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Spatial abundance patterns across species’ ranges have attracted intense
attention in macroecology and biogeography. One key hypothesis has
been that abundance declines with geographical distance from the range
centre, but tests of this idea have shown that the effect may occur indeed
only in a minority of cases. We explore an alternative hypothesis:
that species’” abundances decline with distance from the centroid of the
species’ habitable conditions in environmental space (the ecological niche).
We demonstrate consistent negative abundance—ecological distance relation-
ships across all 11 species analysed (turtles to wolves), and that relationships
in environmental space are consistently stronger than relationships in
geographical space.

1. Introduction

An important paradigm in ecology concerns population abundance trends
across species’ geographical distributions [1]. It has been argued that abun-
dances are highest at the geographical centres of species’ distributions, and
lowest along the periphery [2—4]; this notion has been used to predict extinction
probabilities [5,6] and is prominent in the conservation biology literature [7,8].
Nonetheless, empirical tests of this idea have yielded mixed results: the geo-
graphical distribution-abundance relationship is not straightforward, and
many exceptions have emerged [9,10].

Explanations of observed abundance variation across species’ ranges
invoke dispersal mechanisms in source-sink systems [11] and fitness res-
ponses to variation in critical habitat variables [4]. Ultimately, however,
geographical abundance patterns should reflect, at least in part, the extent to
which niche requirements are fulfilled at each site [12], such that ‘niche’ is the
N-dimensional hypervolume within which populations can be self-maintained
indefinitely [13]. Maguire [14] proposed that the niche has an internal structure
where optimal conditions are at the centroid of the hypervolume; if this
is true, then geographical abundance patterns across ranges respond to
the arrangement of environmental conditions relative to the niche centroid
across landscapes.

Ecological niche modelling was developed principally for characterizing distri-
butions of species, but has had little connection to underlying population-biological
processes [15,16]. Although theoretical treatments have addressed the distributional
consequences of these processes [17-21], no empirical studies have as yet linked
niche model outputs rigorously to population processes [19,20]. The niche model-
ling framework offers an alternative viewpoint on the central—peripheral
question: as with other recent efforts [22,23], population processes can be examined
in both geographical and ecological dimensions simultaneously. Here, we re-
examine the question of abundance patterns, comparing relationships between

© 2012 The Author(s) Published by the Royal Society. Al rights reserved.
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Figure 1. Geographical and environmental distribution of the California thrasher (Toxostoma redivivum). Map of western North America showing known occurrences
with abundance information (white dots; dot sizes indicate numbers of individuals per route), the geographical centroid of the species’ distribution (black star),
modelled distribution (dark grey) and the geographical location of the environmental centroid of the ecological niche (white star). Inset: visualization of the

distribution of the species in a space of annual mean temperature and annual precipitation, showing environments across western North America (light grey),
environments modelled as suitable for the species (dark grey), abundance occurrences of this species (white dots; dot sizes indicate numbers of individuals per
route), environmental conditions at the centroid of the species” geographical distribution (black star) and the centroid of niche in environmental space (white star).

abundance and geographical centrality with those between
abundance and environmental centrality.

2. Material and methods

To develop tests of abundance as a function of distances to
centroids of species’ distributions in geographical and environ-
mental spaces, we required data for each species at an array of
sites, plus independent data on occurrences with which to calibrate
models. Abundance data for four bird species (Toxostoma redivivum,
Calamospiza melanocorys, Spiza americana, Hylocichla mustelina) were
derived from the North American Breeding Bird Survey [24]; we
used route totals averaged over 1968-2004. Other taxa and data
sources included wintering populations of the sandpiper Tryngites
subruficollis; individuals per trap-night for the mice Peromyscus leu-
copus and P. maniculatus; survey publications (individuals per park)
for wolves Canis lupus; individuals per 100 km? for jaguars P. ornca;

and individuals per hectare for the turtle Clemmys guttata and the
howler monkey Alouatta palliata (see electronic supplementary
material, appendix S1). In each case, we sought species occurrence
data independent of the sources of abundance information, thereby
providing a way to calibrate ecological niche models in the data
resources served by the Global Biodiversity Information Facility
(GBIF; www.gbif.org). Sources for all data are in electronic sup-
plementary material, appendix S1; as necessary, textual locality
descriptors were georeferenced via electronic databases [25].

Raster-format data for modelling included the 19 ‘biocli-
matic’” dimensions in WorldClim [26], plus elevation, slope and
topographic index from Hydro-1K [27], which were resampled
to 2-20 km resolution, with finer resolutions for species with
smaller distributions to provide sufficient detail.

Ecological niches were modelled, using GARP [28] OreN
MobELLER Desktop v. 1.1.0 (http://openmodeller.sourceforge.net/).
GARP estimates niches in environmental dimensions by relating
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Figure 2. Relationships between abundance and distances to (a) geographical and (b) environmental centroids for the California Thrasher (Toxostoma redivivum).

characteristics of known occurrences to those of points randomly
sampled from across the study region in order to develop decision
rules that summarize factors associated with the species” presence
[28,29]. For each species, 100 replicate models were built; the 20
with lowest omission retained, and the 10 closest to median area pre-
dicted suitable were summed as a final consensus model (modified
from Pearson et al. [30]). Finally, we thresholded model predictions
to produce binary maps by establishing the level at which
90 per cent of input occurrence points are included in the predic-
tion. GARP’s predictive abilities have been tested [31-33], and it
typically produces results on par with other methodologies [34].
Our data and the GARP models are deposited in the University
of Kansas Repository and made available at http://hdl.handle.
net/1808/10061 [35].

To characterize niches, we combined environmental variables
with model prediction in ArcGIS v. 9.3 (ESRI, Redlands, CA, USA),
producing a grid with an attributes table summarizing unique
environmental combinations across the study region. We identified
grid cells corresponding to points where we had abundance data,
transformed environmental variables to standard normal variates
and calculated the centroid in environmental space as the mean
value of suitable pixels in each environmental dimension. We then
calculated Euclidean distances from all pixels to the ecological
niche centroid; for comparison, we calculated distances from all
points to the geographical centroid, with geographical distributions
drawn from diverse ‘extent of occurrence’” resources (see electronic
supplementary material, appendix S1). We related observed abun-
dances to both of these distance measures via regression (best fit of
exponential, logarithmic, power, cubic or linear); we also used a boot-
strapping routine in R that uses 1000 simulations using 70 per cent of
records for training and 30 per cent for testing. We calculated pro-
portions of test records falling within 95% Cls as a probability
value measuring performance of the model.

3. Results

As an exemplar, we chose the California thrasher (Toxostoma
redivivum), the species used by Grinnell [36] to develop the
concept of niches (figure 1). For this species, we found no
significant association between abundance and distance to the
geographical centroid (R*=0.064, p=0234; figure 2a).
Centroid distance in environmental space, however, showed
considerable explanatory power for abundances (R* = 0.312,
p = 0.001; figure 2b): populations farther from the niche cen-
troid in environmental space were smaller in numbers. Hence,
distance in environmental space explained considerable vari-
ation in abundance, whereas geographical distance to the
centre of the species’ distribution did not.

Parallel analyses used 10 additional species with
body masses spanning three orders of magnitude (table 1). In
10 of 11 cases, significant (p < 0.05) negative abundance—
environmental distance relationships existed; regressions
explained 7-69% of overall variation and there was no
significant dependence of R? on sample sizes (p = 0.178). By
contrast, abundance—geographical distance relationships
were not significant in seven of 11 species, and RZ%-values

were lower in nine of 11 species (0.005-0.327; table 1).

4. Discussion

Our results suggest that the geographical ‘abundant-centre
hypothesis’ [4,10] is not causal. It ‘works’ by happenstance
when geographical ranges and ecological niches coincide in
their central tendencies. Instead, we posit that ecological niches
play a role in defining more than range limits [18,37]: the geo-
graphical structure of species’ abundance patterns [38] maps
onto patterns of centrality in ecological niche space [12,14].

The observed inverse relationships between abundance
and distance to the centroid are generally nonlinear in
nature (except for the turtle). This realization implies that:
(i) sites presenting optimal niche conditions support many
more individuals than most occupied sites [12]; and (ii) opti-
mal niche conditions are relatively narrow, such that few sites
hold suitable conditions for maintaining large populations
[12]. Implications of this asymmetry for population biology
are profound: because more individuals are produced in
highly suitable areas, migration rates to suboptimal sites
are higher, limiting adaptation to novel conditions and
reinforcing niche conservatism [18,21,39].

We also found exceptions to the general trend. First, for the
migrant buff-breasted sandpiper the abundance—niche centroid
relationship was inverse but not significant. Analyses for this
species were conducted across the wintering distribution; the
rest of the species were analysed across breeding distributions.
Some migratory species shift ecological niches between seasons
[40], responding to different requirements; it is thus possible that
the winter niche of this species is less climatically driven, but this
possibility needs further exploration. Lastly, the spotted turtle
presented an inverse linear relationship, suggesting that optim-
ality of sites reduces monotonically rather than abruptly.
This result, however, may be an artefact of small sample sizes
(n = 14), clearly lacking a detailed representation of population
size variability across the species” geographical range.
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been unclear [9,10]. The environmental centrality result, on
the other hand, has both a conceptual underpinning [14,38],

and now empirical support.
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