kassauei K, Habbe N, Mullendore ME, Karikari CA, Maitra A, Feldmann G. Mitochondrial DNA
mutations in pancreatic cancer. Int J Gastrointest Cancer. 2006; 37(2–3):57–64. [PubMed:
17827523]

15. Lam ET, Bracci PM, Holly EA, Chu C, Poon A, Wan E, et al. Mitochondrial DNA sequence
variation and risk of pancreatic cancer. Cancer Res. 2012; 72(3):686–95. [PubMed: 22174369]

16. Ye C, Shu XO, Pierce L, Wen W, Courtney R, Gao YT, et al. Mutations in the mitochondrial DNA
D-loop region and breast cancer risk. Breast Cancer Res Treat. 2010; 119(2):431–6. [PubMed:
19381801]

17. Wiesbauer M, Meierhofer D, Mayr JA, Sperl W, Paulweber B, Kofler B. Multiplex primer
extension analysis for rapid detection of major European mitochondrial haplogroups.
Electrophoresis. 2006; 27(19):3864–8. [PubMed: 16960846]

18. Robin ED, Wong R. Mitochondrial DNA molecules and virtual number of mitochondria per cell in
mammalian cells. J Cell Physiol. 1988; 136(3):507–13. [PubMed: 3170646]

19. Fukino K, Shen L, Matsumoto S, Morrison CD, Mutter GL, Eng C. Combined total genome loss of
heterozygosity scan of breast cancer stroma and epithelium reveals multiplicity of stromal targets.
Cancer Res. 2004; 64(20):7231–6. [PubMed: 15492239]

20. Kurose K, Hoshaw-Woodard S, Adeyinka A, Lemeshow S, Watson PH, Eng C. Genetic model of
multi-step breast carcinogenesis involving the epithelium and stroma: clues to tumour-
microenvironment interactions. Hum Mol Genet. 2001; 10(18):1907–13. [PubMed: 11555627]

21. Lee HC, Li SH, Lin JC, Wu CC, Yeh DC, Wei YH. Somatic mutations in the D-loop and decrease
in the copy number of mitochondrial DNA in human hepatocellular carcinoma. Mutat Res. 2004;
547(1–2):71–8. [PubMed: 15013701]

Verma et al. Page 9

Cancer Epidemiol Biomarkers Prev. Author manuscript; available in PMC 2014 February 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



22. Yin PH, Lee HC, Chau GY, Wu YT, Li SH, Lui WY, et al. Alteration of the copy number and
deletion of mitochondrial DNA in human hepatocellular carcinoma. Br J Cancer. 2004; 90(12):
2390–6. [PubMed: 15150555]

23. Yamada S, Nomoto S, Fujii T, Kaneko T, Takeda S, Inoue S, et al. Correlation between copy
number of mitochondrial DNA and clinico-pathologic parameters of hepatocellular carcinoma. Eur
J Surg Oncol. 2006; 32(3):303–7. [PubMed: 16478656]

24. Cai FF, Kohler C, Zhang B, Chen WJ, Barekati Z, Garritsen HS, et al. Mutations of mitochondrial
DNA as potential biomarkers in breast cancer. Anticancer Res. 2011; 31(12):4267–71. [PubMed:
22199290]

25. Tamagawa H, Oshima T, Shiozawa M, Morinaga S, Nakamura Y, Yoshihara M, et al. The global
histone modification pattern correlates with overall survival in metachronous liver metastasis of
colorectal cancer. Oncol Rep. 2012; 27(3):637–42. [PubMed: 22076537]

26. Park YS, Jin MY, Kim YJ, Yook JH, Kim BS, Jang SJ. The global histone modification pattern
correlates with cancer recurrence and overall survival in gastric adenocarcinoma. Ann Surg Oncol.
2008; 15(7):1968–76. [PubMed: 18470569]

27. Vineis P, Chuang SC, Vaissiere T, Cuenin C, Ricceri F, Johansson M, et al. DNA methylation
changes associated with cancer risk factors and blood levels of vitamin metabolites in a
prospective study. Epigenetics. 2011; 6(2):195–201. [PubMed: 20978370]

28. Brennan K, Flanagan JM. Epigenetic epidemiology for cancer risk: harnessing germline epigenetic
variation. Methods Mol Biol. 2012; 863:439–65. [PubMed: 22359310]

29. Hsiung DT, Marsit CJ, Houseman EA, Eddy K, Furniss CS, McClean MD, et al. Global DNA
methylation level in whole blood as a biomarker in head and neck squamous cell carcinoma.
Cancer Epidemiol Biomarkers Prev. 2007; 16(1):108–14. [PubMed: 17220338]

30. Yan C, Kim YW, Ha YS, Kim IY, Kim YJ, Yun SJ, et al. RUNX3 methylation as a predictor for
disease progression in patients with non-muscle-invasive bladder cancer. J Surg Oncol. 2012;
105(4):425–30. [PubMed: 22311819]

31. Ling ZQ, Zhao Q, Zhou SL, Mao WM. MSH2 promoter hypermethylation in circulating tumor
DNA is a valuable predictor of disease-free survival for patients with esophageal squamous cell
carcinoma. Eur J Surg Oncol. 2012; 38(4):326–32. [PubMed: 22265839]

32. Hu Z, Chen X, Zhao Y, Tian T, Jin G, Shu Y, et al. Serum microRNA signatures identified in a
genome-wide serum microRNA expression profiling predict survival of non-small-cell lung
cancer. J Clin Oncol. 2010; 28(10):1721–6. [PubMed: 20194856]

33. Landi MT, Zhao Y, Rotunno M, Koshiol J, Liu H, Bergen AW, et al. MicroRNA expression
differentiates histology and predicts survival of lung cancer. Clin Cancer Res. 2010; 16(2):430–41.
[PubMed: 20068076]

34. Teo MT, Landi D, Taylor CF, Elliott F, Vaslin L, Cox DG, et al. The role of microRNA-binding
site polymorphisms in DNA repair genes as risk factors for bladder cancer and breast cancer and
their impact on radiotherapy outcomes. Carcinogenesis. 2012; 33(3):581–6. [PubMed: 22166496]

35. Nair VS, Maeda LS, Ioannidis JP. Clinical outcome prediction by microRNAs in human cancer: a
systematic review. J Natl Cancer Inst. 2012; 104(7):528–40. [PubMed: 22395642]

36. Castoldi M, Schmidt S, Benes V, Hentze MW, Muckenthaler MU. miChip: an array-based method
for microRNA expression profiling using locked nucleic acid capture probes. Nat Protoc. 2008;
3(2):321–9. [PubMed: 18274534]

37. Castoldi M, Benes V, Hentze MW, Muckenthaler MU. miChip: a microarray platform for
expression profiling of microRNAs based on locked nucleic acid (LNA) oligonucleotide capture
probes. Methods. 2007; 43(2):146–52. [PubMed: 17889802]

38. Castoldi M, Schmidt S, Benes V, Noerholm M, Kulozik AE, Hentze MW, et al. A sensitive array
for microRNA expression profiling (miChip) based on locked nucleic acids (LNA). RNA. 2006;
12(5):913–20. [PubMed: 16540696]

39. Goff LA, Yang M, Bowers J, Getts RC, Padgett RW, Hart RP. Rational probe optimization and
enhanced detection strategy for microRNAs using microarrays. RNA Biol. 2005; 2(3):93–100.
[PubMed: 17114923]

Verma et al. Page 10

Cancer Epidemiol Biomarkers Prev. Author manuscript; available in PMC 2014 February 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



40. Liu CG, Calin GA, Meloon B, Gamliel N, Sevignani C, Ferracin M, et al. An oligonucleotide
microchip for genome-wide microRNA profiling in human and mouse tissues. Proc Natl Acad Sci
U S A. 2004; 101(26):9740–4. [PubMed: 15210942]

41. Thomson JM, Parker J, Perou CM, Hammond SM. A custom microarray platform for analysis of
microRNA gene expression. Nat Methods. 2004; 1(1):47–53. [PubMed: 15782152]

42. Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, et al. MicroRNA expression
profiles classify human cancers. Nature. 2005; 435(7043):834–8. [PubMed: 15944708]

43. Chen C, Ridzon DA, Broomer AJ, Zhou Z, Lee DH, Nguyen JT, et al. Real-time quantification of
microRNAs by stem-loop RT-PCR. Nucleic Acids Res. 2005; 33(20):e179. [PubMed: 16314309]

44. Jiang J, Lee EJ, Gusev Y, Schmittgen TD. Real-time expression profiling of microRNA precursors
in human cancer cell lines. Nucleic Acids Res. 2005; 33(17):5394–403. [PubMed: 16192569]

45. Arita A, Costa M. Epigenetics in metal carcinogenesis: nickel, arsenic, chromium and cadmium.
Metallomics. 2009; 1(3):222–8. [PubMed: 20461219]

46. Sutherland JE, Costa M. Epigenetics and the environment. Ann N Y Acad Sci. 2003; 983:151–60.
[PubMed: 12724220]

47. Bollati V, Baccarelli A, Sartori S, Tarantini L, Motta V, Rota F, et al. Epigenetic effects of
shiftwork on blood DNA methylation. Chronobiol Int. 2010; 27(5):1093–104. [PubMed:
20636218]

48. Zhu ZZ, Hou L, Bollati V, Tarantini L, Marinelli B, Cantone L, et al. Predictors of global
methylation levels in blood DNA of healthy subjects: a combined analysis. Int J Epidemiol. 2012;
41(1):126–39. [PubMed: 20846947]

49. Costa BM, Caeiro C, Guimaraes I, Martinho O, Jaraquemada T, Augusto I, et al. Prognostic value
of MGMT promoter methylation in glioblastoma patients treated with temozolomide-based
chemoradiation: a Portuguese multicentre study. Oncol Rep. 2010; 23(6):1655–62. [PubMed:
20428822]

50. Arita A, Niu J, Qu Q, Zhao N, Ruan Y, Nadas A, et al. Global levels of histone modifications in
peripheral blood mononuclear cells of subjects with exposure to nickel. Environ Health Perspect.
2012; 120(2):198–203. [PubMed: 22024396]

51. Arita A, Shamy MY, Chervona Y, Clancy HA, Sun H, Hall MN, et al. The effect of exposure to
carcinogenic metals on histone tail modifications and gene expression in human subjects. J Trace
Elem Med Biol. 2012; 26(2–3):174–8. [PubMed: 22633395]

52. Rivenbark AG, Coleman WB. The use of epigenetic biomarkers for preclinical detection of
hepatocellular carcinoma: potential for noninvasive screening of high-risk populations. Clin
Cancer Res. 2007; 13(8):2309–12. [PubMed: 17438087]

53. Kiyohara C, Horiuchi T, Takayama K, Nakanishi Y. Methylenetetrahydrofolate reductase
polymorphisms and interaction with smoking and alcohol consumption in lung cancer risk: a case-
control study in a Japanese population. BMC Cancer. 2011; 11:459. [PubMed: 22024018]

54. Kawakita D, Matsuo K, Sato F, Oze I, Hosono S, Ito H, et al. Association between dietary folate
intake and clinical outcome in head and neck squamous cell carcinoma. Ann Oncol. 2012; 23(1):
186–92. [PubMed: 21460376]

55. Poage GM, Butler RA, Houseman EA, McClean MD, Nelson HH, Christensen BC, et al.
Identification of an Epigenetic Profile Classifier That Is Associated with Survival in Head and
Neck Cancer. Cancer Res. 2012; 72(11):2728–2737. [PubMed: 22507853]

56. Verma M. Epigenetic biomarkers in cancer epidemiology. Methods Mol Biol. 2012; 863:467–80.
[PubMed: 22359311]

57. Khare S, Verma M. Epigenetics of colon cancer. Methods Mol Biol. 2012; 863:177–85. [PubMed:
22359293]

58. Mishra A, Verma M. Epigenetics of solid cancer stem cells. Methods Mol Biol. 2012; 863:15–31.
[PubMed: 22359285]

59. Verma M. Cancer control and prevention by nutrition and epigenetic approaches. Antioxid Redox
Signal. 2012; 17(2):355–64. [PubMed: 22047027]

60. Kumar D, Verma M. Methods in cancer epigenetics and epidemiology. Methods Mol Biol. 2009;
471:273–88. [PubMed: 19109785]

Verma et al. Page 11

Cancer Epidemiol Biomarkers Prev. Author manuscript; available in PMC 2014 February 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



61. Verma M, Maruvada P, Srivastava S. Epigenetics and cancer. Crit Rev Clin Lab Sci. 2004; 41(5–
6):585–607. [PubMed: 15603512]

62. Verma M, Dunn BK, Ross S, Jain P, Wang W, Hayes R, et al. Early detection and risk assessment:
proceedings and recommendations from the Workshop on Epigenetics in Cancer Prevention. Ann
N Y Acad Sci. 2003; 983:298–319. [PubMed: 12724234]

63. Verma M. Viral genes and methylation. Ann N Y Acad Sci. 2003; 983:170–80. [PubMed:
12724222]

64. Verma M, Srivastava S. Epigenetics in cancer: implications for early detection and prevention.
Lancet Oncol. 2002; 3(12):755–63. [PubMed: 12473517]

65. Holmes RS, Zheng Y, Baron JA, Li L, McKeown-Eyssen G, Newcomb PA, et al. Use of folic acid-
containing supplements after a diagnosis of colorectal cancer in the Colon Cancer Family Registry.
Cancer Epidemiol Biomarkers Prev. 2010; 19(8):2023–34. [PubMed: 20696661]

66. Duthie SJ. Epigenetic modifications and human pathologies: cancer and CVD. Proc Nutr Soc.
2011; 70(1):47–56. [PubMed: 21067630]

67. Park Y, Spiegelman D, Hunter DJ, Albanes D, Bergkvist L, Buring JE, et al. Intakes of vitamins A,
C, and E and use of multiple vitamin supplements and risk of colon cancer: a pooled analysis of
prospective cohort studies. Cancer Causes Control. 2010; 21(11):1745–57. [PubMed: 20820901]

68. Nystrom M, Mutanen M. Diet and epigenetics in colon cancer. World J Gastroenterol. 2009; 15(3):
257–63. [PubMed: 19140224]

69. Ben Gacem R, Hachana M, Ziadi S, Amara K, Ksia F, Mokni M, et al. Contribution of epigenetic
alteration of BRCA1 and BRCA2 genes in breast carcinomas in Tunisian patients. Cancer
Epidemiol. 2012; 36(2):190–7. [PubMed: 21978880]

70. Fuhrman BJ, Schairer C, Gail MH, Boyd-Morin J, Xu X, Sue LY, et al. Estrogen metabolism and
risk of breast cancer in postmenopausal women. J Natl Cancer Inst. 2012; 104(4):326–39.
[PubMed: 22232133]

71. Mirabello L, Sun C, Ghosh A, Rodriguez AC, Schiffman M, Wentzensen N, et al. Methylation of
human papillomavirus type 16 genome and risk of cervical precancer in a Costa Rican population.
J Natl Cancer Inst. 2012; 104(7):556–65. [PubMed: 22448030]

72. Han SS, Sue LY, Berndt SI, Selhub J, Burdette LA, Rosenberg PS, et al. Associations between
genes in the one-carbon metabolism pathway and advanced colorectal adenoma risk in individuals
with low folate intake. Cancer Epidemiol Biomarkers Prev. 2012; 21(3):417–27. [PubMed:
22253295]

73. Balassiano K, Lima S, Jenab M, Overvad K, Tjonneland A, Boutron-Ruault MC, et al. Aberrant
DNA methylation of cancer-associated genes in gastric cancer in the European Prospective
Investigation into Cancer and Nutrition (EPIC-EURGAST). Cancer Lett. 2011; 311(1):85–95.
[PubMed: 21831520]

74. Gao Y, Baccarelli A, Shu XO, Ji BT, Yu K, Tarantini L, et al. Blood leukocyte Alu and LINE-1
methylation and gastric cancer risk in the Shanghai Women’s Health Study. Br J Cancer. 2012;
106(3):585–91. [PubMed: 22173668]

75. Langevin SM, Koestler DC, Christensen BC, Butler RA, Wiencke JK, Nelson HH, et al. Peripheral
blood DNA methylation profiles are indicative of head and neck squamous cell carcinoma: an
epigenome-wide association study. Epigenetics. 2012; 7(3):291–9. [PubMed: 22430805]

76. Cheng Y, Zhang C, Zhao J, Wang C, Xu Y, Han Z, et al. Correlation of CpG island methylator
phenotype with poor prognosis in hepatocellular carcinoma. Exp Mol Pathol. 2010; 88(1):112–7.
[PubMed: 19879258]

77. Liao LM, Brennan P, van Bemmel DM, Zaridze D, Matveev V, Janout V, et al. LINE-1
methylation levels in leukocyte DNA and risk of renal cell cancer. PLoS One. 2011; 6(11):e27361.
[PubMed: 22076155]

78. Gibson TM, Brennan P, Han S, Karami S, Zaridze D, Janout V, et al. Comprehensive evaluation of
one-carbon metabolism pathway gene variants and renal cell cancer risk. PLoS One. 2011;
6(10):e26165. [PubMed: 22039442]

79. Ahmad ST, Arjumand W, Seth A, Saini AK, Sultana S. Methylation of the APAF-1 and DAPK-1
promoter region correlates with progression of renal cell carcinoma in North Indian population.
Tumour Biol. 2012; 33(2):395–402. [PubMed: 21922274]

Verma et al. Page 12

Cancer Epidemiol Biomarkers Prev. Author manuscript; available in PMC 2014 February 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



80. Ho PA, Kutny MA, Alonzo TA, Gerbing RB, Joaquin J, Raimondi SC, et al. Leukemic mutations
in the methylation-associated genes DNMT3A and IDH2 are rare events in pediatric AML: a
report from the Children’s Oncology Group. Pediatr Blood Cancer. 2011; 57(2):204–9. [PubMed:
21504050]

81. Songserm N, Promthet S, Sithithaworn P, Pientong C, Ekalaksananan T, Chopjitt P, et al. Risk
factors for cholangiocarcinoma in high-risk area of Thailand: role of lifestyle, diet and
methylenetetrahydrofolate reductase polymorphisms. Cancer Epidemiol. 2012; 36(2):e89–94.
[PubMed: 22189445]

82. Eads CA, Danenberg KD, Kawakami K, Saltz LB, Blake C, Shibata D, et al. MethyLight: a high-
throughput assay to measure DNA methylation. Nucleic Acids Res. 2000; 28(8):E32. [PubMed:
10734209]

83. Fazzari MJ, Greally JM. Introduction to epigenomics and epigenome-wide analysis. Methods Mol
Biol. 2010; 620:243–65. [PubMed: 20652507]

84. Weidlich S, Walsh K, Crowther D, Burczynski ME, Feuerstein G, Carey FA, et al.
Pyrosequencing-based methods reveal marked inter-individual differences in oncogene mutation
burden in human colorectal tumours. Br J Cancer. 2011; 105(2):246–54. [PubMed: 21712828]

85. Tetzner R, Dietrich D, Distler J. Control of carry-over contamination for PCR-based DNA
methylation quantification using bisulfite treated DNA. Nucleic Acids Res. 2007; 35(1):e4.
[PubMed: 17135186]

86. Eads CA, Lord RV, Wickramasinghe K, Long TI, Kurumboor SK, Bernstein L, et al. Epigenetic
patterns in the progression of esophageal adenocarcinoma. Cancer Res. 2001; 61(8):3410–8.
[PubMed: 11309301]

87. Eads CA, Lord RV, Kurumboor SK, Wickramasinghe K, Skinner ML, Long TI, et al. Fields of
aberrant CpG island hypermethylation in Barrett’s esophagus and associated adenocarcinoma.
Cancer Res. 2000; 60(18):5021–6. [PubMed: 11016622]

88. Zhou J, Cao J, Lu Z, Liu H, Deng D. A 115-bp MethyLight assay for detection of p16 (CDKN2A)
methylation as a diagnostic biomarker in human tissues. BMC Med Genet. 2011; 12:67. [PubMed:
21569495]

89. Cantone L, Nordio F, Hou L, Apostoli P, Bonzini M, Tarantini L, et al. Inhalable metal-rich air
particles and histone H3K4 dimethylation and H3K9 acetylation in a cross-sectional study of steel
workers. Environ Health Perspect. 2011; 119(7):964–9. [PubMed: 21385672]

90. Enroth S, Rada-Iglesisas A, Andersson R, Wallerman O, Wanders A, Pahlman L, et al. Cancer
associated epigenetic transitions identified by genome-wide histone methylation binding profiles
in human colorectal cancer samples and paired normal mucosa. BMC Cancer. 2011; 11:450.
[PubMed: 22011431]

91. Mo Q. A fully Bayesian hidden Ising model for ChIP-seq data analysis. Biostatistics. 2012; 13(1):
113–28. [PubMed: 21914728]

92. Wang C, Caron M, Burdick D, Kang Z, Auld D, Hill WA, et al. A sensitive, homogeneous, and
high-throughput assay for lysine-specific histone demethylases at the H3K4 site. Assay Drug Dev
Technol. 2012; 10(2):179–86. [PubMed: 22192306]

93. Pellegrini M, Ferrari R. Epigenetic analysis: ChIP-chip and ChIP-seq. Methods Mol Biol. 2012;
802:377–87. [PubMed: 22130894]

94. Jayani RS, Ramanujam PL, Galande S. Studying histone modifications and their genomic
functions by employing chromatin immunoprecipitation and immunoblotting. Methods Cell Biol.
2010; 98:35–56. [PubMed: 20816229]

95. Liu BL, Cheng JX, Zhang X, Wang R, Zhang W, Lin H, et al. Global histone modification patterns
as prognostic markers to classify glioma patients. Cancer Epidemiol Biomarkers Prev. 2010;
19(11):2888–96. [PubMed: 20978174]

96. Viertler C, Groelz D, Gundisch S, Kashofer K, Reischauer B, Riegman PH, et al. A new
technology for stabilization of biomolecules in tissues for combined histological and molecular
analyses. J Mol Diagn. 2012; 14(5):458–66. [PubMed: 22749745]

97. Gordanpour A, Nam RK, Sugar L, Bacopulos S, Seth A. MicroRNA detection in prostate tumors
by quantitative real-time PCR (qPCR). J Vis Exp. 2012; (63):e3874. [PubMed: 22643910]

Verma et al. Page 13

Cancer Epidemiol Biomarkers Prev. Author manuscript; available in PMC 2014 February 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



98. Borgan E, Navon R, Vollan HK, Schlichting E, Sauer T, Yakhini Z, et al. Ischemia caused by time
to freezing induces systematic microRNA and mRNA responses in cancer tissue. Mol Oncol.
2011; 5(6):564–76. [PubMed: 21917534]

99. Li J, Smyth P, Flavin R, Cahill S, Denning K, Aherne S, et al. Comparison of miRNA expression
patterns using total RNA extracted from matched samples of formalin-fixed paraffin-embedded
(FFPE) cells and snap frozen cells. BMC Biotechnol. 2007; 7:36. [PubMed: 17603869]

100. Hunter MP, Ismail N, Zhang X, Aguda BD, Lee EJ, Yu L, et al. Detection of microRNA
expression in human peripheral blood microvesicles. PLoS One. 2008; 3(11):e3694. [PubMed:
19002258]

101. Barton RH. A decade of advances in metabonomics. Expert Opin Drug Metab Toxicol. 2011;
7(2):129–36. [PubMed: 21219245]

102. Fan L, Zhang W, Yin M, Zhang T, Wu X, Zhang H, et al. Identification of metabolic biomarkers
to diagnose epithelial ovarian cancer using a UPLC/QTOF/MS platform. Acta Oncol. 2012;
51(4):473–9. [PubMed: 22283470]

103. Zhang T, Wu X, Yin M, Fan L, Zhang H, Zhao F, et al. Discrimination between malignant and
benign ovarian tumors by plasma metabolomic profiling using ultra performance liquid
chromatography/mass spectrometry. Clin Chim Acta. 2012; 413(9–10):861–8. [PubMed:
22309680]

104. Bictash M, Ebbels TM, Chan Q, Loo RL, Yap IK, Brown IJ, et al. Opening up the “Black Box”:
metabolic phenotyping and metabolome-wide association studies in epidemiology. J Clin
Epidemiol. 2010; 63(9):970–9. [PubMed: 20056386]

105. Yap IK, Brown IJ, Chan Q, Wijeyesekera A, Garcia-Perez I, Bictash M, et al. Metabolome-wide
association study identifies multiple biomarkers that discriminate north and south Chinese
populations at differing risks of cardiovascular disease: INTERMAP study. J Proteome Res.
2010; 9(12):6647–54. [PubMed: 20853909]

106. Loo RL, Coen M, Ebbels T, Cloarec O, Maibaum E, Bictash M, et al. Metabolic profiling and
population screening of analgesic usage in nuclear magnetic resonance spectroscopy-based large-
scale epidemiologic studies. Anal Chem. 2009; 81(13):5119–29. [PubMed: 19489597]

107. Holmes E, Loo RL, Stamler J, Bictash M, Yap IK, Chan Q, et al. Human metabolic phenotype
diversity and its association with diet and blood pressure. Nature. 2008; 453(7193):396–400.
[PubMed: 18425110]

108. Holmes E, Nicholson JK. Human metabolic phenotyping and metabolome wide association
studies. Ernst Schering Found Symp Proc. 2007; (4):227–49. [PubMed: 18811060]

109. Xiao JF, Varghese RS, Zhou B, Nezami Ranjbar MR, Zhao Y, Tsai TH, et al. LC-MS Based
Serum Metabolomics for Identification of Hepatocellular Carcinoma Biomarkers in Egyptian
Cohort. J Proteome Res. 2012

110. Nishiumi S, Kobayashi T, Ikeda A, Yoshie T, Kibi M, Izumi Y, et al. A novel serum
metabolomics-based diagnostic approach for colorectal cancer. PLoS One. 2012; 7(7):e40459.
[PubMed: 22792336]

111. Rojo D, Barbas C, Ruperez FJ. LC-MS metabolomics of polar compounds. Bioanalysis. 2012;
4(10):1235–43. [PubMed: 22651567]

112. Livengood P, Maciejewski R, Chen W, Ebert DS. OmicsVis: an interactive tool for visually
analyzing metabolomics data. BMC Bioinformatics. 2012; 13 (Suppl 8):S6. [PubMed: 22607515]

113. Xia J, Mandal R, Sinelnikov IV, Broadhurst D, Wishart DS. MetaboAnalyst 2. 0--a
comprehensive server for metabolomic data analysis. Nucleic Acids Res. 2012; 40(Web Server
issue):W127–33. [PubMed: 22553367]

114. Sugimoto M, Kawakami M, Robert M, Soga T, Tomita M. Bioinformatics Tools for Mass
Spectroscopy-Based Metabolomic Data Processing and Analysis. Curr Bioinform. 2012; 7(1):
96–108. [PubMed: 22438836]

115. Hnatyshyn S, Shipkova P. Automated and unbiased analysis of LC-MS metabolomic data.
Bioanalysis. 2012; 4(5):541–54. [PubMed: 22409552]

116. Ludwig C, Gunther UL. MetaboLab--advanced NMR data processing and analysis for
metabolomics. BMC Bioinformatics. 2011; 12:366. [PubMed: 21914187]

Verma et al. Page 14

Cancer Epidemiol Biomarkers Prev. Author manuscript; available in PMC 2014 February 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



117. Biswas A, Mynampati KC, Umashankar S, Reuben S, Parab G, Rao R, et al. MetDAT: a modular
and workflow-based free online pipeline for mass spectrometry data processing, analysis and
interpretation. Bioinformatics. 2010; 26(20):2639–40. [PubMed: 20702401]

118. Xia J, Wishart DS. MetPA: a web-based metabolomics tool for pathway analysis and
visualization. Bioinformatics. 2010; 26(18):2342–4. [PubMed: 20628077]

119. Carroll AJ, Badger MR, Harvey Millar A. The MetabolomeExpress Project: enabling web-based
processing, analysis and transparent dissemination of GC/MS metabolomics datasets. BMC
Bioinformatics. 2010; 11:376. [PubMed: 20626915]

120. Goodpaster AM, Romick-Rosendale LE, Kennedy MA. Statistical significance analysis of
nuclear magnetic resonance-based metabonomics data. Anal Biochem. 2010; 401(1):134–43.
[PubMed: 20159006]

121. Yuan M, Breitkopf SB, Yang X, Asara JM. A positive/negative ion-switching, targeted mass
spectrometry-based metabolomics platform for bodily fluids, cells, and fresh and fixed tissue.
Nat Protoc. 2012; 7(5):872–81. [PubMed: 22498707]

122. Greider CW. Telomerase discovery: the excitement of putting together pieces of the puzzle
(Nobel lecture). Angew Chem Int Ed Engl. 2010; 49(41):7422–39. [PubMed: 20872384]

123. Gilson E, Segal-Bendirdjian E. The telomere story or the triumph of an open-minded research.
Biochimie. 2010; 92(4):321–6. [PubMed: 20096746]

124. Greider CW. Telomeres. Curr Opin Cell Biol. 1991; 3(3):444–51. [PubMed: 1892656]

125. Beattie TL, Zhou W, Robinson MO, Harrington L. Functional multimerization of the human
telomerase reverse transcriptase. Mol Cell Biol. 2001; 21(18):6151–60. [PubMed: 11509658]

126. Nan H, Qureshi AA, Prescott J, De Vivo I, Han J. Genetic variants in telomere-maintaining genes
and skin cancer risk. Hum Genet. 2011; 129(3):247–53. [PubMed: 21116649]

127. Prescott J, Wentzensen IM, Savage SA, De Vivo I. Epidemiologic evidence for a role of telomere
dysfunction in cancer etiology. Mutat Res. 2012; 730(1–2):75–84. [PubMed: 21756922]

128. Hofer P, Baierl A, Feik E, Fuhrlinger G, Leeb G, Mach K, et al. MNS16A tandem repeats
minisatellite of human telomerase gene: a risk factor for colorectal cancer. Carcinogenesis. 2011;
32(6):866–71. [PubMed: 21422235]

129. Winnikow EP, Medeiros LR, Edelweiss MI, Rosa DD, Edelweiss M, Simoes PW, et al. Accuracy
of telomerase in estimating breast cancer risk: a systematic review and meta-analysis. Breast.
2012; 21(1):1–7. [PubMed: 21911295]

130. Mirabello L, Yu K, Kraft P, De Vivo I, Hunter DJ, Prescott J, et al. The association of telomere
length and genetic variation in telomere biology genes. Hum Mutat. 2010; 31(9):1050–8.
[PubMed: 20597107]

131. Johnatty SE, Beesley J, Chen X, Macgregor S, Duffy DL, Spurdle AB, et al. Evaluation of
candidate stromal epithelial cross-talk genes identifies association between risk of serous ovarian
cancer and TERT, a cancer susceptibility “hot-spot”. PLoS Genet. 2010; 6(7):e1001016.
[PubMed: 20628624]

132. Petersen GM, Amundadottir L, Fuchs CS, Kraft P, Stolzenberg-Solomon RZ, Jacobs KB, et al. A
genome-wide association study identifies pancreatic cancer susceptibility loci on chromosomes
13q22.1, 1q32.1 and 5p15. 33. Nat Genet. 2010; 42(3):224–8. [PubMed: 20101243]

133. Rafnar T, Sulem P, Stacey SN, Geller F, Gudmundsson J, Sigurdsson A, et al. Sequence variants
at the TERT-CLPTM1L locus associate with many cancer types. Nat Genet. 2009; 41(2):221–7.
[PubMed: 19151717]

134. Terry KL, Tworoger SS, Vitonis AF, Wong J, Titus-Ernstoff L, De Vivo I, et al. Telomere length
and genetic variation in telomere maintenance genes in relation to ovarian cancer risk. Cancer
Epidemiol Biomarkers Prev. 2012; 21(3):504–12. [PubMed: 22267287]

135. Meeker AK, Gage WR, Hicks JL, Simon I, Coffman JR, Platz EA, et al. Telomere length
assessment in human archival tissues: combined telomere fluorescence in situ hybridization and
immunostaining. Am J Pathol. 2002; 160(4):1259–68. [PubMed: 11943711]

136. Zhou X, Meeker AK, Makambi KH, Kosti O, Kallakury BV, Sidawy MK, et al. Telomere length
variation in normal epithelial cells adjacent to tumor: potential biomarker for breast cancer local
recurrence. Carcinogenesis. 2012; 33(1):113–8. [PubMed: 22072619]

Verma et al. Page 15

Cancer Epidemiol Biomarkers Prev. Author manuscript; available in PMC 2014 February 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



137. Barwell J, Pangon L, Georgiou A, Docherty Z, Kesterton I, Ball J, et al. Is telomere length in
peripheral blood lymphocytes correlated with cancer susceptibility or radiosensitivity? Br J
Cancer. 2007; 97(12):1696–700. [PubMed: 18000505]

138. De Vivo I, Prescott J, Wong JY, Kraft P, Hankinson SE, Hunter DJ. A prospective study of
relative telomere length and postmenopausal breast cancer risk. Cancer Epidemiol Biomarkers
Prev. 2009; 18(4):1152–6. [PubMed: 19293310]

139. Svenson U, Nordfjall K, Stegmayr B, Manjer J, Nilsson P, Tavelin B, et al. Breast cancer survival
is associated with telomere length in peripheral blood cells. Cancer Res. 2008; 68(10):3618–23.
[PubMed: 18483243]

140. Divella R, Daniele A, Gadaleta C, Tufaro A, Venneri MT, Paradiso A, et al. Circulating
transforming growth factor-beta and epidermal growth factor receptor as related to virus infection
in liver carcinogenesis. Anticancer Res. 2012; 32(1):141–5. [PubMed: 22213299]

141. El-Tayeh SF, Hussein TD, El-Houseini ME, Amer MA, El-Sherbini M, Elshemey WM.
Serological biomarkers of hepatocellular carcinoma in Egyptian patients. Dis Markers. 2012;
32(4):255–63. [PubMed: 22430192]

142. Qu Z, Cui N, Qin M, Wu X. Epidemiological survey of biomarkers of hepatitis virus in patients
with extrahepatic cholangiocarcinomas. Asia Pac J Clin Oncol. 2012; 8(1):83–7. [PubMed:
22369448]

143. Yu X, Zhang J, Hong L, Wang J, Yuan Z, Zhang X, et al. High prevalence of human parvovirus 4
infection in HBV and HCV infected individuals in shanghai. PLoS One. 2012; 7(1):e29474.
[PubMed: 22235298]

144. Li G, Ruan X, Auerbach RK, Sandhu KS, Zheng M, Wang P, et al. Extensive promoter-centered
chromatin interactions provide a topological basis for transcription regulation. Cell. 2012; 148(1–
2):84–98. [PubMed: 22265404]

145. Ioannidis JP, Khoury MJ. Improving validation practices in “omics” research. Science. 2011;
334(6060):1230–2. [PubMed: 22144616]

146. Ioannidis JP. A roadmap for successful applications of clinical proteomics. Proteomics Clin Appl.
2011; 5(5–6):241–7. [PubMed: 21523915]

147. Castaldi PJ, Dahabreh IJ, Ioannidis JP. An empirical assessment of validation practices for
molecular classifiers. Brief Bioinform. 2011; 12(3):189–202. [PubMed: 21300697]

148. Ioannidis JP. Expectations, validity, and reality in omics. J Clin Epidemiol. 2010; 63(9):945–9.
[PubMed: 20573481]

149. Gallo V, Egger M, McCormack V, Farmer PB, Ioannidis JP, Kirsch-Volders M, et al.
STrengthening the Reporting of OBservational studies in Epidemiology - Molecular
Epidemiology (STROBE-ME): an extension of the STROBE statement. Eur J Clin Invest. 2012;
42(1):1–16. [PubMed: 22023344]

150. von Elm E, Altman DG, Egger M, Pocock SJ, Gotzsche PC, Vandenbroucke JP. The
Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement:
guidelines for reporting observational studies. PLoS Med. 2007; 4(10):e296. [PubMed:
17941714]

151. Altman DG, McShane LM, Sauerbrei W, Taube SE. Reporting Recommendations for Tumor
Marker Prognostic Studies (REMARK): explanation and elaboration. PLoS Med. 2012;
9(5):e1001216. [PubMed: 22675273]

152. Alsheikh-Ali AA, Qureshi W, Al-Mallah MH, Ioannidis JP. Public availability of published
research data in high-impact journals. PLoS One. 2011; 6(9):e24357. [PubMed: 21915316]

153. Marsit CJ, Koestler DC, Christensen BC, Karagas MR, Houseman EA, Kelsey KT. DNA
methylation array analysis identifies profiles of blood-derived DNA methylation associated with
bladder cancer. J Clin Oncol. 2011; 29(9):1133–9. [PubMed: 21343564]

154. Zhu Y, Stevens RG, Hoffman AE, Tjonneland A, Vogel UB, Zheng T, et al. Epigenetic impact of
long-term shiftwork: pilot evidence from circadian genes and whole-genome methylation
analysis. Chronobiol Int. 2011; 28(10):852–61. [PubMed: 22080730]

155. Bullinger L, Ehrich M, Dohner K, Schlenk RF, Dohner H, Nelson MR, et al. Quantitative DNA
methylation predicts survival in adult acute myeloid leukemia. Blood. 2010; 115(3):636–42.
[PubMed: 19903898]

Verma et al. Page 16

Cancer Epidemiol Biomarkers Prev. Author manuscript; available in PMC 2014 February 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



156. Hong YS, Kang HJ, Kwak JY, Park BL, You CH, Kim YM, et al. Association between
microRNA196a2 rs11614913 genotypes and the risk of non-small cell lung cancer in Korean
population. J Prev Med Public Health. 2011; 44(3):125–30. [PubMed: 21617338]

157. Leite KR, Tomiyama A, Reis ST, Sousa-Canavez JM, Sanudo A, Dall’Oglio MF, et al.
MicroRNA-100 expression is independently related to biochemical recurrence of prostate cancer.
J Urol. 2011; 185(3):1118–22. [PubMed: 21255804]

158. Li J, Wang Y, Yu W, Chen J, Luo J. Expression of serum miR-221 in human hepatocellular
carcinoma and its prognostic significance. Biochem Biophys Res Commun. 2011; 406(1):70–3.
[PubMed: 21295551]

159. Zhao R, Wu J, Jia W, Gong C, Yu F, Ren Z, et al. Plasma miR-221 as a predictive biomarker for
chemoresistance in breast cancer patients who previously received neoadjuvant chemotherapy.
Onkologie. 2011; 34(12):675–80. [PubMed: 22156446]

160. Lynch SM, Weinstein SJ, Virtamo J, Lan Q, Liu CS, Cheng WL, et al. Mitochondrial DNA copy
number and pancreatic cancer in the alpha-tocopherol beta-carotene cancer prevention study.
Cancer Prev Res (Phila). 2011; 4(11):1912–9. [PubMed: 21859925]

161. Audet-Walsh E, Lepine J, Gregoire J, Plante M, Caron P, Tetu B, et al. Profiling of endogenous
estrogens, their precursors, and metabolites in endometrial cancer patients: association with risk
and relationship to clinical characteristics. J Clin Endocrinol Metab. 2011; 96(2):E330–9.
[PubMed: 21147881]

162. Gallagher RP, Macarthur AC, Lee TK, Weber JP, Leblanc A, Mark Elwood J, et al. Plasma levels
of polychlorinated biphenyls and risk of cutaneous malignant melanoma: a preliminary study. Int
J Cancer. 2011; 128(8):1872–80. [PubMed: 20533551]

163. Bitisik O, Yavuz S, Yasasever V, Dalay N. Telomerase activity in patients with chronic myeloid
leukemia and lymphoma. Res Commun Mol Pathol Pharmacol. 2000; 107(1–2):3–12. [PubMed:
11334367]

164. Tatsuma T, Goto S, Kitano S, Lin YC, Lee CM, Chen CL. Telomerase activity in peripheral
blood for diagnosis of hepatoma. J Gastroenterol Hepatol. 2000; 15(9):1064–70. [PubMed:
11059939]

165. van Bemmel D, Lenz P, Liao LM, Baris D, Sternberg LR, Warner AC, et al. Correlation of
LINE-1 methylation levels in patient matched buffy coat, serum, buccal cell and bladder tumor
tissue DNA samples. Cancer Epidemiol Biomarkers Prev. 2012

166. Szaumkessel M, Richter J, Giefing M, Jarmuz M, Kiwerska K, Tonnies H, et al. Pyrosequencing-
based DNA methylation profiling of Fanconi anemia/BRCA pathway genes in laryngeal
squamous cell carcinoma. Int J Oncol. 2011; 39(2):505–14. [PubMed: 21567085]

167. Tan D, Goerlitz DS, Dumitrescu RG, Han D, Seillier-Moiseiwitsch F, Spernak SM, et al.
Associations between cigarette smoking and mitochondrial DNA abnormalities in buccal cells.
Carcinogenesis. 2008; 29(6):1170–7. [PubMed: 18281252]

168. Shen C, Hu L, Xia L, Li Y. The detection of circulating tumor cells of breast cancer patients by
using multimarker (Survivin, hTERT and hMAM) quantitative real-time PCR. Clin Biochem.
2009; 42(3):194–200. [PubMed: 19022237]

169. Wong CM, Anderton DL, Smith-Schneider S, Wing MA, Greven MC, Arcaro KF. Quantitative
analysis of promoter methylation in exfoliated epithelial cells isolated from breast milk of
healthy women. Epigenetics. 2010; 5(7):645–55. [PubMed: 20716965]

170. Browne EP, Punska EC, Lenington S, Otis CN, Anderton DL, Arcaro KF. Increased promoter
methylation in exfoliated breast epithelial cells in women with a previous breast biopsy.
Epigenetics. 2011; 6(12):1425–35. [PubMed: 22139572]

171. Masayesva BG, Mambo E, Taylor RJ, Goloubeva OG, Zhou S, Cohen Y, et al. Mitochondrial
DNA content increase in response to cigarette smoking. Cancer Epidemiol Biomarkers Prev.
2006; 15(1):19–24. [PubMed: 16434581]

172. Dasgupta S, Shao C, Keane TE, Duberow DP, Mathies RA, Fisher PB, et al. Detection of
mitochondrial deoxyribonucleic acid alterations in urine from urothelial cell carcinoma patients.
Int J Cancer. 2012; 131(1):158–64. [PubMed: 21826645]

Verma et al. Page 17

Cancer Epidemiol Biomarkers Prev. Author manuscript; available in PMC 2014 February 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



173. Whittaker RG, Blackwood JK, Alston CL, Blakely EL, Elson JL, McFarland R, et al. Urine
heteroplasmy is the best predictor of clinical outcome in the m. 3243A>G mtDNA mutation.
Neurology. 2009; 72(6):568–9. [PubMed: 19204268]

174. Antill YC, Mitchell G, Johnson SA, Devereux L, Milner A, Di Iulio J, et al. Gene methylation in
breast ductal fluid from BRCA1 and BRCA2 mutation carriers. Cancer Epidemiol Biomarkers
Prev. 2010; 19(1):265–74. [PubMed: 20056647]

175. Krassenstein R, Sauter E, Dulaimi E, Battagli C, Ehya H, Klein-Szanto A, et al. Detection of
breast cancer in nipple aspirate fluid by CpG island hypermethylation. Clin Cancer Res. 2004;
10(1 Pt 1):28–32. [PubMed: 14734448]

176. Jakupciak JP, Maggrah A, Maragh S, Maki J, Reguly B, Maki K, et al. Facile whole
mitochondrial genome resequencing from nipple aspirate fluid using MitoChip v2. 0. BMC
Cancer. 2008; 8:95. [PubMed: 18402686]

177. Zhu W, Qin W, Bradley P, Wessel A, Puckett CL, Sauter ER. Mitochondrial DNA mutations in
breast cancer tissue and in matched nipple aspirate fluid. Carcinogenesis. 2005; 26(1):145–52.
[PubMed: 15375011]

178. Isaacs C, Cavalli LR, Cohen Y, Pennanen M, Shankar LK, Freedman M, et al. Detection of LOH
and mitochondrial DNA alterations in ductal lavage and nipple aspirate fluids from hngh-risk
patients. Breast Cancer Res Treat. 2004; 84(2):99–105. [PubMed: 14999140]

179. Thompson PA, Hsu CH, Green S, Stopeck AT, Johnson K, Alberts DS, et al. Sulindac and
sulindac metabolites in nipple aspirate fluid and effect on drug targets in a phase I trial. Cancer
Prev Res (Phila). 2010; 3(1):101–7. [PubMed: 20051377]

180. Mannello F, Tonti GA, Pagliarani S, Benedetti S, Canestrari F, Zhu W, et al. The 8-epimer of
prostaglandin F(2alpha), a marker of lipid peroxidation and oxidative stress, is decreased in the
nipple aspirate fluid of women with breast cancer. Int J Cancer. 2007; 120(9):1971–6. [PubMed:
17266038]

181. Kim SJ, Kelly WK, Fu A, Haines K, Hoffman A, Zheng T, et al. Genome-wide methylation
analysis identifies involvement of TNF-alpha mediated cancer pathways in prostate cancer.
Cancer Lett. 2011; 302(1):47–53. [PubMed: 21237555]

182. Peurala H, Greco D, Heikkinen T, Kaur S, Bartkova J, Jamshidi M, et al. MiR-34a expression has
an effect for lower risk of metastasis and associates with expression patterns predicting clinical
outcome in breast cancer. PLoS One. 2011; 6(11):e26122. [PubMed: 22102859]

183. Song JS, Kim YS, Kim DK, Park SI, Jang SJ. Global histone modification pattern associated with
recurrence and disease-free survival in non-small cell lung cancer patients. Pathol Int. 2012;
62(3):182–90. [PubMed: 22360506]

184. Eggers H, Steffens S, Grosshennig A, Becker JU, Hennenlotter J, Stenzl A, et al. Prognostic and
diagnostic relevance of hypermethylated in cancer 1 (HIC1) CpG island methylation in renal cell
carcinoma. Int J Oncol. 2012; 40(5):1650–8. [PubMed: 22327210]

185. Kuhn E, Meeker AK, Visvanathan K, Gross AL, Wang TL, Kurman RJ, et al. Telomere length in
different histologic types of ovarian carcinoma with emphasis on clear cell carcinoma. Mod
Pathol. 2011; 24(8):1139–45. [PubMed: 21499239]

186. Chen T, He J, Shen L, Fang H, Nie H, Jin T, et al. The mitochondrial DNA 4,977-bp deletion and
its implication in copy number alteration in colorectal cancer. BMC Med Genet. 2011; 12:8.
[PubMed: 21232124]

187. Yuan JM, Gao YT, Murphy SE, Carmella SG, Wang R, Zhong Y, et al. Urinary levels of cigarette
smoke constituent metabolites are prospectively associated with lung cancer development in
smokers. Cancer Res. 2011; 71(21):6749–57. [PubMed: 22028322]

188. Benowitz NL, Dains KM, Dempsey D, Wilson M, Jacob P. Racial differences in the relationship
between number of cigarettes smoked and nicotine and carcinogen exposure. Nicotine Tob Res.
2011; 13(9):772–83. [PubMed: 21546441]

189. Torroni A, Wallace DC. Mitochondrial DNA variation in human populations and implications for
detection of mitochondrial DNA mutations of pathological significance. J Bioenerg Biomembr.
1994; 26(3):261–71. [PubMed: 7521328]

Verma et al. Page 18

Cancer Epidemiol Biomarkers Prev. Author manuscript; available in PMC 2014 February 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



190. Bhat A, Koul A, Sharma S, Rai E, Bukhari SI, Dhar MK, et al. The possible role of 10398A and
16189C mtDNA variants in providing susceptibility to T2DM in two North Indian populations: a
replicative study. Hum Genet. 2007; 120(6):821–6. [PubMed: 17066297]

191. Xing J, Chen M, Wood CG, Lin J, Spitz MR, Ma J, et al. Mitochondrial DNA content: its genetic
heritability and association with renal cell carcinoma. J Natl Cancer Inst. 2008; 100(15):1104–12.
[PubMed: 18664653]

192. Ye C, Gao YT, Wen W, Breyer JP, Shu XO, Smith JR, et al. Association of mitochondrial DNA
displacement loop (CA)n dinucleotide repeat polymorphism with breast cancer risk and survival
among Chinese women. Cancer Epidemiol Biomarkers Prev. 2008; 17(8):2117–22. [PubMed:
18708405]

193. Dasgupta S, Soudry E, Mukhopadhyay N, Shao C, Yee J, Lam S, et al. Mitochondrial DNA
mutations in respiratory complex-I in never-smoker lung cancer patients contribute to lung
cancer progression and associated with EGFR gene mutation. J Cell Physiol. 2012; 227(6):2451–
60. [PubMed: 21830212]

194. Zheng S, Qian P, Li F, Qian G, Wang C, Wu G, et al. Association of mitochondrial DNA
variations with lung cancer risk in a Han Chinese population from southwestern China. PLoS
One. 2012; 7(2):e31322. [PubMed: 22363619]

195. Poage GM, Butler RA, Houseman EA, McClean MD, Nelson HH, Christensen BC, et al.
Identification of an epigenetic profile classifier that is associated with survival in head and neck
cancer. Cancer Res. 2012; 72(11):2728–37. [PubMed: 22507853]

196. Marsit CJ, Houseman EA, Christensen BC, Gagne L, Wrensch MR, Nelson HH, et al.
Identification of methylated genes associated with aggressive bladder cancer. PLoS One. 2010;
5(8):e12334. [PubMed: 20808801]

197. Floegel A, Drogan D, Wang-Sattler R, Prehn C, Illig T, Adamski J, et al. Reliability of serum
metabolite concentrations over a 4-month period using a targeted metabolomic approach. PLoS
One. 2011; 6(6):e21103. [PubMed: 21698256]

198. Chai W, Bostick RM, Ahearn TU, Franke AA, Custer LJ, Cooney RV. Effects of vitamin D3 and
calcium supplementation on serum levels of tocopherols, retinol, and specific vitamin D
metabolites. Nutr Cancer. 2012; 64(1):57–64. [PubMed: 22149065]

199. Zeleniuch-Jacquotte A, Shore RE, Afanasyeva Y, Lukanova A, Sieri S, Koenig KL, et al.
Postmenopausal circulating levels of 2- and 16alpha-hydroxyestrone and risk of endometrial
cancer. Br J Cancer. 2011; 105(9):1458–64. [PubMed: 21952628]

200. Sreekumar A, Poisson LM, Rajendiran TM, Khan AP, Cao Q, Yu J, et al. Metabolomic profiles
delineate potential role for sarcosine in prostate cancer progression. Nature. 2009; 457(7231):
910–4. [PubMed: 19212411]

201. Mocellin S, Verdi D, Pooley KA, Landi MT, Egan KM, Baird DM, et al. Telomerase reverse
transcriptase locus polymorphisms and cancer risk: a field synopsis and meta-analysis. J Natl
Cancer Inst. 2012; 104(11):840–54. [PubMed: 22523397]

202. Zienolddiny S, Skaug V, Landvik NE, Ryberg D, Phillips DH, Houlston R, et al. The TERT-
CLPTM1L lung cancer susceptibility variant associates with higher DNA adduct formation in the
lung. Carcinogenesis. 2009; 30(8):1368–71. [PubMed: 19465454]

203. Chang J, Dinney CP, Huang M, Wu X, Gu J. Genetic variants in telomere-maintenance genes and
bladder cancer risk. PLoS One. 2012; 7(2):e30665. [PubMed: 22363464]

204. Wauters E, Smeets D, Coolen J, Verschakelen J, De Leyn P, Decramer M, et al. The TERT-
CLPTM1L locus for lung cancer predisposes to bronchial obstruction and emphysema. Eur
Respir J. 2011; 38(4):924–31. [PubMed: 21622582]

205. Pande M, Spitz MR, Wu X, Gorlov IP, Chen WV, Amos CI. Novel genetic variants in the
chromosome 5p15. 33 region associate with lung cancer risk. Carcinogenesis. 2011; 32(10):
1493–9. [PubMed: 21771723]

206. Lu L, Zhang C, Zhu G, Irwin M, Risch H, Menato G, et al. Telomerase expression and telomere
length in breast cancer and their associations with adjuvant treatment and disease outcome.
Breast Cancer Res. 2011; 13(3):R56. [PubMed: 21645396]

Verma et al. Page 19

Cancer Epidemiol Biomarkers Prev. Author manuscript; available in PMC 2014 February 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Verma et al. Page 20

Ta
bl

e 
1

L
an

ds
ca

pe
 o

f 
th

e 
lit

er
at

ur
e 

on
 e

m
er

gi
ng

 ty
pe

s 
of

 m
ea

su
re

m
en

ts

M
ea

su
re

m
en

ts
A

ll
C

an
ce

r
H

um
an

C
as

e 
co

nt
ro

l O
R

 c
oh

or
t

SR
M

A

E
m

er
gi

ng

M
ito

ch
on

dr
ia

l D
N

A
49

99
0

52
94

42
11

13
4

8
0

M
et

hy
la

tio
n

63
13

2
20

74
5

16
60

4
12

74
13

7
25

H
is

to
ne

 m
od

if
ic

at
io

n
18

00
2

58
62

46
43

74
27

0

m
iR

N
A

19
88

6
78

44
60

89
40

5
77

19

C
hr

om
at

in
 c

on
de

ns
at

io
n

56
49

13
00

99
5

10
1

0

M
et

ab
ol

om
ic

s
75

33
94

8
67

3
86

8
0

T
el

om
er

as
e

25
07

4
97

65
83

32
32

6
43

12

C
la

ss
ic

G
en

om
e 

O
R

 g
en

om
ic

*O
R

 g
en

et
ic

15
29

83
5

27
89

71
22

47
63

16
48

8
26

54
10

80

Pr
ot

eo
m

*
54

66
4

10
10

8
80

46
45

4
14

9
7

G
en

e 
ex

pr
es

si
on

88
35

85
20

17
68

15
92

70
59

75
96

8
19

3

SR
: s

ys
te

m
at

ic
 r

ev
ie

w
; M

A
: m

et
a-

an
al

ys
is

.

B
as

ed
 o

n 
Pu

bM
ed

 s
ea

rc
he

s 
pe

rf
or

m
ed

 in
 N

ov
em

be
r 

20
12

; t
he

 la
st

 th
re

e 
co

lu
m

ns
 a

re
 li

m
ite

d 
to

 s
tu

di
es

 th
at

 a
re

 a
lr

ea
dy

 r
et

ri
ev

ed
 b

y 
C

an
ce

r 
an

d 
H

um
an

 f
ilt

er
s;

 th
e 

H
um

an
 c

ol
um

n 
is

 li
m

ite
d 

to
 s

tu
di

es
 th

at
ar

e 
al

re
ad

y 
re

tr
ie

ve
d 

by
 th

e 
C

an
ce

r 
fi

lte
r.

 S
ea

rc
he

s 
fo

r 
th

e 
di

ff
er

en
t m

ea
su

re
m

en
ts

 a
re

: “
m

ito
ch

on
dr

ia
l D

N
A

”,
 “

m
et

hy
la

tio
n 

O
R

 h
yp

er
m

et
hy

la
tio

n”
, “

hi
st

on
e 

A
N

D
 (

m
od

if
ic

at
io

n 
O

R
 m

et
hy

la
tio

n 
O

R
ac

et
yl

at
io

n)
”,

 “
m

iR
N

A
 O

R
 m

ic
ro

R
N

A
”,

”c
hr

om
at

in
 c

on
de

ns
at

io
n”

, “
m

et
ab

ol
om

ic
* 

O
R

 m
et

ab
ol

om
e 

O
R

 m
et

ab
on

om
ic

*”
, “

te
lo

m
er

e*
”,

 “
ge

no
m

e 
O

R
 g

en
om

ic
* 

O
R

 g
en

et
ic

”,
 “

pr
ot

eo
m

e*
”,

 “
ge

ne
ex

pr
es

si
on

”.

Cancer Epidemiol Biomarkers Prev. Author manuscript; available in PMC 2014 February 01.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Verma et al. Page 21

Table 2

Comparison of selected emerging methods and technologies for use in cancer epidemiology

Method/Technology Strengths Weaknesses

mtDNA polymorphism Whole genome can be sequenced for a large number
of samples because of the small size of the mt
genome (16.5 kb)

mtDNA sometimes can become integrated into the
nuclear genome, and identifying the integrated mt
genome in the nuclear genome is tedious

mtDNA copy number May provides additional information for identifying
risk- and survival-associated biomarkers

Experiments should be done very carefully because
the number of copies varies during the disease
development

Methylation profiling Provides a mechanism for studying gene activation/
inactivation without a change in the genome

Careful selection of the method is key to avoiding
false- negative and false- positive results; tissue
specificity can be a concern

miRNA profiling Requires a small amount of sample and provides
additional information to understand epigenetically
mediated gene regulation; information can be used in
targeted intervention studies

Tissue specificity can be a concern

Nuclear magnetic resonance
(NMR)

Quantitation of analytes is accurate with full
automation and high-througput capacity and high
reproducibility

Identifying products can be challenging because of
its insensitivity in detecting metabolites with
concentrations in micromole range

Mass spectroscopy (MS) Extremely sensitive, can detect analytes at picomole
range; requires small biospecimen volumes

Requires expensive consumables; poor
representation of highly polar metabolites

Metabolite profiling Can be done easily in patient biofluids Standards for all metabolites are not available

Telomerase activity and
telomere size variation

Suitable for paraffin-embedded tissue samples Since the length of telomere changes with age,
subject selection is very critical

mt: mitochondrial
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Table 3

Sample types appropriate for selected methods and technologies that can be used in cancer risk assessment,
detection, prognosis, and survival

Sample Method/Technology Typical Potential Applications in
Epidemiologic Studies

Blood Methylation analysis (29, 75, 153–155), miRNA analysis (156–
159), mtDNA analysis (160), metabolite profiling (161, 162),
telomerase assay (134, 163, 164),

Cancer detection, screening, survival,
prognosis, risk assessment

Buccal cells Methylation analysis (165, 166), mtDNA analysis (167), mtDNA
copy number analysis (8)

Cancer detection

Circulating tumor cells Telomerase (168) Cancer detection and prognosis

Circulating plasma DNA Methylation analysis (31) Cancer prognosis

Exfoliated cells from cervix Methylation analysis (169, 170), mtDNA analysis (171) Cancer detection

Exfoliated cells from urine Methylation analysis (172, 173), mtDNA analysis (172, 173) Cancer detection

Nipple aspirate Methylation analysis (174, 175), mtDNA analysis (176–178),
metabolite profiling (179, 180)

Cancer detection and prognosis

Serum miRNA profiling (32) Cancer prognosis

Tissue samples All methods [epigenomics (25, 26, 30, 33, 181–184), telomerase
(185), mtDNA (19, 20, 186)]

Cancer detection and prognosis

Urine Metabolomic profiling (187, 188) Cancer detection, identification of
lifestyle factors contributing to disease,
factors contributing to cancer prognosis
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Table 4

Selected examples where mitochondrial, metabolomic, epigenomic, and telomerase profiling was used in
screening, risk assessment, and prognosis (e.g. survival, disease aggression or recurrence)

Measurement Examples of Applications in epidemiology

Mitochondrial DNA alterations Germline mtDNA for screening populations for breast cancer (3, 5, 189, 190), breast and esophageal cancer
(4), kidney cancer (191), pancreatic cancer (15); to evaluate long term survival in breast cancer (192),
somatic mtDNA mutation to identify risk of lung cancer (193, 194)

Epigenetic profiling Methylation profiling to evaluate cancer survival in breast cancer (69), head and neck cancer (195), and
esophageal squamous cell carcinoma (31); to evaluate disease aggressiveness in bladder cancer (30, 196); to
detect disease and disease stratification in head and neck cancer (75) and kidney cancer (184); histone
profiling and chromatin condensation in disease recurrence in lung cancer (183), colon cancer (25) and
gastric cancer (26); miRNA profiling to evaluate survival in lung cancer (32, 33), miRNA polymorphism to
evaluate therapy outcome in bladder and breast cancer (34)

Metabolomic profiling Metabolomic profiling in disease detection and stratification in ovarian cancer (102, 103); to evaluate
nutritional factors and disease development (197, 198); life-style factors that contribute to lung cancer
development (187); endogenous factors that contribute to endometrial cancer (199); and prostate cancer
aggressiveness (200)

Telomerase profiling Association between TERT locus polymorphisms and predisposition to cancer (201, 202); TERT
polymorphism in detecting risk of bladder cancer (203), ovarian cancer (134), and lung cancer (204, 205);
tandem repeat minisatellite of telomerase as a risk factor for colorectal cancer (128); telomere length to
assess breast cancer treatment outcome (206)
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