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The theory of the clonal origin of cancer states that a tumour arises from one

cell that acquires mutation(s) leading to the malignant phenotype. It is the

current belief that many of these mutations give a fitness advantage to

the mutant population allowing it to expand, eventually leading to disease.

However, mutations that lead to such a clonal expansion need not give a fitness

advantage and may in fact be neutral—or almost neutral—with respect to fit-

ness. Such mutant clones can be eliminated or expand stochastically, leading to

a malignant phenotype (disease). Mutations in haematopoietic stem cells give

rise to diseases such as chronic myeloid leukaemia (CML) and paroxysmal

nocturnal haemoglobinuria (PNH). Although neutral drift often leads to

clonal extinction, disease is still possible, and in this case, it has important

implications both for the incidence of disease and for therapy, as it may be

more difficult to eliminate neutral mutations with therapy. We illustrate the

consequences of such dynamics, using CML and PNH as examples. These

considerations have implications for many other tumours as well.
1. Introduction
Tissue homeostasis gives the impression that cell populations are constant and

hides the fact that beneath this appearance of stability, there is substantial cell turn-

over. This is the case in all epithelial tissues (skin, gut, breast) as well as in

haematopoiesis. These tissues have a similar architecture where at the root lie

tissue-specific stem cells that divide to self-renew and give rise to progeny cells

that differentiate into the various types of cells present within the tissue. As long

as the dynamic exchanges between these populations are balanced, homeostasis

ensues. Therefore, at some macroscopic timescale, the sizes of these hierarchically

organized populations, arising from the stem cell population, appear constant.

The stochastic dynamics in such stem cell populations of constant size

can conveniently be modelled by the Moran process from population genetics

[1–3], a birth–death process (figure 1). Each cell has a certain fitness that is

in our case constant. In each time step, a cell is chosen for reproduction at

random, but with probability proportional to the fitness. This cell produces

identical offspring, replacing a randomly chosen cell, which is considered to

differentiate to the next stage. Effectively, this is a death event, because that

cell leaves the stem cell compartment and cannot be selected again for repro-

duction. In this model, cell export captures the initial step in the path

towards differentiation of that cell, usually through intermediate cells known

as progenitors. Stem cells can acquire mutations, and it is possible that these

confer a higher reproductive fitness to the mutated stem cells, hence increasing

the chances that the mutant population will invade the whole stem cell compart-

ment. This leads to a so-called clone that corresponds to all the offspring of the
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Figure 1. Possible changes of the number of mutated cells in an elementary time step of the Moran process. (a) The number of mutated cells can increases by one
if a wild-type cell differentiates and a mutated cell divides. (b,c) If the same cell type is affected by cell division and differentiation, then the number of mutated
cells does not change. (d ) The number of mutated cells decreases by one if a mutated cell differentiates and is replaced by a wild-type cell. (Online version
in colour.)
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mutant cell in all further differentiation steps. Other mutations

may give a fitness disadvantage and such a clone will be elimi-

nated with a probability that increases with the population size

and the fitness disadvantage of the cell. As such, these two

extremes will induce two potential outcomes: either the

mutant population takes over completely or it undergoes

extinction. Additionally, certain mutations may not cause a

reproductive advantage, i.e. neutral mutations. This case is

also a good approximation if selection is weak, i.e. if the product

of population size and fitness differences is small [4]. Even in

this case, the potential outcomes will, in the long run, be the

same as for the two extreme cases mentioned earlier.

However, all organisms have a finite lifetime and so one

expects intermediate regimes with mixed populations. Such

mixed regimes last longest for neutral mutations when fitness

is constant [5]. Such a scenario is not a mere theoretical exercise.

Many mutations are indeed neutral [6,7] but the impact of a

mutation is cell-context-dependent. In fact, the same mutation

may be neutral in one microenvironment but exhibit a fitness

difference in another [8–10]. Fitness may also fluctuate in time

[11], reflecting changes in the environment of the cells. Here,

we do not consider this more complex scenario, but concentrate

on fixed fitness values.

There is some evidence, for example, that BCR-ABL

expression in a haematopoietic stem cell (HSC) gives no fitness

advantage to the cell while the same oncogene expressed in
progenitor cells confers to them a fitness advantage [9,10,

12–14]. Therefore, the expansion of a BCR-ABL mutant stem

cell clone could rely entirely on neutral drift. In a similar

manner, neutral drift can explain the incidence, population age

structure and spontaneous elimination of PIG-A mutant clones

[15,16], a gene required for the synthesis of glycosylphosphatidyl

inositol-linked proteins that leads to the phenotype observed

in paroxysmal nocturnal haemoglobinuria (PNH) [17–19]. In

fact, the change of the reproductive fitness of cells owing to

acquired mutations is often unrelated to their effect on the

entire organism where ‘disease’ may or may not manifest itself

as a reduction in the ‘fitness’ of the entire organism.

Let us consider the appearance of a mutation, say BCR-

ABL, that has no impact on the reproduction of the HSCs

[12–14,20]. Given that the size of the active HSC pool (i.e. the

number of HSC that are contributing to haematopoiesis) is

small (of the order of 400 cells [21,22]), one expects stochastic

effects to have a prominent impact on the clonal evolution of

the mutant population [2,23], as also observed in related sys-

tems [24]. The theory of the clonal origin of cancer tells us

that we start with one cell that arises owing to mutation [25].

How will this clone evolve in time? If the first mutant cell is

selected for export, the mutation will disappear from the

HSC pool, and only a new mutation will re-initiate such a line-

age, an unlikely event [26,27]. By contrast, if such a cell is

selected for reproduction, it will generate another BCR-ABL
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expressing cell (because back mutation to a normal state is a

very unlikely scenario). As the population of mutant cells

increases, the probability that one of them is selected either

for reproduction or export also increases. What would be the

rate of expansion of such a population? This process is relevant,

because persistence of a ‘neutral’ clone can maintain disease in

the absence of therapy that can specifically kill such cells

[10,19,28]. Moreover, such a process may in part explain why

in many tumours, the cancer stem cell population is small,

while in others, many of the cancer cells have tumour initiating

capability [29,30]. In the following, we provide a mathematical

description of such a process and show how stochastic

simulations (see appendix) confirm such a behaviour.
Interface
10:20120810
2. Stem cell dynamics
Consider a population of constant size N, where cells repli-

cate and differentiate in discrete time steps. In each time

step, a cell is selected for reproduction, proportional to fitness

and divides symmetrically, producing identical offspring. In

the neutral case with j mutant cells, the probability that we

select one of them for reproduction is j/N, while with prob-

ability (N 2 j )/N, we select a normal cell for reproduction;

see table 1 for an overview of the notation. If the mutant

cells have a fitness r, the probability of selection is rj/(rj þ
N 2 j ). If r . 1, the mutant has a higher relative fitness com-

pared with the wild-type. If r , 1, the mutant has a lower

relative fitness, whereas if r ¼ 1, mutant and normal cells

have the same fitness. Given that the total population of cells

remains constant, then with each reproduction event, we

choose a cell for export at random—a typical assumption is

that this cell differentiates during cell division and cannot be con-

sidered as a primitive stem cell anymore. With probability j/N,

we choose a mutant cell for export, whereas with probability

(N 2 j)/N, we choose a normal cell for export. When the process

is repeated N times, on average, each cell would have had one

chance to reproduce. This natural timescale of the process is

often referred to as generation. For example, in the case of the

active HSC pool, we have N ¼ 400, and each HSC reproduces,

on average, about once per year [21,22]. Therefore, when 400

selection–reproduction–export events have occurred, a year

will have passed and, on average, each cell would have

reproduced once (for neutral mutations).

Note that we have excluded the possibility that a cell

divides asymmetrically and produces one differentiated

daughter cell and one daughter cell identical to the parent

cell. The presence of such asymmetric stem cell divisions

would slow down the dynamics between different stem

cells. If all cell divisions would be asymmetric, the number

of stem cells of each type would remain constant, with no

room for expansion or extinction of mutated stem cells

within the stem cell pool.
2.1. Moran process
The neutral Moran process is a birth–death process with

transition probabilities from state j to state k

T j!k ¼

j
N

N � j
N

; for k ¼ j + 1

1� 2
j

N
N � j

N
; for k ¼ j

0; else:

8>>>><
>>>>:

ð2:1Þ
(figure 1). Let us first address the probability that the mutant

clone goes extinct. For a neutral mutation, this probability is

given by 1 2 N21 in the long run. For short times, we can add

the different paths that lead to extinction. The number of such

possible paths increases rapidly with t: there is only one path

to extinction in one time step or two time steps, there are

two paths to extinction in three time steps, and there

are four paths to extinction in four time steps. For example,

the probability that the mutant cells go extinct within t ¼ 4

time steps is given by

M4
1!0 ¼ T1!0

þ T1!1T1!0

þ T1!1T1!1T1!0 þ T1!2T2!1T1!0

þ T1!1T1!1T1!1T1!0 þ T1!1T1!2T2!1T1!0

þ T1!2T2!2T2!1T1!0 þ T1!2T2!1T1!1T1!0; ð2:2Þ

where we have introduced the transition matrix after t time

steps, Mi!j
t ¼ (Ti!j)

t for notational convenience. Let us

now approximate M1!0
t for large N. Because j�N, we

have T j!j+1 ¼ j=NððN � jÞ=NÞ � 1=N and T j!j ¼ 1� 2j=N
ððN � jÞ=NÞ � 1� ð2=NÞ � 1 for j�N. The probability to

stay in a state is approximately 1, but the probability

to move to an adjacent state is close to zero. Thus, we can

approximate M1!0
t by considering the paths that have up to

only a certain number of transitions between states. Taking

into account only transitions in which the number of mutants

changes only once from one to zero, we obtain

Mt
1!0 � T1!0

Xt�1

k¼0

ðT1!1Þk �
1

N

Xt�1

k¼0

1� 2

N

� �k

¼ 1

2
� 1

2

N � 2

N

� �t

; ð2:3Þ

where the approximation is valid for large N. For t�N, the

result can be approximated by t/N. We can improve this

approximation by taking into account also those paths in

which we reach extinction with up to three transitions between

states, which yields for t � 3 the improved approximation

Mt
1!0 � T1!0

Xt�1

k¼0

ðT1!1Þk þ T1!2T2!1T1!0

�
Xt�3

k¼0

Xt�3�k

j¼0

ðk þ 1ÞðT1!1ÞkðT2!2Þj; ð2:4Þ

Going one step further, we could also include the paths invol-

ving five transitions, which would lead to two additional

terms for t � 5,

T1!2T2!1T1!2T2!1T1!0

Xt�5

k¼0

Xt�5�k

j¼0

k þ 1

2

� �
ðT1!1ÞkðT2!2Þj

þ T1!2T2!3T3!2T2!1T1!0

Xt�5

k¼0

Xt�5�k

j¼0

�
Xt�5�k�j

l¼0

ðk þ 1ÞðT1!1Þkð jþ 1ÞðT2!2ÞjðT3!3Þl:

Note that there are two classes of paths, one in which the

state with two mutants is entered and left twice (first

line) and one in which the state with three mutants is rea-

ched (second line). However, figure 2 illustrates that this

approximation is only a marginal improvement over the

three-transition approximation equation (2.4), which indicates
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Figure 2. Time-dependent probability of extinction. We show the analytical approximations based on equations (2.3) – (2.5) and simulations for N ¼ 100 (circles
with error bars given by the standard error of the binomial distribution) and for N ¼ 10 000 (line). Time has been re-scaled to generations, one generation consists
of N time steps. For the simulations, the population size has a marginal influence only for N . 100. While the approximation with three transitions, equation (2.4)
is a significant improvement over the approximation with only one transition, equation (2.3), taking into account five transitions (equation (2.5)) does not improve
the approximation much further. This indicates that for a better approximation for long times, many terms have to be taken into account (simulations averaged over
100 realizations). (Online version in colour.)

Table 1. Overview of symbols used.

symbol description

N population size (fixed)

r relative fitness of the mutated cell type

t time step, N time steps are one generation

j,k number of mutants

Tj!k probability to go from j to k in one time step

Mj!k
t probability to go from j to k in t time steps

ct number of mutants at time t conditioned upon no

extinction, starting from 1

kctl expected number of mutants at time t conditioned

upon no extinction, starting from 1

kct
2l expected of the square of ct
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that to derive a better approximation of the time-dependent

extinction probability for larger times, we would need to con-

sider a very large number of terms. A similar effect is found

for the Wright–Fisher process [31,32].

We are also interested in the conditional average number

of mutants c after t time steps given that the mutants do not

go extinct, kctl. This can be obtained by averaging only over

those paths that do not lead to state k ¼ 0,

kctl ¼
PN

k¼1 Mt
1!kkPN

k¼1 Mt
1!k

: ð2:5Þ

For the numerator, we have at t ¼ 1

XN

k¼1

M1
1!k k ¼ T1!1 � 1þ T1!2 � 2 ¼ 1: ð2:6Þ

Thus, the average number of mutants does not change in

the first time step. Because the transition probabilities

are constant in time, it does not change in the second time

step either. This can be iterated to see that the average

number of mutants remains constant (this can also be seen

directly from the transition probabilities: for neutral pro-

cesses, Ti!i 2 1 ¼ Ti!i þ 1 and thus, the average cannot

change—see also the discussion of the branching process in

the appendix). Thus,
PN

k¼1 Mt
1!kk ¼ 1. In the denominator

of equation (2.5), the transition probabilities out of state 1

are normalized. In other words, after t time steps, the pro-

cess has to end up somewhere between 0 and N. Thus, the

probabilities to end up in a state k . 0 or in state k ¼ 0

must sum up to one,
PN

k¼1 Mt
1!k ¼ 1�Mt

1!0. The term

M1!0
t has already been calculated above. With this, we

have for t�N

kctl ¼
1

1�Mt
1!0

� 1þ t
N
: ð2:7Þ

Figure 3 shows that this linear increase is a good approxi-

mation not only for small t, but for the first few
generations. This is consistent with the arguments above.

Because the conditional fixation time of a single neutral

mutant is N 2 1 generations [33–35], we expect that after

2N generations, the conditional number of mutants is already

close to N, as seen in our simulations for N ¼ 10 in figure 3

(see appendix for an explanation of the simulations).

In order to infer the variance of ct, we calculate the quantity

kc2
t l ¼

PN
k¼1 Mt

1!kk2PN
k¼1 Mt

1!k

: ð2:8Þ

Again, we apply the same approximation as above and consider

only those terms that are based on at most a single transition

between states; we find for the numerator of equation (2.8)

XN

k¼1

Mt
1!kk2 � Tt

1!1 � 1þ T1!2

Xt�1

j¼0

ð jþ 1ÞTj
11Tt�1�j

22 � 4: ð2:9Þ
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Figure 3. The average fraction of mutants conditioned upon no extinction. Our analytical approximation equation (2.7) is good for up to N/4 generations, in contrast
to the approximations for the probability of extinction, which holds only for a single generation (cf. figure 2). For longer times, the fraction of mutants increases at a
slower rate, reaching the maximum N after approximately 2N generations, which is consistent with the average conditional fixation time of the neutral mutants. The
distribution becomes broader with time, but narrows again when almost all realizations have reached fixation, as illustrated for the case of N ¼ 10 (error bars
represent the standard deviation obtained from averages over 106 independent realizations). (Online version in colour.)
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Note that this approximation neglects transitions to states

k . 2. The next term, in which two transitions are allowed,

would lead to two additional terms,

T1!2T2!1

Xt�2

j¼0

ð jþ 1ÞTj
1!1Tt�2�j

2!2 � 1

þ T1!2T2!3

Xt�2

j¼0

Xt�2�j

i¼0

Tj
1!1Ti

2!2Tt�2�j�i
3!3 � 9: ð2:10Þ

However, including this term leads only to a minor improve-

ment of the approximation. Next, we approximate equation

(2.9) for large N in the form
PN

k¼1 Mt
1!kk2 � 1þ 2t2

N, and find

kc2
t l � 1þ tþ 2t2

N
: ð2:11Þ

Finally, the error of our quantity kctl can be approximated by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kc2

t l� kctl
2

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2t� 1Þt

N

r
: ð2:12Þ

Thus, the leading dependence in t of our approximation is

linear, in accord with the numerical results shown in figure 3.

Note, however, that our approximation for the error holds

quantitatively for very short times only. We note that the limit

of the approximation is not the Taylor expansion for large N,

but the assumption that only few transitions occur. For more

precise approximations, a large number of such terms would

have to be taken into account.
3. Discussion
The results of our simulations and mathematical analysis

have implications for the incidence of acquired HSC dis-

orders. Given that a population with a neutral mutation (or

a mutation that confers a very small change in fitness,

N(r 2 1)�1), on average increases by only one cell per year,

then we can conclude that in a disease such as PNH, the
original mutation in PIG-A must occur early in life for the

clone to reach a threshold compatible with disease (e.g. 10%

of the stem cell population being mutated [36]), given that

the average age of patients with this disease is in the fourth

or fifth decade of life. Of course, this is the average and in

principle, growth of the population can be significantly

faster—or slower—owing to stochastic effects alone [2]. The

other option would be to imply some sort of fitness advantage

for the clone either owing to an intrinsic effect, as for instance

a second mutation, such as HMGA2 [18,37], or extrinsic effect

such as an immune-mediated attack on normal HSC as pro-

posed by Luzzatto et al. [38]. As discussed elsewhere [26],

the probability of a second mutation in the same cell that

gives it a fitness advantage is small, and perhaps this is the

reason why to date, only a couple of patients have been

described with such a second mutation [18]. On the other

hand, a fitness advantage could explain instances where

the clone is very large, while neutral drift would explain the

majority of situations where the clone is large enough to

cause disease [19].

In the case of CML, the incidence is almost invariably

in people beyond the second or third decade of life.

The latent period between the appearance of the Philadelphia

chromosome [39] in a HSC and diagnosis is often consi-

dered to be in the range of 3–5 years. Therefore, it appears

that most mutations leading to the Ph’ chromosome occur

later in life, presumably because the probability of a chromo-

somal recombination event leading to such a specific

translocation is smaller than the probability of a mutation

in PIG-A where a variety of mutations can inactivate the

gene [40–42].

Our modelling can also explain an apparent paradox:

many mutations in PIG-A inactivate the gene but clinically

significant PNH is rare. CML is a significantly more

common disorder compared with PNH (by at least one

order of magnitude), despite the fact that it is triggered by

only a single mutation. Both diseases start with a single
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mutated cell. Neutral drift means that clonal expansion, in

general will be slow and this is enough to explain why

PNH is rare. If BCR-ABL expression does not give a fitness

advantage, why is the incidence of the disease significantly

more common? The difference lies in the fact that BCR-ABL

expression does give a fitness advantage to cells downstream

of the HSC owing to enhanced self-renewal of the cells

[10,27,28,43], leading to their expansion with myeloprolifera-

tion and ultimately disease. Hence, and although the

population of CML stem cells is small, the disease is driven

by progenitor cells that rapidly expand in number and essen-

tially may invade haematopoiesis leading to disease. If CML

stem cells would instead have an increased propensity to

differentiate, the clone would die out faster, because

increased differentiation implies loss of these cells from the

stem cell compartment.

An alternative possibility would be that chromosomal

instability induced by BCR-ABL expression [44,45] would

result in the accumulation of additional mutations that can

accelerate the development of disease. This line of reasoning

implies that BCR-ABL expression alone may not be enough to

explain the initial development of chronic-phase CML. In our

view, this hypothesis would not be in keeping with the

results of animal experiments where a disease phenotype

similar to chronic phase CML is induced within weeks of

the introduction of BCR-ABL expressing HSC in immuno-

deficient animals [46]. However, even in this case, the

affected cells would need a fitness advantage to lead to an

early onset of the disease compared with the neutral case.

Note that our model does not capture late stages of the

disease, where additional mutations may lead to different

phenotypes. In addition, in these stages, the assumption of

a constant population size may break down.

CML can be well controlled, and haematopoiesis returns

to normal because at the level of the stem cell pool, the

majority of cells are normal [47] and haematopoiesis

recovers once the impact of BCR-ABL on cells is blocked

by tyrosine kinase inhibitors such as imatinib. By contrast,

expansion of the clone in PNH is less likely, because PIG-

A does not give a fitness advantage either to HSC or

progenitor cells. Moreover, as shown earlier, when PNH is

diagnosed, reflecting the (less likely) success of clonal

expansion, the clone size at the level of the stem cell pool

will in general be sizeable, which makes elimination of the

clone extremely difficult—except for stochastic extinction

[17,19], only a bone marrow transplant will eliminate the

clone and cure the disease. Therapy with eculizumab, a

monoclonal antibody that inhibits the C5 complement com-

ponent and prevents intravascular haemolysis, has no

impact on clone size in this disease, and therefore is not

curative [48,49].

As can be seen from this analysis, neutral mutations have

many flavours with implications for a variety of disorders

that ostensibly arise within the same cell. As in real estate,

location is everything. A neutral mutation in some cells

may provide a fitness advantage to their progeny cells

(BCR-ABL) that can also make them amenable to therapy.

A neutral mutation may be an innocuous passenger but at

times leads to a disease that can be as resistant as any other

with respect to therapy. Small may not be cute—it may be

stubborn, even lethal.

These evolutionary considerations have potential impli-

cations for other clonal disorders as well. Genomic
sequencing of tumours identifies many mutated genes. The

majority of these mutated genes are thought to be ‘passen-

gers’ [50], perhaps implying that they are not important for

tumour growth or survival. Such nomenclature may be mis-

leading, as potentially important mutations that are relevant

or even critical for the tumour may be ignored.
Appendix

A.1. Branching process
To connect our work to previous papers based on branching

processes, we can also consider the dynamics of mutant cells

as a branching process [51–53]. As a timescale, we consider

a single cell division. With probability p ¼ 1/N, a particular

cell produces two offspring cells. With the same probability

p, it is exported and lost from the stem cell pool (this is

equivalent to asymmetric cell division). Finally, with prob-

ability 1 2 2p, it remains unaffected (and thus can be

considered as having a single offspring), the equivalent of

self-renewal. Thus, the average number of offspring at time

t is given by mt ¼ 0 � pþ 1 � ð1� 2pÞ þ 2 � p ¼ 1, which

implies a constant average number of mutated stem cells.

Owing to this restriction, we are dealing with a critical

branching process [52]. This implies that the mutated stem

cells eventually go extinct with probability one. However,

because we consider a population of size N, once the

mutated cells hit this threshold (i.e. they invade the popu-

lation) they cannot go extinct anymore. But such a

statement is not necessarily helpful in our context, because

extinction may take longer than the lifetime of

the associated individual. Because extinction is likely, the

fact that the average number of mutated stem cells is

constant implies large fluctuations of the process [2,52].

The variance in the number of offspring is given by

s2 ¼ ð02 � pþ 12 � ð1� 2pÞ þ 22 � pÞ �m2
t ¼ 2p. From the var-

iance, we can obtain the scaling of the expected number of

mutated cells ct given that mt ¼ 1, ct � s2t=2 ¼ t=N [52].

This scaling holds for large t. Thus, the expected number

of mutated stem cells given that they do not go extinct

grow by one per generation. This has also been observed

in a Moran model of stem cell dynamics [28]. Next, we

show that the result can also be obtained directly from the

Moran model when the population size is not too small.

This illustrates that the conditional growth rate of 1 per

generation is valid even for short time t.
A.2. Computer simulations
For the computer simulations, the Moran process was

implemented as follows: the system is characterized by the

number of mutants j. In each time step, the probabilities to

transit to j + 1 or to stay in j are calculated based on j, N
and r, see §2. Then, a single pseudorandom number is gener-

ated that determines which of the three possible transitions is

realized (transfer to j + 1 or stay in j ). The procedure is then

continued in the next state. For the time-dependent extinction

probability, the fraction of runs leading to the extinction of all

mutants until a certain time is computed (figure 2). For the

number of cells given no extinction, as shown in figure 3,

only those runs in which extinction did not occur so far

are considered.



7
References
rsif.royalsocietypublishing.org
JR

SocInterface
10:20120810
1. Moran PAP. 1962 The statistical processes
of evolutionary theory. Oxford, UK: Clarendon
Press.

2. Dingli D, Traulsen A, Pacheco JM. 2007 Stochastic
dynamics of haematopoietic tumor stem cells. Cell
Cycle 6, 461 – 466. (doi:10.4161/cc.6.4.3853)

3. Werner B, Lutz D, Brümmendorf TH, Traulsen A,
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