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Abstract
The yeast Saccharomyces cerevisiae, with its full complement of organelles, synthesizes
membrane phospholipids by pathways that are generally common to those found in higher
eukaryotes. Phospholipid synthesis in yeast is regulated in response to a variety of growth
conditions (e.g., inositol supplementation, zinc depletion, and growth stage) by a coordination of
genetic (e.g., transcriptional activation and repression) and biochemical (e.g., activity modulation
and localization) mechanisms. Phosphatidate (PA), whose cellular levels are controlled by the
activities of key phospholipid synthesis enzymes, plays a central role in the transcriptional
regulation of phospholipid synthesis genes. In addition to the regulation of gene expression,
phosphorylation of key phospholipid synthesis catalytic and regulatory proteins controls the
metabolism of phospholipid precursors and products.
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INTRODUCTION
Phospholipids are major structural components of cellular membranes and are essential for
vital cellular processes (1, 2). Their structure is based on a glycerol-3-phosphate backbone in
which fatty acyl groups are esterified to positions 1 and 2 (Figure 1). As amphipathic
molecules, they form a bilayer in which integral and peripheral membrane proteins, as well
as other complex components, associate (3). In addition, they are reservoirs of second
messengers (4), provide precursors for the synthesis of macromolecules (5–9), serve in the
modification of membrane association (10), and function as molecular chaperons (11). In the
budding yeast, Saccharomyces cerevisiae, which contains a full complement of organelles,
phospholipids are synthesized via pathways that are generally common to those found in
higher eukaryotic organisms (12, 13). Its tractable genetics has facilitated the identification
and characterization of nearly all of the structural and regulatory genes that are involved in
de novo phospholipid synthesis (13, 14). Moreover, the purification and characterization of
key enzymes from the organism have led to an understanding of biochemical regulation in
phospholipid synthesis (12, 15, 16). Phospholipid synthesis in yeast is a complex process
that is regulated by genetic and biochemical mechanisms (12, 14–20), and its regulation is
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interrelated with the synthesis and regulation of other major lipid classes that include fatty
acids, triacylglycerol (TAG), sterols, and sphingolipids (12, 21–25). In this review, the focus
is on the interrelationships between the genetic and biochemical regulations of the synthesis
of the major phospholipids in S. cerevisiae. The way that yeast gene and protein terms are
named is described in the sidebar Yeast Gene/Protein Nomenclature.

PATHWAYS FOR THE SYNTHESIS OF THE MAJOR PHOSPHOLPIDS
The major phospholipids found in the cellular membranes of S. cerevisiae include
phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylinositol (PI), and
phosphatidylserine (PS) (26–29). Phosphatidylglycerol (PG) and cardiolipin (CL) are also
major phospholipids in mitochondrial membranes (26, 28, 29). Minor phospholipids include
intermediates: phosphatidate (PA); CDP-diacylglycerol (CDP-DAG)
phosphatidylmonomethylethanolamine and phosphatidyldimethylethanolamine; the D-3,
D-4, and D-5 polyphosphoinositides; lysophospholipids; and diacylglycerol (DAG)
pyrophosphate (26, 30, 31). The most common fatty acids esterified to the glycerophosphate
backbone of these lipids include palmitic acid, palmitoleic acid, stearic acid, and oleic acid
(26, 27, 32–34). The relative amounts of the phospholipids vary with growth conditions
(e.g., carbon source, nutrient availability, temperature, and growth phase) and with genetic
variations (18, 26, 28, 29). Although the proportions of the individual phospholipids change,
the average charge of the membrane phospholipids remains relatively constant (29, 35).
Thus, regulatory mechanisms exist in S. cerevisiae to compensate for changes in the levels
of phospholipids of one charge by coordinating parallel changes in the levels of
phospholipids of the opposite charge.

The pathways for the synthesis of major phospholipids in S. cerevisiae are presented in
Figure 2. The structural genes and enzymes involved in the pathways have been confirmed
by the analysis of gene mutations and the biochemical characterization of purified enzymes
(12, 15, 28, 36, 37). The synthesis of membrane phospholipids begins with the phospholipid
PA, which is produced from glycerol-3-phosphate or dihydroxyacetone phosphate after fatty
acyl coenzyme A (CoA)-dependent reactions that are catalyzed by the SCT1- and GPT2-
encoded glycerol-3-phosphate acyltransferases and the SLC1- and ALE1-encoded
lysophospholipid acyltransferases (38–44). In the de novo pathways, all membrane
phospholipids are synthesized from PA via the liponucleotide intermediate CDP-DAG. The
CDS1-encoded CDP-DAG synthase catalyzes the formation of CDP-DAG from PA using
the nucleotide CTP for the donation of the CMP moiety (45, 46). CDP-DAG may then
donate its phosphatidyl moiety to inositol to form PI (47) in the reaction catalyzed by the
PIS1-encoded PI synthase (48, 49). The inositol used in this reaction is derived from
glucose-6-phosphate via the reactions catalyzed by the INO1-encoded inositol-3-phosphate
synthase (50, 51) and the INM1-encoded inositol-3-phosphate phosphatase (52).
Alternatively, the inositol used in the reaction may be obtained exogenously via the ITR1-
and ITR2-encoded inositol permeases (53). CDP-DAG may also donate its phosphatidyl
moiety to glycerol-3-phosphate to form phosphatidylglycerophosphate (PGP) in the reaction
catalyzed by the PGS1-encoded PGP synthase (54, 55). PGP is then dephosphorylated to PG
by the GEP4-encoded PGP phosphatase (56). The CRD1-encoded CL synthase (57–59)
catalyzes the reaction between PG and another molecule of CDP-DAG to generate CL. The
final enzyme that utilizes CDP-DAG in the pathway is the CHO1-encoded PS synthase (60–
62), which catalyzes the formation of PS by displacement of CMP from CDP-DAG with Ser
(63). PS is then decarboxylated to PE by the PSD1- (64, 65) and PSD2-encoded (66) PS
decarboxylase enzymes. PE is then converted to PC by the three-step S-adenosyl methionine
(AdoMet)-dependent methylation reactions (67), whereby the first methylation reaction is
catalyzed by the CHO2-encoded PE methyltransferase (68, 69) and the last two methylation
reactions are catalyzed by the OPI3-encoded phospholipid methyltransferase (68, 70).
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PE and PC are also synthesized from exogenously supplied ethanolamine and choline [via
the HNM1-encoded choline permease (71, 72)], respectively, by way of the CDP-
ethanolamine and CDP-choline branches of the Kennedy pathway (Figure 2). The EKI1-
encoded ethanolamine kinase (73) and the CKI1-encoded choline kinase (74) enzymes
phosphorylate ethanolamine and choline with ATP to form phosphoethanolamine and
phosphocholine, respectively. These intermediates are then activated with CTP to form
CDP-ethanolamine and CDP-choline, respectively, by the ECT1-encoded
phosphoethanolamine cytidylyltransferase (75) and the PCT1-encoded phosphocholine
cytidylyltransferase (76). Finally, CDP-ethanolamine and CDP-choline react with DAG to
form PE and PC, respectively, in the reactions catalyzed by the EPT1-encoded ethanolamine
phosphotransferase (77, 78) and the CPT1-encoded choline phosphotransferase (79, 80).

The CTP required for the synthesis of CDP-DAG, CDP-ethanolamine, and CDP-choline is
derived from UTP by the URA7-(81) and URA8-encoded (82) CTP synthetase enzymes.
The DAG used for the synthesis of PE and PC via the Kennedy pathway is derived from PA
by the PAH1-encoded PA phosphatase (24).1 The DAG generated in the PA phosphatase
reaction may be converted back to PA by the DGK1-encoded DAG kinase2 (83, 84) or used
for the synthesis of the neutral lipid TAG (24) by acyltransferase enzymes encoded by
DGA1 and LRO1 (85). The ARE1- and ARE2-encoded acyltransferase enzymes, which are
primarily responsible for the synthesis of ergosterol esters, can also acylate DAG to form
TAG (85).

The CDP-DAG pathway is primarily used for the synthesis of PE and PC when cells are
grown in the absence of ethanolamine and choline (12, 27, 28, 86). Yet, the Kennedy
pathway contributes to the synthesis of PE and PC when these precursors are not
supplemented (37, 73, 87). For example, the PC synthesized by way of the CDP-DAG
pathway is constantly hydrolyzed to choline and PA (87, 88) by the SPO14-encoded (89, 90)
phospholipase D. The choline is incorporated back into PC via the CDP-choline branch of
the Kennedy pathway, and the PA is converted to other phospholipids via the intermediates
CDP-DAG and DAG (12, 15, 87). Choline may also be derived from PC through the
phospholipase B and glycerophosphocholine phosphodiesterase activities encoded by NTE1
(91) and GDE1 (92), respectively (93–95). Analysis of mutants indicates that the
physiological roles of PC synthesized by the two pathways may be different (93, 96, 97).

The Kennedy pathway plays a critical role in the synthesis of PE and PC when the enzymes
in the CDP-DAG pathway are defective (12, 36). For example, the cho2 opi3 mutant
deficient in the three-step methylation of PE requires choline supplementation for growth
and synthesizes PC via the CDP-choline branch of the Kennedy pathway (68–70, 98). The
cho1 and psd1 psd2 mutants deficient in the synthesis of PS (99, 100) and PE (66, 101),
respectively, can synthesize PC if they are supplemented with ethanolamine or choline. The
ethanolamine is incorporated into PE via the CDP-ethanolamine branch of the Kennedy
pathway, and the PE is subsequently methylated to form PC. Mutants defective in the CDP-
DAG pathway can also synthesize PE or PC when they are supplemented with lysoPE,
lysoPC, or PC with short acyl chains. LysoPE and lysoPC transported into the cell are
acylated to PE and PC, respectively, by the ALE1-encoded lysophospholipid
acyltransferase, which also utilizes lysoPA as a substrate (41, 42, 102, 103). Short acyl chain

1PA phosphatase is distinguished in catalytic and physiological functions from the DPP1- and LPP1-encoded lipid phosphate
phosphatase enzymes that dephosphorylate a broad spectrum of substrates (including PA, lysoPA, DAG pyrophosphate, sphingoid
base phosphates, and isoprenoid phosphates) by a distinct catalytic mechanism that does not require divalent cations (16, 31, 213,
214). The DPP1- and LPP1-encoded lipid phosphate phosphatase enzymes are associated with the vacuole and Golgi membranes,
respectively, and are thought to be involved with lipid signaling (16, 31).
2The yeast DAG kinase differs from the enzyme in animals, plants, worms, flies, and bacteria in that the yeast enzyme utilizes CTP
instead of ATP as the phosphate donor in the reaction (83, 84).
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PC, which is not incorporated directly into membranes, is remodeled with 16- and 18-carbon
acyl chains (104) by the activities of phospholipase B and lysophospholipid acyltransferase
(94, 95, 105). The Kennedy pathway mutants (i.e., cki1 eki1 and cpt1 ept1) defective in both
the CDP-choline and CDP-ethanolamine branches can synthesize PC only by the CDP-DAG
pathway (73, 106, 107). However, unlike the CDP-DAG pathway mutants (66, 68–70, 98–
101), the Kennedy pathway mutants do not exhibit any auxotrophic requirements and have
an essentially normal complement of phospholipids (73, 107).

GENETIC AND BIOCHEMICAL MECHANISMS THAT CONTROL
PHOSPHOLIPID SYNTHESIS

The synthesis of phospholipids is regulated by controlling the expression of enzymes and/or
by modulating the catalytic activities. The expression of phospholipid synthesis genes is
controlled by multiple factors, including carbon source, nutrient availability, growth stage,
pH, and temperature (12, 13, 18, 20, 95, 108, 109). The mechanisms responsible for the
regulation of gene expression include a number of cis- and trans-acting elements (14, 18,
20). Of these, the inositol-responsive cis-acting element (UASINO) and the corresponding
trans-acting factors (Ino2p, Ino4p, Opi1p) have been well characterized for transcriptional
regulation of phospholipid synthesis genes and are discussed here.

Genes encoding enzymes in the CDP-DAG (e.g., CDS1, CHO1, PSD1, CHO2, and OPI3)
and Kennedy (e.g., EKI1, EPT1, CKI1, CPT1) pathways, and in the synthesis of PI (e.g.,
INO1), as well as the genes encoding the inositol (ITR1) and choline/ethanolamine (HNM1)
permeases are coordinately regulated through a UASINO element in the promoter. The
UASINO element binds the Ino2p-Ino4p heterodimer that activates transcription, and
transcriptional activation is repressed when Opi1p binds to Ino2p (14, 18). Thus, the opi1
mutant exhibits derepressed levels of the UASINO-containing genes, whereas the ino2 and
ino4 mutants exhibit repressed levels of UASINO-containing genes (28, 29, 36, 37). Because
of the constitutive derepression of INO1 expression, opi1 mutants produce excessive
amounts of inositol and excrete it into the growth medium, but ino2 and ino4 mutants
lacking transcriptional activation of INO1 are auxotrophic for inositol (28, 29, 36, 37).
These inositol-related phenotypes are commonly used as indicators of the misregulation of
UASINO-containing genes (36, 37).

The repressor function of Opi1p is controlled by its cellular location (14, 18, 110). Opi1p,
which lacks a membrane-spanning domain (111), is found at the nuclear/endoplasmic
reticulum (ER) membrane and within the nucleus (110, 112, 113). It associates with the
membrane through interaction with the integral membrane protein Scs2p, and its membrane
association is stabilized by interaction with PA (110, 112). The involvement of Scs2p in the
Opi1p-mediated regulation of phospholipid synthesis is evident because the scs2 mutant is
auxotrophic for inositol, a phenotype shown by the constitutive repression of INO1 (114–
116). This observation predicts a nuclear localization of Opi1p for its increased repressor
function. Interestingly, the scs2 mutant also shows an increase in PC synthesis via the
Kennedy pathway, and a block in PC synthesis (e.g., cki1 scs2) restores normal INO1
expression (116). As discussed above, PC synthesis via the Kennedy pathway consumes PA
via DAG, and a block in the Kennedy pathway should result in PA accumulation. Thus, the
suppression of inositol auxotrophy for the scs2 mutant might be explained by a change in the
localization of Opi1p to the nuclear/ER membrane through interaction with PA.

Genetic and biochemical data indicate that PA has a major effect on the localization and
function of Opi1p (14). According to a recent model (Figure 3) (14, 18, 110), Opi1p is
tethered to the nuclear/ER membrane via interactions with Scs2p and PA. When PA levels
are reduced, Opi1p is released from the membrane and enters into the nucleus, where it
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attenuates transcription by binding to Ino2p. That PA governs the Opi1p-mediated
regulation of UASINO-containing genes is supported by the analyses of mutants defective in
the CDP-DAG and Kennedy pathways (14). For example, mutants (e.g., cho1, psd1, cho2,
and opi3) defective in any step of the CDP-DAG pathway exhibit increased levels of PA and
excrete inositol owing to constitutive derepression of INO1 expression (36, 37). However,
the inositol excretion phenotype can be alleviated when the mutants are supplemented with a
water-soluble precursor (e.g., ethanolamine and choline) that channels PA to phospholipid
synthesis via the Kennedy pathway (12, 37). In combination with a mutation in the SEC14-
encoded PI/PC transfer protein, CDP-choline pathway mutants (e.g., cki1 sec14, pct1 sec14,
and cpt1 sec14) excrete in-ositol and choline, and this phenotype is dependent on the excess
productions of PA and choline by the SPO14-encoded phospholipase D-mediated turnover
of PC (87, 117).

The level of PA can be directly affected by the activities of lysoPA acyltransferase, CDP-
DAG synthase, PA phosphatase, DAG kinase, and phospholipase D. Of these enzymes, PA
phosphatase and DAG kinase have emerged as key regulators of PA in the expression of
UASINO-containing genes. Cells lacking the PAH1-encoded PA phosphatase activity
contain an elevated level of PA and exhibit the derepression of UASINO-containing
phospholipid synthesis genes (e.g., INO1, OPI3, and INO2) (24, 108, 118). By contrast, the
overexpression of PA phosphatase activity causes the loss of PA, the repression of INO1
expression, and inositol auxotrophy (119). The lack of PA phosphatase activity also causes
the abnormal expansion of the nuclear/ER membrane (108, 118), underscoring the
importance of phospholipid synthesis to organelle synthesis and structure. The DGK1-
encoded DAG kinase counteracts the role that the PAH1-encoded PA phosphatase plays in
controlling PA content and the transcriptional regulation of UASINO-containing genes (83,
84). The overexpression of DAG kinase causes an increase in PA content, the derepression
of UASINO-containing genes, and the abnormal nuclear/ER membrane expansion (83) as in
those shown in the pah1 mutant (108, 118). Yet, the overexpression of DAG kinase activity
complements the inositol auxotrophy caused by the overexpression of PA phosphatase
activity (83), whereas the loss of DAG kinase activity (e.g., in the dgk1 mutation)
complements the phenotypes caused by the loss of PA phosphatase activity (e.g., in the pah1
mutation) (83, 84).

The PA-mediated regulation of UASINO-containing genes is triggered by the availability of
inositol, zinc, and nitrogen as well as the growth stage (12, 18, 20). For example, the
supplementation of the essential nutrient zinc to the growth medium activates the expression
of UASINO-containing genes (20, 120). By contrast, inositol supplementation represses the
gene expression (12, 14, 18), and the repressive effect is enhanced by ethanolamine or
choline supplementation (12). The UASINO-containing genes are maximally expressed in
the exponential phase of growth, whereas they are repressed in the stationary phase of
growth (12, 14, 18). In many cases, it is the biochemical regulation of a phospholipid
synthesis enzyme that ultimately controls the cellular level of PA. The following examples
typify this theme of regulation.

Inositol-Mediated Regulation
Inositol is an essential phospholipid precursor in yeast cells because it is incorporated,
through the major phospholipid PI, into polyphosphoinositides (30), sphingolipids (121),
and glycosylphosphatidylinositol anchors (122). The syntheses and physiological roles of
these inositol-containing membrane components are covered in recent review articles (30,
121, 122). As discussed above, inositol is synthesized in the cell, but when supplemented to
the growth medium, it affects the de novo synthesis of inositol and membrane phospholipid
synthesis (12, 13, 18, 28, 36). Inositol supplementation causes an increase in the synthesis of
PI by a mechanism that involves increased substrate availability for PI synthase (123). In
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addition, inositol directly inhibits the activity of PS synthase, which favors the utilization of
their common substrate CDP-DAG for PI synthesis (123). This biochemical regulation
draws upon the PA content through CDP-DAG and causes the translocation of Opi1p into
the nucleus for repression of UASINO-containing genes (14, 110). Overall, the repression of
the UASINO-containing genes leads to a decrease in the synthesis of enzymes used in both
the CDP-DAG and Kennedy pathways, and this repression causes changes, including an
increase in PI and decreases in PA, PS, and PC, in the phospholipid composition (12, 123).
Changes in membrane phospholipid composition are also the result of phospholipid turnover
that is mediated by enzymes, such as the NTE1-encoded phospholipase B (94, 124–126). In
fact, the activity of this phospholipase B, which does not have a direct effect on the
metabolism of PA, attenuates the repressor function of Opi1p when PC synthesis via the
Kennedy pathway is stimulated by choline supplementation at an elevated temperature
(126). Inositol supplementation also has global effects on cell physiology, including the
unfolded protein response and cell wall integrity pathways (13, 127, 128).

Zinc-Mediated Regulation
The synthesis of phospholipids is coordinately regulated with the expression of zinc
transporters that control zinc homeostasis (20, 129). Cells grown in zinc-depleted medium
exhibit the induced expression of zinc transporters (e.g., Zrt1p, Zrt2p, Fet4p, and Zrt3p) to
maintain the cytoplasmic levels of zinc (130, 131). At the same time, zinc depletion causes
alterations in membrane phospholipid composition that are brought about by changes in the
expression of phospholipid synthesis enzyme activities (20, 120, 132–134). The regulation
of UASINO-containing genes by zinc involves the control of PA content through the
activation of PIS1-encoded PI synthase and PAH1-encoded PA phosphatase activities. This
regulation, which occurs in the absence of inositol supplementation, is mediated by the zinc-
sensing and zinc-inducible transcriptional activator Zap1p and the zinc-responsive cis-acting
element (UASZRE) (129). Zinc depletion causes increased expressions of PIS1 (133) and
PAH1 (A. Soto-Cardalda & G.M. Carman, unpublished data) by the interaction of Zap1p
with a UASZRE in the promoter. The net results are the Opi1p-mediated repression of
UASINO-containing genes and a decrease in the activities of the CDP-DAG pathway
enzymes (120). The major effects of zinc depletion on phospholipid composition include an
increase in PI and a decrease in PE (120). Although enzyme activities in the CDP-DAG
pathway are reduced by zinc depletion, the amount of PC is not significantly affected (120).
Maintenance of a normal PC content is attributed to the Zap1p-mediated inductions of
choline kinase and ethanolamine kinase for PC synthesis via the Kennedy pathway (132,
135). Like PIS1 and PAH1, the CKI1 and EKI1 genes contain a UASZRE in their promoters
that interacts with Zap1p for gene activation (132, 135). Any effect that Opi1p would have
on the expressions of CKI1 and EKI1 (because they contain UASINO elements) is overcome
by the derepression by Zap1p (132, 135).

The fact that the zinc transporters are localized to cellular membranes raises the question as
to whether zinc-mediated alterations in phospholipid composition might regulate transporter
function. Several reports have shown that PE plays a major role in transporter function. For
example, PE is required for amino acid transporter function in S. cerevisiae (136, 137), and
its content in Escherichia coli is required for function of the α-aminobutyric acid (138),
lactose (139, 140), and phenylalanine (141) transporters. The availability of mutants (e.g.,
eki1, psd1, psd2) defective in PE synthesis should facilitate studies to address the
importance of changing PE content for the zinc transport function in S. cerevisiae.

CTP-Mediated Regulation
In S. cerevisiae, the nucleotide CTP plays a critical role in phospholipid synthesis as the
direct precursor of the high-energy intermediates CDP-DAG, CDP-choline, and CDP-
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ethanolamine that are used in the CDP-DAG and Kennedy pathways (Figure 2) (17). It is
also used as the phosphate donor for the synthesis of PA by the DAG kinase (84). CTP
synthetase (81, 82), which produces CTP, is allosterically inhibited by the product (142,
143), and this regulation ultimately determines the intracellular concentration of CTP (142,
144). CTP inhibits the CTP synthetase activity by increasing the positive cooperativity of
the enzyme for UTP and by simultaneously decreasing the enzyme’s affinity for UTP (142,
143). However, CTP synthetases containing an E161K mutation are less sensitive to CTP
product inhibition (145), and cells expressing the mutant enzymes exhibit a 6- to 15-fold
increase in their CTP level (145). They also show alterations in the synthesis of membrane
phospholipids, which include a decrease in the synthesis of PS and an increase in the
synthesis of PC, PE, and PA (145). The decrease in the synthesis of PS results from direct
inhibition of PS synthase activity by CTP (144), and this inhibition favors the synthesis of
phospholipids by the Kennedy pathway. The increase in PC synthesis is ascribed to a higher
utilization of the CDP-choline branch of the Kennedy pathway owing to the stimulation of
phosphocholine cytidylyltransferase activity (144, 145) by the increased substrate
availability of CTP (144, 146). Likewise, the increase in PE synthesis could be attributed to
stimulation of phosphoethanolamine cytidylyltransferase activity. The increase in PA
content may result from the stimulation of DAG kinase activity by increased availability of
its substrate CTP (84). The cells expressing the E161K mutant enzyme excrete inositol
(145), a characteristic phenotype that typifies the misregulation of UASINO-containing
phospholipid synthesis genes when cells accumulate an excess of PA (14). It is unclear
whether UASINO-containing genes in the CDP-DAG and Kennedy pathways are derepressed
in CTP overproducing cells, but the overriding regulation that governs the utilization of the
two pathways appears to be biochemical in nature.

CDP-Diacylglycerol-Mediated Regulation
The PA phosphatase and DAG kinase enzymes are differentially regulated by CDP-DAG.
This liponucleotide intermediate stimulates PA phosphatase activity (147) but inhibits DAG
kinase activity (84). However, the opposing regulations of PA metabolic enzymes favor a
decrease in PA content and the Opi1p-mediated repression of UASINO-containing genes.
One of the UASINO-containing genes that are repressed by Opi1p is CDS1 (148), which
codes for CDP-DAG synthase (46). Thus, the regulation of its own expression provides a
mechanism for controlling the synthesis of CDP-DAG from PA and the CDP-DAG-
dependent synthesis of phospholipids. This regulation is supported by the genetic evidence
that a conditional cds1 mutant defective in CDP-DAG synthase activity exhibits an elevated
PA content and the derepression of UASINO-containing genes (149, 150). The increased
DAG levels caused by the CDP-DAG-mediated regulation of PA phosphatase and DAG
kinase activities would be channeled to phospholipids via the Kennedy pathway or to the
neutral lipid TAG.

S-Adenosyl-L-Homocysteine-Mediated Regulation
S-Adenosyl-L-homocysteine (AdoHcy) is a product of the AdoMet-dependent methylation
reactions that are catalyzed by the CHO2-encoded PE methyltransferase and OPI3-encoded
phospholipid methyltransferase in the CDP-DAG pathway (Figure 2). Ado-Hcy, which is
removed by the SAH1-encoded AdoHcy hydrolase (23), is a competitive inhibitor of the
methyltransferase enzymes (151). Thus, downregulation of the AdoHcy hydrolase causes
the accumulation of AdoHcy and the inhibition of PC synthesis, which leads to an increase
in PA content and the derepression of UASINO-containing genes (23). Although the effects
of AdoHcy on phospholipid composition have not been addressed, its accumulation causes
an increase in TAG synthesis and lipid droplet content (23).
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REGULATION OF PHOSPHOLIPID SYNTHESIS BY PHOSPHORYLATION
Phosphorylation is a major covalent posttranslational modification by which the activity of
an enzyme or a transcription factor is regulated (152–157). Enzyme phosphorylation can
affect catalytic activity and/or subcellular localization. Phosphorylation of a regulatory
protein can control its localization, stability, and interaction with DNA or other proteins.
Data indicate that phospholipid synthesis in yeast is regulated by phosphorylation at Ser and
Thr residues. The protein kinases known to regulate the function of catalytic and regulatory
proteins in phospholipid synthesis include protein kinase A, protein kinase C, casein kinase
II, and cyclin-dependent kinase. Protein kinase A is the principal mediator of signals
transmitted through the RAS/cAMP pathway (158, 159). Its activity is required for proper
regulation of growth, progression through the cell cycle, and development in response to
various nutrients (158, 159). Protein kinase A consists of two catalytic subunits (encoded by
TPK1, TPK2, and TPK3) and two regulatory subunits (encoded by BCY1). Elevated cAMP
levels, which are controlled by adenylate cyclase (encoded by CYR1) via the RAS-cAMP
pathway, promote dissociation of the regulatory subunits from the catalytic subunits and
thus allow the catalytic subunits to phosphorylate a variety of substrates (158, 159). Protein
kinase C (encoded by PKC1) is essential for the progression of the cell cycle (160) and plays
a role in cell wall formation (161). Casein kinase II is essential for cell viability (162–164),
and the enzyme is composed of two catalytic (encoded by CKA1 and CKA2) and two
regulatory (CKB1 and CKB2) subunits (165–168). The CDC28 (CDK1)-encoded cyclin-
dependent kinase is a master regulator of cell-cycle transitions whose activity is governed by
interactions with various G1 and B-type cyclins (169). Phospholipid synthesis enzymes,
which are regulated by phosphorylation, include PS synthase, CTP synthetase, choline
kinase, and PA phosphatase. The transcriptional repressor Opi1p is also regulated by
phosphorylation.

Opi1p Phosphorylation
The Opi1p repressor plays a negative regulatory role in the expression of UASINO-
containing genes involved in the synthesis of membrane phospholipids (111, 170). In vivo
labeling studies have shown that Opi1p is phosphorylated at multiple Ser residues (171,
172). In vitro studies indicate that protein kinase A (172), protein kinase C (171), and casein
kinase II (173) play major roles in the phosphorylation. The major sites of Opi1p
phosphorylation include Ser10 (for casein kinase II), Ser26 (for protein kinase C), and Ser31

and Ser251 (for protein kinase A) (Figure 4) (171–173). The analysis of opi1 cells expressing
phosphorylation-deficient (e.g., Ser → Ala mutations) forms of Opi1p indicates that protein
kinases A and C are responsible for ~50% of the total phosphorylation that occurs in vivo
(171, 172). By contrast, phosphorylation by casein kinase II does not have a major effect on
the extent of Opi1p phosphorylation in vivo (173). In vitro the mutation (S26A) in the
protein kinase C target site reduces the phosphorylation of Opi1p by protein kinase A.
Likewise, the mutations (S31A and S251A) in protein kinase A target sites reduce the
phosphorylation by protein kinase C. By contrast, the mutation (S10A) in the casein kinase
II target site does not affect the in vitro phosphorylation by either protein kinase A or protein
kinase C. Furthermore, the mutations in the protein kinase A or protein kinase C target sites
do not affect the phosphorylation of Opi1p by casein kinase II. These results indicate that
phosphorylation by protein kinase A stimulates phosphorylation by protein kinase C and
vice versa and that the phosphorylations by these kinases are independent of the
phosphorylation by casein kinase II. The hierarchical phosphorylations by protein kinases A
and C provide an explanation as to why the protein kinase A and protein kinase C
phosphorylation site mutations affect the overall phosphorylation state of Opi1p in vivo and
as to why the casein kinase II site mutation does not have a major effect on the overall
phosphorylation state of the protein.
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The phosphorylation of Opi1p at Ser10, Ser31, and Ser251 stimulates its repressor function
(172), whereas phosphorylation at Ser26 attenuates its repressor function (171). The
regulation of Opi1p function via phosphorylation by protein kinases A and C occurs in cells
grown in the absence and presence of inositol (171, 172), whereas the regulation via
phosphorylation by casein kinase II occurs only when cells are grown in the absence of
inositol (173). Opi1p possesses binding domains for PA, Scs2p, Ino2p, and Sin3p (Figure 4)
(110, 112, 174, 175), which affect its localization and function. Whether the phosphorylation
of Opi1p by protein kinases A and C, as well as by casein kinase II, influences the
interaction of Opi1p with its binding partners warrants further investigation.

Phosphatidylserine Synthase Phosphorylation
The CHO1-encoded PS synthase is one of the most highly regulated enzymes for the
synthesis of phospholipids in S. cerevisiae (12, 15, 176). This ER-associated enzyme
catalyzes the formation of PS in the Mn2+-dependent sequential reaction that displaces CMP
from CDP-DAG with Ser (60–62, 177, 178). PS synthase possesses a CDP-alcohol
phosphotransferase domain that is shared by other phospholipid synthesis enzymes (e.g., PI
synthase and PGP synthase) catalyzing similar types of reactions (Figure 4) (179). PS
synthase exists in two forms that differ in the electrophoretic mobility (30 kDa and 27 kDa).
The 30-kDa form of PS synthase is produced from the 27-kDa form by protein kinase A–
mediated phosphorylation at Ser46 and Ser47 (180). The abundance of the two forms is
dependent on the cell growth phase but not on the regulated expression of CHO1 by inositol
supplementation or respiratory deficiency (180). The 30-kDa and 27-kDa forms are present
in exponential phase cells, whereas the 27-kDa form is primarily present in the stationary
phase cells.

Phosphorylation of PS synthase by protein kinase A inhibits its catalytic activity (181), and
the inhibitory effect of phosphorylation is abolished by S46A/S47A mutations (180). The
expression of phosphorylation-deficient PS synthase shows that its cellular level is about
twofold lower than that of the wild-type enzyme, resulting in a reduction of the total PS
synthase activity. The lower PS synthase activity in cells expressing the S46A/S47A mutant
enzyme correlates with a reduction in PS relative to PI and a decrease in PS synthesis in
vivo (180). These observations support the conclusion that protein kinase A phosphorylation
has dual roles in the regulation of PS synthase. On the one hand, phosphorylation inhibits PS
synthase activity, but on the other hand, it stabilizes the abundance of the enzyme. The dual
regulation of PS synthase results in a net increase in cellular PS synthase activity, which
must be important to the optimal function of PS synthase during the exponential phase of
cell growth (182). When the need for phospholipid synthesis is reduced in the stationary
phase (183), the total amount of PS synthase is reduced because of a lack of phosphorylation
and, at the same time, because of reduced gene repression (184).

CTP Synthetase Phosphorylation
CTP synthetase that is encoded by URA7 and URA8 is an essential cytosolic enzyme that
catalyzes a committed step in the synthesis of membrane phospholipids in S. cerevisiae (81,
82). The enzyme contains conserved CTP synthetase and glutamine amide transfer domains
that are involved in catalysis (Figure 4) (17). CTP synthetase catalyzes a complex set of
reactions, including the ATP-dependent transfer of the amide nitrogen from glutamine (i.e.,
the glutaminase reaction) to the C-4 position of UTP to generate CTP (185, 186). GTP
stimulates the glutaminase reaction by accelerating the formation of a covalent glutaminyl
enzyme intermediate (185, 186). The URA7-encoded CTP synthetase is phosphorylated by
protein kinase A and by protein kinase C (187, 188). The phosphorylations by these protein
kinases stimulate CTP synthetase activity by two- to threefold (187, 188). Kinetic analyses
show that the mechanisms for stimulation of CTP synthetase activity by these protein
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kinases are the same (187, 188). Phosphorylated CTP synthetase shows an increase in the
Vmax with respect to the substrates UTP and ATP, a decrease in the Km value for ATP, and
a decrease in the positive cooperativity of the enzyme for ATP (187, 188). Moreover, the
phosphorylation of CTP synthetase by protein kinases A and C attenuates the regulation of
its activity by CTP product inhibition (187, 188).

The effects of phosphorylation on the regulation of CTP synthetase activity involve the
oligomerization of the enzyme (142, 189). CTP synthetase exists as a dimer in the absence
of ATP and UTP, but the enzyme forms a tetramer in the presence of saturating
concentrations of the substrates (142, 189). The kinetics of enzyme tetramerization
correlates with the kinetics of enzyme activity. The product CTP does not inhibit the ATP/
UTP-dependent tetramerization of the enzyme (142, 189). Phosphorylation of native CTP
synthetase with protein kinases A and C facilitates the nucleotide-dependent tetramerization,
whereas dephosphorylation of native CTP synthetase prevents its nucleotide-dependent
tetramerization (189). This regulation correlates with the inactivation of CTP synthetase
activity (189). The rephosphorylation of the enzyme with protein kinases A and C results in
a partial restoration of the nucleotide-dependent tetramerization of the enzyme, and this
correlates with the partial restoration of CTP synthetase activity (189).

Ser424 is a target site for both protein kinase A and protein kinase C (190, 191). The
phosphorylation of this site is required to maintain optimum CTP synthetase activity in vivo
(190, 191). Protein kinase C also phosphorylates the enzyme at Ser36, Ser330, Ser354, and
Ser454 (192). Biochemical and physiological analyses of Ser→Ala mutations have shown
that phosphorylations at the Ser residues, except Ser330, result in the stimulation of CTP
synthetase activity (191, 192). The phosphorylation at Ser330 results in the inhibition of the
enzyme activity (192). Moreover, in vivo studies using these mutants have shown that the
regulatory effects of the phosphorylations at specific sites have an impact on the pathways
by which membrane phospholipids are synthesized. Phosphorylations at Ser36, Ser354, and
Ser454 correlate with an increase in PC synthesis via the Kennedy pathway (191, 192). In
contrast, phosphorylation at Ser330 correlates with a decrease in the utilization of the
Kennedy pathway (192).

Choline Kinase Phosphorylation
The CKI1-encoded choline kinase (74, 193) is a cytosolic enzyme that plays a regulatory
role in the synthesis of PC via the CDP-choline branch of the Kennedy pathway (12, 86,
194). The enzyme catalyzes the phosphorylation of choline with ATP to form
phosphocholine and ADP (195). Choline kinase contains conserved phosphotransferase and
choline kinase motifs (196–198) that are involved in its catalytic function (Figure 4) (198–
200). Choline kinase is phosphorylated at multiple Ser residues in vivo, and the
phosphorylations at some of these sites are mediated by protein kinases A (201) and C
(202).

Protein kinase A phosphorylates choline kinase at Ser30 and Ser85, with the former site
having the major effect on enzyme regulation (203). Protein kinase C phosphorylates Ser25

as well as Ser30 (202). Because protein kinases A and C phosphorylate Ser30,
phosphorylation of choline kinase by one protein kinase reduces phosphorylation of the
enzyme at the same site by the other protein kinase (202). Phosphorylation of choline kinase
at Ser25 by protein kinase C does not affect phosphorylation by protein kinase A (202).
Analysis of cki1 eki1 cells expressing S25A and S30A mutant forms of choline kinase
indicates that the phosphorylations at Ser25 and Ser30 by protein kinases A and C stimulate
activity (~twofold) and that these phosphorylations cause the concomitant increase in PC
synthesis via the Kennedy pathway (202, 203).
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Phosphatidate Phosphatase Phosphorylation
The PAH1-encoded PA phosphatase catalyzes the dephosphorylation of PA to yield DAG
and Pi (24, 204). This reaction is specific for PA, with a cofactor requirement of Mg2+ ions,
and is based on a catalytic motif within a haloacid dehalogenase–like domain of the enzyme
(Figure 4) (16, 24, 118). PA phosphatase activity is associated with the cytosolic and
membrane fractions of the cell, and its membrane association is peripheral in nature (24).
The regulation of PA phosphatase activity governs the synthesis of TAG, the pathways by
which phospholipids are synthesized, PA signaling and transcriptional regulation of
UASINO-containing genes, and the growth of the nuclear/ER membrane (205).

PA phosphatase is phosphorylated at multiple sites in vivo (119). Mass spectrometry
analysis of purified PA phosphatase, in combination with immunoblot analysis using an
antiphospho Ser/Thr-Pro antibody, has identified 16 sites of phosphorylation (Figure 4);
seven of these sites are located within the minimal Ser/Thr-Pro motif that is a target for cell
cycle–regulated protein kinases (e.g., Cdc28p and Pho85p) (119). Proteome-wide in vitro
phosphorylation analyses have shown that the enzyme is a target for protein kinases,
including those encoded by CDC28 (CDK1) (206), PHO85 (207, 208), and DBF2 (209).
That PA phosphatase is a target for Cdc28p in vivo is supported by the observations that the
electrophoretic mobility of PA phosphatase increases in a temperature-sensitive cdc28-4
mutant defective in cyclin-dependent kinase activity and in a cyclin clb3 clb4 mutant,
whereas PA phosphatase electrophoretic mobility decreases when cells enter the mitotic
phase of growth (108). Moreover, the slower-migrating PA phosphatase protein is
recognized by the antiphospho Ser/Thr-Pro antibody that is specific for cell cycle–regulated
phosphoepitopes having the minimal Ser/Thr-Pro motif (108, 210), and the seven sites of
phosphorylation identified in PA phosphatase have this motif (119).

Phosphorylation of PA phosphatase has an inhibitory effect on the enzyme function in vivo.
The Nem1p-Spo7p phosphatase complex is responsible for the dephosphorylation of PA
phosphatase, and yeast lacking the phosphatase complex exhibits the phenotypes
characteristic of the pah1 mutant (e.g., derepression of phospholipid synthesis genes and
aberrant nuclear/ER membrane expansion) defective in PA phosphatase activity (108). In
contrast to phosphorylation, the dephosphorylation of PA phosphatase has a stimulatory
effect on enzyme function in vivo. Yeast overexpressing PA phosphatase with simultaneous
mutations of the seven sites within the Ser/Thr-Pro motif to nonphosphorylatable Ala
residues exhibits inositol auxotrophy by exacerbating the Opi1p-mediated repression of
INO1 expression (presumably owing to reduced PA content) (119). In addition, the
phosphorylation-deficient septuple mutant PA phosphatase exhibits elevated (1.8-fold)
activity in vitro (119).

Genetic and biochemical data indicate that the association of PA phosphatase with the
membrane, where its substrate PA resides, is essential to the enzyme’s function in vivo (108,
119). The fact that the Nem1p-Spo7p complex is associated with the nuclear/ER membrane
(108, 211) indicates that phosphorylated PA phosphatase is recruited to the membrane for its
dephosphorylation. In vivo and in vitro studies have shown that the interaction of PA
phosphatase with the membrane is dependent on an amphipathic helix found at the N-
terminal region of the enzyme (212) and that the interaction through the amphipathic helix is
dependent on dephosphorylation by the Nem1p-Spo7p phosphatase complex (212).

CONCLUSIONS
The regulation of phospholipid synthesis in S. cerevisiae is a complex coordinated process
that is governed by genetic and biochemical mechanisms, which are interrelated. Gene
expression in S. cerevisiae is largely controlled by transcriptional regulation that is triggered
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by PA content through biochemical modulation of phospholipid synthesis enzymes. The
phospholipid precursors, products, and metabolites, as well as phosphorylation, play
important roles in this regulation.
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Glossary

Phospholipid a membrane component whose structure is based on a
glycerol-3-phosphate backbone with fatty acids esterified to
positions 1 and 2

PC phosphatidylcholine

PE phos-phatidylethanolamine

PI phosphatidylinositol

PS phosphatidylserine

PG phosphatidylglycerol

CL cardiolipin

Phosphatidate (PA) a phospholipid precursor that stabilizes the interaction of
Opi1p with Scs2p at the nuclear/ER membrane

CDP-DAG CDP-diacylglycerol

DAG diacylglycerol

UASINO an inositol-responsive cis-acting element found in the promoter
of several phospholipid synthesis genes

Opi1p a repressor protein that interacts with Ino2p to attenuate
transcriptional activation by the Ino2p-Ino4p complex

Ino2p-Ino4p
heterodimer

a complex of regulatory proteins that interact with the UASINO
element in the promoter to activate transcription

Nuclear/endoplasmic
reticulum (ER)
membrane

the outer nuclear membrane that is continuous with the
endoplasmic reticulum membrane

Zap1p a transcriptional activator protein that interacts with the
UASZRE

UASZRE a zinc-responsive cis-acting element found in the promoter of
some phospholipid synthesis genes

Phosphorylation a protein modification that regulates the functions of Opi1p
and key phospholipid synthesis enzymes
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SUMMARY POINTS

1. Phospholipid synthesis genes containing a UASINO element are transcriptionally
activated by the Ino2p-Ino4p heterodimer, which is repressed by Opi1p.

2. The nuclear localization and repressor function of Opi1p is regulated by its
interaction with Scs2p and PA at the nuclear/ER membrane.

3. PA is a phospholipid precursor and also plays a major role as a signaling
molecule in the regulation of phospholipid synthesis gene expression.

4. PA phosphatase and DAG kinase play major roles in regulating PA levels.

5. Genetic and biochemical mechanisms are interrelated to control membrane
phospholipid synthesis.

6. Phosphorylation regulates, either positively or negatively, the function of Opi1p
and the activity and localization of key phospholipid synthesis enzymes.
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FUTURE ISSUES

1. Structures of phospholipid synthesis enzymes and regulatory proteins need to be
solved to elucidate the molecular mechanisms of catalytic function, membrane
association, and gene expression.

2. Phosphorylation regulates the functions of Opi1p and phospholipid synthesis
enzymes. The molecular mechanisms for these regulations need further
examination. Information on the physiological conditions that stimulate and
repress phosphorylation/dephosphorylation by specific protein kinases and
phosphatases is needed.

3. Data from the global analyses of gene and protein expressions, protein
modifications, and metabolites (e.g., lipidomics) need to be evaluated and
integrated for designing novel research approaches to better understand the
regulation of phospholipid synthesis and its relationship with other metabolic
pathways.

4. Some reactions in phospholipid synthesis are catalyzed by more than one
enzyme (e.g., glycerol-3-phosphate and lysoPA acyltransferases, PS
decarboxylase, CTP synthetase, and PA phosphatase). In the case of PS
decarboxylase, enzyme activity is required for functions in different cellular
compartments. For enzymes (e.g., acyltransferases and CTP synthetase)
localized in the same cellular compartment, the reason for redundancy is not
obvious and needs to be addressed.

5. Some enzymes participate in multiple biosynthetic pathways. For example, the
product (DAG) of the PA phosphatase reaction is used for the synthesis of
phospholipids and TAG, whereas the product (CTP) of the CTP synthetase
reaction is used for the synthesis of phospholipids and nucleic acids. The
mechanisms that control the utilization of the products for different metabolic
processes warrant further investigations.
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YEAST GENE/PROTEIN NOMENCLATURE

S. cerevisiae genes are designated by three uppercase italicized letters followed by a
number (e.g., PIS1 for phosphatidylinositol synthase 1), ideally describing the
biochemical/molecular function of their protein products. Lowercase italicized letters
designate a recessive mutation in the gene (e.g., pis1). Some yeast genes (e.g., CHO1 and
OPI3) are named after their mutant phenotypes (e.g., cho1 mutants require choline and
opi3 mutants overproduce and excrete inositol, respectively) or other genetic phenotypes.
For genes that have several names (e.g., the gene for PS synthase has two names: CHO1
and PSS1) because of independent identification and naming, the standard name is the
one generally described first, and the other names are designated as aliases (see the
Saccharomyces Genome Database, http://www.yeastgenome.org/). The protein product
of a yeast gene is designated by the gene acronym followed by the letter p (e.g., Pis1p,
Cho1p, Opi3p).
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Figure 1.
Basic phospholipid structure. The diagram shows the structure of phosphatidate (PA), the
phospholipid precursor, with fatty acyl groups containing 16 carbon atoms (position 1) and
18 carbon atoms with one double bond (position 2).
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Figure 2.
Phospholipid synthesis pathways in S. cerevisiae. The pathways shown for the synthesis of
phospholipids include the relevant steps discussed in this review. The genes that are known
to encode enzymes catalyzing individual steps in the lipid synthesis pathways are indicated.
The UASINO-containing genes that are subject to regulation by the Ino2p-Ino4p activator
complex and the Opi1p repressor are shown (blue). Abbreviations: CDP-DAG, CDP-
diacylglycerol; Cho, choline; CL, cardiolipin; Gro, glycerol; DHAP, dihydroxyacetone
phosphate; Etn, ethanolamine; Glc, glucose; Ins, inositol; PA, phosphatidate; PC,
phosphatidylcholine; PE, phosphatidylethanolamine; PG, phosphatidylglycerol; PGP,
phosphatidylglycerophosphate; PDE, phosphatidyldimethylethanolamine; PI,
phosphatidylinositol; PME, phosphatidylmonomethylethanolamine; PS, phosphatidylserine;
TAG, triacylglycerol; UASINO, an inositol-responsive upstream activating sequence.
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Figure 3.
Model for the phosphatidate (PA)-mediated regulation of UASINO-containing phospholipid
synthesis genes. (a) Under growth conditions whereby the levels of PA are increased, the
Opi1p repressor is tethered to the nuclear/endoplasmic reticulum (ER) membrane via
interactions with Scs2p and PA, allowing the maximal expression (bold arrow) of UASINO-
containing genes (blue) by the Ino2p-Ino4p activator complex. (b) Under growth conditions
whereby the levels of PA are reduced, Opi1p is dissociated from the nuclear/ER membrane
and enters into the nucleus, where it binds to Ino2p and attenuates (thin arrow) the
transcriptional activation by the Ino2p-Ino4p complex. The PA level in the cell is decreased
by the stimulation of phosphatidylinositol (PI) synthesis in response to inositol (Ins)
supplementation and by the Zap1p-mediated induction of PIS1 that occurs in response to
zinc depletion. The regulations that occur in response to zinc depletion and stationary phase
occur in the absence of inositol supplementation. PA phosphatase (PAP) and DAG kinase
(DGK) play major roles in the regulation of PA content and thereby in the transcriptional
regulation of UASINO-containing genes. CDP-DAG, CDP-diacylglycerol; PC,
phosphatidylcholine; PE, phosphatidylethanolamine; PS, phosphatidylserine; TAG,
triacylglycerol; UASINO, inositol-responsive element; UASZRE, zinc-responsive element;
Zap1p, a transcriptional activator protein that interacts with the UASZRE.
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Figure 4.
Domain structures and phosphorylation sites of Opi1p and phospholipid synthesis enzymes.
Opi1p (with 404 amino acids) contains domains for interactions with Sin3p, phosphatidate
(PA), Scs2p, and Ino2p. It also contains Ser (S) residues that are sites for phosphorylation by
protein kinases A and C and casein kinase II. Phosphatidylserine (PS) synthase (with 277
amino acids) contains a CDP-alcohol phosphotransferase (P-transferase) domain and Ser
residues for phosphorylation by protein kinase A. CTP synthetase (with 579 amino acids)
contains the CTP synthetase and glutamine amide transfer domains as well as the Ser
residues for phosphorylation by protein kinases A and C. Choline kinase (with 582 amino
acids) contains the phosphotransferase and choline kinase (CK) domains as well as the Ser
residues for phosphorylation by protein kinases A and C. PA phosphatase (with 862 amino
acids) contains an amphipathic helix (H), NLIP and haloacid dehalogenase (HAD)-like
domains, and 16 Ser/Thr residues for phosphorylation. The seven sites denoted with an
asterisk are within the minimal Ser/Thr-Pro motif that is a target of cyclin-dependent
kinases.
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