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Classic beam theory is frequently used in biomechanics to model the stress

behaviour of vertebrate long bones, particularly when creating intraspecific

scaling models. Although methodologically straightforward, classic beam

theory requires complex irregular bones to be approximated as slender

beams, and the errors associated with simplifying complex organic struc-

tures to such an extent are unknown. Alternative approaches, such as

finite element analysis (FEA), while much more time-consuming to perform,

require no such assumptions. This study compares the results obtained

using classic beam theory with those from FEA to quantify the beam

theory errors and to provide recommendations about when a full FEA is

essential for reasonable biomechanical predictions. High-resolution com-

puted tomographic scans of eight vertebrate long bones were used to

calculate diaphyseal stress owing to various loading regimes. Under com-

pression, FEA values of minimum principal stress (smin) were on average

142 per cent (+28% s.e.) larger than those predicted by beam theory, with

deviation between the two models correlated to shaft curvature (two-

tailed p ¼ 0.03, r2 ¼ 0.56). Under bending, FEA values of maximum princi-

pal stress (smax) and beam theory values differed on average by 12 per

cent (+4% s.e.), with deviation between the models significantly correlated

to cross-sectional asymmetry at midshaft (two-tailed p ¼ 0.02, r2 ¼ 0.62). In

torsion, assuming maximum stress values occurred at the location of mini-

mum cortical thickness brought beam theory and FEA values closest in

line, and in this case FEA values of ttorsion were on average 14 per cent

(+5% s.e.) higher than beam theory. Therefore, FEA is the preferred model-

ling solution when estimates of absolute diaphyseal stress are required,

although values calculated by beam theory for bending may be acceptable

in some situations.
1. Introduction
In comparative biology and palaeontology, the relationship between diaphyseal

cross-sectional properties of long bones and body mass (Mb) is frequently used

as an indicator of skeletal strength and rigidity. In many instances, relative
values of such properties as cortical cross-sectional area (Acort), second

moment of area (I ) and polar moment of area (J ) are used in comparative

studies, from which skeletal posture and in vivo function may be inferred

[1–4]. However, in other instances, diaphyseal cross-sectional properties are

incorporated into equations to predict actual skeletal stress. Reliable estimates

of diaphyseal stress are essential in determining maximum upper limits to ter-

restrial vertebrate body mass [5], estimating safety factors (the ratio of yield
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10 mm

50 mm

Figure 1. Three-dimensional volumetric models of vertebrate long bones considered in this study. Far left, Giraffa camelopardalis tibia. Scale bar: 50 mm. All other
models are to same scale (scale bar: 10 mm). From left, Haliaeetus albicilla femur, Uria aalge tibia, Phoenicopterus ruber femur, Procavia capensis femur, Galago
senegalensis femur, Mustela putorius tibia and Erinaceus europaeus femur.
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stress to maximum functional stress), and in reconstructing

gaits via locomotion modelling [6]. While the preferred

method for obtaining absolute values of stress must always

be the in vivo application of strain gauges, this is often

impractical, owing to ethical constraints associated with the

study species, the sample size required or the fossilized

nature of the sample.

When a particular biomechanical model is used to estimate

stress in a range of specimens, we assume that the mechanical

consequences of differing skeletal morphology will be illumi-

nated [7]. Yet, the error magnitude involved in the calculation

of stress and strain is also a function of the underlying geome-

try of the skeletal element (both external morphology and

internal architecture). A model’s suitability for estimating

stress is dependent upon the extent to which each biological

specimen in turn meets the conditions of the model. In a

sample containing high morphological variability, application

of classic beam theory to estimate stress may result in inconsis-

tency in both the direction and the magnitude of errors, and

may mask the functional morphological signal of interest.

Euler–Bernoulli beam theory [8] (hereafter referred to as

‘classic beam theory’) provides a means of calculating deflec-

tion of a beam and has been extensively applied to the

estimation of stresses in vertebrate long bones, owing in

large part to its simplicity [9–12]. Compressive loads acting

through the centroid of the cross section generate normal

stresses defined as

scomp ¼
F

Acort
; ð1:1Þ

where scomp is compressive stress, F is the applied force and

Acort the cross-sectional cortical area [13]. However, in

instances when the beam possesses a degree of curvature,

axial components of the applied force act longitudinally

around the curvature and induce bending moments. In the

case of long bones, the extent of induced bending is a func-

tion of the radius of curvature of the element, and resultant

bending stresses may come to dwarf those of axial com-

pression during dynamic loading [14]. Previous authors

have sought to explain the scaling behaviour of long bone
dimensions in terms of maintaining resistance to Euler buck-

ling (failure of a thin-walled straight column under axial

compression owing to elastic instability) [15,16], despite con-

cern elsewhere that elastic deformation is unlikely to be an

important factor in failure of mammal bones [17]. In addition,

such scaling models have so far ignored the potential role of

curvature in their calculations. Figure 1 illustrates the varying

morphology characteristic of vertebrate hindlimbs included

in this study, and highlights the divergence of long bones

from the idealized straight beams considered in engineering.

A limited number of biomechanical studies have incor-

porated curvature into estimates of bending stress [18–20]

or have investigated scaling of curvature to body mass

[18,21,22]. This is particularly the case in the modelling of

stress in primate mandibular symphyses [23,24], as they exhi-

bit a particularly high degree of curvature relative to other

skeletal elements. However, there has been no systematic

application of curvature-corrected equations to long bones

across the comparative anatomy and palaeontological litera-

ture, and the effect of ignoring this geometry on beam

theory estimates has not been adequately explored.

The bending stress (sbending(y)) varies with position

across a symmetric beam and is estimated as

sbendingðyÞ ¼
Mxy

Ix
; ð1:2Þ

where Mx is the bending moment about the x-axis, y is the

perpendicular distance to the neutral section and Ix is the

second moment of area about the x-axis [13]. Application of

this equation assumes that the cross section is symmetrical

about the axis on which loading is occurring, that cross-

sectional shape is maintained downshaft, and that plane

sections remain undistorted and normal to the long axis fol-

lowing loading, i.e. ignoring shear deformation [13]. In

beams possessing a low aspect ratio (length/diameter;

l/d ), warping owing to transverse shear contributes to the

total stress experienced in a cross section. Standard engineer-

ing practice suggests that beam theory equations are

reasonably accurate for objects only with an l/d ratio of 16

or greater [25], and many vertebrate long bones fall below
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3
this aspect ratio at which shear deformation could justifiably

be ignored (table 1). Therefore, values of bending stress calcu-

lated using Euler–Bernoulli theory are likely to be

underestimates in stout, long bones.

In the biological literature, the relationship between axial

compression, bending and load vector has been described by

combining equations (1.1) and (1.2)

scombinedðyÞ ¼
Mxy sin u

Ix
þ F cos u

Acort
; ð1:3Þ

where scombined(y) is the sum of compressive and bending

stresses, and u is the angle between the loading direction

and the longest principal axis [29]. Therefore, when u ¼ 08,
scombined is equal to scomp, while when u ¼ 908, scombined is

equal to sbending (figure 2). By combining equations (1.1)

and (1.2), total stress can be calculated for long bones

loaded neither in pure compression nor pure bending, but

at some intermediate angle. However, this equation poten-

tially suffers from the compounded problems of equations

(1.1) and (1.2) when applied to irregular geometries.

The maximum shear stress owing to torsion (ttorsion) in a

hollow elliptical beam is calculated as

ttorsion ¼
2T

prapr2
mlð1� q4Þ

; ð1:4Þ

where T is the applied torque, rap and rml are the radii in

the anteroposterior and mediolateral directions, respectively,

and q is the ratio of inner radius to outer radius [30].

Equation (1.4) makes the assumption that the endosteal

and periosteal contours are similar concentric ellipses. Alter-

natively, when the cross section is characterized by

possessing thin walls, the average ttorsion in a hollow ellip-

tical section can be approximated using an alternative

‘thin-walled ellipse’ model

ttorsion ¼
T

2ptðrap � 0:5tÞðrml � 0:5tÞ ; ð1:5Þ

where t is the thickness of the cortical wall (assuming a uni-

form thickness across the section) [30]. If the highest

torsional stresses are considered to occur where the wall

thickness is at a minimum (tmin), a modified Bredt’s formula

may also be used to approximate storsion in sections of

varying cortical thickness [31]

ttorsion ¼
T

2tminA
; ð1:6Þ

where A is the area enclosed by the median boundary (figure 3).

This ‘minimum wall thickness’ model has been shown to be

more suitable in estimating torsional stresses in asymmetric

human tibial bones than the hollow ellipse model of equation

(1.4) [32].

It is clear that all the beam formulae above are idealized

approximations to the loading conditions actually experienced

by long bones during dynamic loading, but the degree of error

that they introduce is unclear. Classic beam theory remains

the most practical and highly favoured modelling solution for

very large comparative datasets, and for instances in which infor-

mation regarding myology and material properties is lacking.

However, finite element analysis (FEA) is increasingly becoming

the preferred solution for estimating mechanical behaviour

when a sample has an irregular and highly variable geometry

[32]. Until recently, it was difficult to obtain an accurate model

geometry for FEA of complex morphologies, hampering its
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Figure 2. The relationship between loading regimes and load vector (u).
Combined stress is plotted against the angle between the load direction and
the longest principal axis of the bone. Stress is at its maximum when the
bone is loaded perpendicular to its long axis (i.e. under bending) and
decreases as the load vector is brought increasingly in line with the long axis
(i.e. under compression).

(a)
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t
min

x

(b)

Figure 3. Calculating shaft curvature and diaphyseal cross-sectional
properties. (a) Normalized curvature lever arm is calculated as the
perpendicular distance from the proximal – distal chord to the centroid at
midshaft (x), divided by the radius. The angle of curvature (q) is the angle
between the proximal – distal chord, and the chord joining the proximal-most
point with the centroid. (b) tmin is the minimum cortical wall thickness at
midshaft, and A is the shaded area enclosed by the median boundary running
halfway between the periosteal and endosteal contours.
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widespread application to large biological datasets. However,

access to computed tomography (CT) facilities capable of provid-

ing detailed and structurally faithful three-dimensional models

is becoming cheaper and easier. As a result, the scope is broad-

ening for generating a sample size, previously achievable only

via simpler modelling techniques. Given the additional complex-

ity of such an approach, it is reasonable to ask whether stress

values predicted by CT-based FEA differ significantly from

those of classic beam theory when applied to vertebrate long

bones. Here, we set out to answer this question by comparing

stress predictions of theoretical simple beam equations against

those of FEA in a diverse sample of long bones.

We seek to test (i) geometrical effects of diaphyseal cross-

sectional shape failing to meet the assumptions of beam

theory formulae; (ii) loading effects of shaft curvature preventing

solely compressional and torsional loading; and (iii) shear stress
effects of incorporating shear stress components into stress esti-

mates. While the incorporation of heterogeneous material

properties into FEA is commendable and results in closer agree-

ment between FEA models and ex vivo results [33], here we have

sought solely to explore the consequences of incorporating the

inherent complexity of long bone geometry into such models

for the purpose of comparative anatomical studies.

In reality, a synergistic combination of FEA modelling

and ex vivo experimental validation may provide the best

means of reliably testing the mechanics of vertebrate long

bones [34]. However, in this study, we provide recommen-

dations for the application of FEA and improvements to

existing beam theory equations for the majority of instances

when destructive mechanical testing is not feasible.
2. Material and methods
2.1. Specimen identification
Specimens were taken from a pre-existing large dataset of CT

scans and were selected in order to avoid any bias towards a
particular group, skeletal element or body size, making the

results of general application. Hindlimb bones from eight species

of bird and mammal were acquired from various museum collec-

tions (National Museums Scotland, Edinburgh; Manchester

Museum; and the World Museum, Liverpool). All specimens

were skeletally mature (as determined by fusion of the epi-

physes) and free of pathologies. When individual samples did

not possess an associated Mb, typical values were assigned

from the literature (table 1). External length measurements

were taken using digital callipers (accurate to 0.1 mm), with

the exception of the giraffe (Giraffa camelopardalis), which was

measured with an anthropometer (accurate to 1 mm).

2.2. Finite element analysis
All but the largest specimen (Giraffa) were scanned in the Henry

Moseley X-ray Imaging Facility, University of Manchester (X-Tek

HMX 225 Custom Bay, Nikon Metrology Ltd, Tring, UK). Voxel

size ranged between 64 and 119 mm, depending upon maximum

bone length. Data were exported in unsigned 16-bit DICOM

format (VG STUDIO MAX v. 2.0, Volume Graphics, Heidelberg,

Germany). Giraffa was scanned in a helical CT scanner at the

University of Liverpool Small Animal Teaching Hospital

(Siemens SOMATOM Volume, Erlangen, Germany) at a resol-

ution of 391 mm and slice thickness of 3 mm, and reconstructed

with Syngo (Siemens).

DICOM files were imported into OSIRIX v. 3.8 [35], individu-

ally thresholded according to their greyscale values to accurately

define the periosteal and endosteal surfaces, and surfaces

exported as OBJ files, using the three-dimensional surface ren-

dering function. Files were then imported into Geomagic

STUDIO v. 12 (Geomagic, USA), the periosteal and endosteal con-

tours isolated from one another, and exported as closed manifold

OBJ files (available for download from the Dryad data reposi-

tory: doi:10.5061/dryad.9ct2f ). OBJ files were converted into

SAT files, using FORM.Z v. 6.1 (AutoDesSys, USA), and imported

http://dx.doi.org/10.5061/dryad.9ct2f


(a)

(b) (c)

Figure 4. Load parameters and boundary conditions for FEA of the Senegal bushbaby (Galago senegalensis) femur. (a) Femur in lateral view. Yellow arrows indicate
changing load vector incrementally from parallel to the bone’s longest principal axis (compressive loading regime) to perpendicular (bending loading regime),
according to the combined compressive – bending model. (b) Markers indicate encastre boundary conditions constraining distal condyles in three directions.
(c) Kinematic coupling constraint between a central reference point and 10 nodes forming the load surface, to which a torsional moment is applied.
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as solid parts into ABAQUS v. 6.10 (Simula, USA). In order to

create a hollow bone part, the endosteal part was subtracted

from the periosteal part, using a Boolean operation within

ABAQUS. A homologous value for Young’s modulus (stress/

elastic strain) of 19 GPa and Poisson’s ratio of 0.3 were assigned

to all finite element models [36].

Hollow bone parts were meshed using a built-in Delaunay

meshing algorithm, and for each bone, a one-way sensitivity analysis

on the effect of changing element size was conducted. Total element

number was progressively increased from approximately 200 000

elements to greater than 1 million elements and stress values were

recorded at three locations at midshaft under a simple compressive

loading regime. An optimal mesh size was considered to have

been reached once stress values converged (i.e. formed a straight

line on a plot of stress versus total element number) at all three

locations. This occurred when element number exceeded roughly

800 000. However, convergence was reached at different mesh den-

sities for each specimen, and the mesh sizes used for further

analyses are detailed in the electronic supplementary material, S2.

A validation analysis carried out by Panagiotopoulou et al. [33]

previously found four-node and eight-node tetrahedral, and mixed

four-node tetrahedral and eight-node hexahedral FEA meshes to

perform well, compared with ex vivo experimental data. By con-

trast, eight-node and 20-node hexahedral interpolations deviated

significantly from recorded strain magnitudes. We, therefore,

chose to carry out a comparison of C3D4 four-node linear tetrahe-

dral and C3D10 10-node quadratic tetrahedral meshes. In mesh

sizes beyond 200 000 elements, the difference in stress magnitudes

between finite element models with 4- and 10-node tetrahedra

was minimal (less than 5%; electronic supplementary material;

figure S2). Meshes consisting of 10-node tetrahedra are computa-

tionally more expensive than those of 4-node tetrahedra, and

C3D4 tetrahedra were, therefore, used throughout.

Each hollow bone model was loaded under combined com-

pression and bending (0–908), and axial torsion. For each

loading regime, total applied load was calculated as 1 per cent of

body mass (Mb; kg) multiplied by gravitational acceleration (G;

9.81 m s22; table 1). A force equivalent to 1 per cent of Mb was

chosen in order to ensure that absolute strain magnitudes were

small and deformation remained within the linear elastic region.

The actual magnitude of the force is, therefore, largely unimportant

in this study because there is a direct linear relationship between

force and strain (stress).

For the combined compression–bending models, the condyles

of the distal epiphyses were constrained in all three directions at 20
nodes on the distal surface using the ABAQUS ‘encastre’ boundary

condition (figure 4). The applied force was spread across 10 adjacent

nodes on the upper surface of the proximal epiphyses (figure 4). In

order to minimize the extent of induced bending associated with

off-axis application of compressive force, the orientation of the

bones’ principal axes was calculated using the ‘moments of inertia’

function of the BONEJ [37] plugin for IMAGEJ (US National Institutes

for Health, MD, USA). To simulate compressive loading, the force

was applied parallel to the longest principal axis, at nodes corre-

sponding to the location at which the axis emerged onto the

proximal epiphyseal surface. To simulate combined compressive

and bending loading [29], FEA models for compressive loading

were rerun while incrementally modifying the load vector from

108 to 908 from the principal axis.

To load the hollow bones under torsion, the condyles of the distal

epiphyses were constrained in all three directions. A constraint

control point (CP) was created on the proximal epiphyses, corre-

sponding to the location at which the principal axis emerged onto

the surface. The CP was constrained in all three directions, and a kin-

ematic couple created between the load surface (defined as 10 nodes

surrounding the CP) and the CP itself (figure 4). A torsional moment

about the long axis was applied to the CP and transmitted to the load

surfaces via the kinematic coupling. A linear elastic analysis was con-

ducted on all models, and equations were solved using Gaussian

elimination. Stress values used in this study were taken at a consider-

able distance from the constrained nodes. Stresses near constraints

are known to be inaccurate in finite element modelling.

For bending and torsional loading regimes, the greatest value of

principal stress (i.e. maximum principal stress, smax) was extracted

from midshaft and used for comparison with beam theory. For

models under compression, the most negative value of principal

stress (minimum principal stress,smin) was recorded. For all loading

conditions, the distribution of Von Mises stress (svm) at midshaft

was also noted. Von Mises stress combines the three principal stres-

ses into one equivalent stress. svm is signless and visually intuitive,

and is, therefore, used in this study for illustrative purposes.

2.3. Simple beam theory
Basic morphometric properties were collected from the models to

use in classic beam analysis. Cross-sectional geometrical proper-

ties of the hollow bone models were calculated at midshaft, using

BONEJ. The coordinate system of both ABAQUS and IMAGEJ was

in agreement, ensuring calculated values of radii and second

moments of area corresponded to the load axis of the finite
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Figure 5. Comparison of FEA and beam theory values under various loading regimes, and correlations with bone geometry. (a) Plot of compressive stress as a ratio of
beam theory values/FEA values (smin) for each individual. (b) Ordinary least-squares regression of compressive stress ratio against normalized curvature lever arm
(slope¼20.28, intercept ¼ 0.70, r2 ¼ 0.56). (c) Plot of bending stress as a ratio of beam theory values/FEA values (smax) for each individual. (d ) Ordinary least-
squares regression of bending stress ratio against cross-sectional asymmetry (slope¼20.26, intercept¼ 1.37, r2 ¼ 0.62). (e) Plot of torsional stress as a ratio of
beam theory values/FEA values (smax) for each individual; triangles, hollow ellipse model; circles, thin-walled ellipse model; squares, minimum wall thickness model.
( f ) Ordinary least-squares regression of torsional stress ratio against cross-sectional asymmetry. Symbols as in (e). Dashed line fitted to hollow ellipse model (slope¼
20.27, intercept ¼ 1.16, r2 ¼ 0.65); solid line fitted to thin-walled ellipse model (slope ¼20.36, intercept ¼ 1.47, r2 ¼ 0.77).
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element models. Cross-sectional properties were entered into

equation (1.3) to estimate maximum compressive and bending

stresses at midshaft, under the same applied load as FEA

models. Values of t (taken as mean cortical thickness), tmin and

A required for equations (1.5) and (1.6) were calculated using a

custom-written script in MATLAB v. 7.10 (The MathWorks Inc.,

Natick, MA, USA; see the electronic supplementary material,

S1) before torsional stresses were estimated in the same manner.

Cross-sectional asymmetry was estimated as the ratio of two

orthogonal measures of second moment of area (Imax/Imin).

Normalized curvature lever arm (z) was calculated as the dis-

tance between the chord drawn between the proximal- and

distal-most points of the epiphyses, and the location of the cen-

troid at midshaft, divided by the radius (figure 3). Curvature

was calculated in order to investigate the effect of irregular mor-

phology on deviation between stress values predicted by FEA

and beam theory. At this point, no attempt was made to correct
the simple beam equations for curvature (but see §4 for further

details). To test for relationships between bone morphology

and deviation of FEA values from beam theory, type I ordinary

least-squares regressions were carried out using the SMATR

package [38] of statistical software R (www.cran.r-project.org).
3. Results
3.1. Compression
When loaded in axial compression, all FEA models experi-

enced significant levels of induced bending at midshaft. In

figure 5a, a beam theory/FEA ratio of 1 suggests complete

agreement between the models, whereas values greater

than 1 indicate beam theory predictions fall consistently

below those of FEA. At mid-cortex, beam theory and FEA

http://www.cran.r-project.org
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are in agreement (figure 6a), whereas minimum principal

stresses (smin) furthest from the neutral axis are on average

142 per cent (+28% s.e.) above predicted beam values. The

model with the greatest normalized curvature lever arm

(Mustela putorius, z ¼ 1.63) also displays the greatest

deviation of smin from predicted values (280%). Similarly,

the model with the smallest degree of curvature (Uria aalge,
z ¼ 0.32) experienced the least deviation from predicted

values (30%). There is a significant relationship between

shaft curvature and variation between beam theory and

FEA values (two-tailed p ¼ 0.03, r2 ¼ 0.56; figure 5b).
3.2. Bending
The location of maximum svm (signless) varies between

models, alternating between regions of the periosteal surface
under maximum tension or compression (figure 7). Values of

smax predicted by equation (1.3) are on average 12 per cent

(+4% s.e.) different from those calculated in finite element

models (figure 5c). For half the species modelled here,

equation (1.3) underestimates smax compared with FEA

models, whereas smax is overestimated in the remaining

four species (figure 5c). No significant relationship is found

between aspect ratio of the bone and deviation of FEA

values from those predicted by beam theory. However, a

significant relationship does exist between the asymmetry

of the cross section and the ratio of FEA to beam theory

values (two-tailed p ¼ 0.02, r2 ¼ 0.62; figure 5d ).

Under Alexander’s [29] model of combined compressive

and bending loading, stress increases rapidly as the load

vector shifts from parallel to perpendicular to the shaft long

axis (figure 8). With the exception of Giraffa, the maximum
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deviation between FEA values and simple beam predictions

occurs at u ¼ 908, i.e. under compression (figure 8). As load

vectors shift perpendicular to the bone long axis and bending

dominates the loading regime, percentage deviation between

FEA and beam theory is at minimum between 508 and 808,
and increases again towards 08 from vertical. A plot of

scombined against bone orientation for FEA and simple beam

models for all species is provided in figure 9.

3.3. Torsion
Comparing the values of ttorsion predicted by equations (1.4)–

(1.6) with those calculated using FEA, the hollow ellipse model

(equation (1.4)) underestimates ttorsion most (FEA values on

average are 48% (+18% s.e.) above those of classic beam

theory; figure 5e). The thin-walled ellipse model (equation

(1.5)) and minimum wall thickness model (equation (1.6))

both provide reasonable estimates of ttorsion (FEA values on
average 21% (+16% s.e.) and 14% (+5% s.e.) above beam

theory, respectively). It must be emphasized that the thin-

walled ellipse model provides an estimate of average ttorsion in

a cross section (using mean t in equation (1.5)), while we are

comparing these values with maximum stress values extracted

from FEA models. Applying either the hollow ellipse model

or the thin-walled ellipse model, there is a significant relation-

ship between cross-sectional asymmetry and variation between

beam theory and FEA values (hollow ellipse model, two-tailed

p ¼ 0.016, r2 ¼ 0.65; thin-walled ellipse model, two-tailed p ¼
0.004, r2 ¼ 0.77; figure 5f ). However, when applying the

minimum wall thickness model, no such relationship exists.
4. Discussion
When finite element models were loaded under axial com-

pression, a significant bending stress resulted with values of
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smin averaging over twice as high as those predicted by beam

theory. Previous in vivo studies have found that sbending con-

tributes to total stress to a much greater degree than scomp

during locomotion [39], in part owing to eccentric (off-axis)

dynamic loading. The earlier-mentioned results highlight the

additional importance of bending moments induced by on-

axis forces acting about the longitudinal curvature of a static

bone. Hence, pure compression as calculated by equation

(1.1) is clearly an unrealistic loading modality for any long

bone owing to shaft curvature. Here we show that a long

bone, subjected to compressive axial loads, will probably

fail, owing to the curvature-induced bending stress long

before Euler buckling could be of concern. Therefore, it has

been shown again here that in scaling studies there is

no basis for the simplification of complex curved geometries

down to idealized straight columns necessary to infer buckling

as a viable failure mode. The extent to which finite element

models deviate from simple beam predictions of compression

is not constant, but is instead correlated with normalized cur-

vature lever arm (z). This precludes the application of a single

correction factor to account for shaft curvature and implies a

measure of curvature must be incorporated into simple beam

equations and calculations of ‘relative strength’ values,

where previous studies have not done so [1,5,16,40].

This may be achieved simply by reusing equation (1.3)

and assuming that a bone loaded in compression with a

shaft curvature of 58 is equivalent to loading a straight

bone at an angle of 58 from its longest principal axis (u). Com-

pressive loads are split into axial and transverse components

as in equation (1.3)

scomp ¼
Fcosq
Acort

þMxy sinq

Ix
; ð4:1Þ

where q is the angle between the chord drawn between the

proximal- and distal-most points of the epiphyses, and the

chord joining the proximal-most point with the centroid at

midshaft (figure 3). Having subsequently corrected for curva-

ture in our sample by applying equation (4.1), beam theory

results overestimate scomp relative to FEA values in all but

one instance, compared with the consistent underestimation

of scomp when applying equation (1.1). In terms of percentage

deviation between models, application of equation (4.1)

brought the majority of beam theory predictions closer in-

line with FEA results than when applying equation (1.1).

As such, equation (4.1) provides a worst-case scenario esti-

mate of scomp that is of particular interest when calculating

safety factors of curved bones under compression.

The Euler–Bernoulli beam equation for estimating bending

stress in cylinders (equations (1.2) and (1.3)) ignores potential

transverse shear stresses, which may lead to an underestima-

tion of the maximum stress in uniform circular cross sections

of up to 12 per cent [41]. Indeed, the bending stress may

even exceed normal stresses in some locations within long

bones [42]. Here, we also find that FEA values and simple

beam values differ on average by 12 per cent, with a maximum

deviation of up to 35 per cent (Giraffa). Yet in half the models,

beam formulae overestimated sbending relative to FEA values.

Interestingly, no relationship is found between aspect

ratio of the bone and percentage deviation between the two

estimates of sbending. Instead, this deviation appears to

relate to the cross-sectional shape and the change in shape

down-shaft. Those species with the greatest cross-sectional

asymmetry (Giraffa, Mustela, Erinaceus europaeus) are found
to have the greatest deviation between the two stress esti-

mates (figure 5c and table 1). Therefore, in interspecific

samples characterized by high morphological diversity, a

measure of asymmetry should be incorporated into estimates

of sbending. In engineering, it is standard practice to account

for a lack of mirror symmetry by including an additional

measure of product moments of area (Ixy)

sbending ¼ �
MyIx þMxIxy

IxIy � I2
xy

 !
xþ

MxIy þMyIxy

IxIy � I2
xy

 !
y; ð4:2Þ

where My is the bending moment about the y-axis, x is the

perpendicular distance to the centroidal y-axis and Iy is

the second moment of area about the y-axis [43]. Inspecting

the distribution of sbending values at midshaft across models

(figure 7), it is clear that some bones experience a degree of

twisting when loaded under bending. In Erinaceus and

Phoenicopterus ruber, it is particularly noticeable that the

neutral section (plane of zero stress where the bone is neither

in tension nor in compression) has rotated away from the

mediolateral axis. Such torquing of the bone under bending

is not accounted for in equations (1.2), (1.3) or (4.2), and

most likely results from irregularities in cross-sectional geo-

metry away from the midshaft (i.e. trochanters, flanges,

crests; figure 10). Unfortunately, there is no simple way of

quantifying or accounting for down-shaft variation in geome-

try in classic beam theory, and FEA remains the preferred

solution for bones of a complex shape.
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The combined compression–bending model of equation

(1.3) [29] is broadly supported by the results of our FEA

models. The predicted increase in total stress as a result of

shifting load vectors is present (figure 8). However, the com-

bined model suffers from the compounded problems

associated with equations (1.1) and (1.2). The decrease in effec-

tive stress as bones are orientated parallel to their load axes has

been incorporated into the ‘effective mechanical advantage’

theory, by which safety factors in large mammals are main-

tained via adoption of increasingly erect postures during the

stance phase [44]. The above results highlight the importance

of incorporating curvature into such models in the future. As

an example, assuming that an arbitrary value of 1000 kPa

must be maintained in order to achieve a given safety factor

in the tibia of Giraffa, equation (1.3) would predict the bone

may be held at a maximum of 538 from vertical (figure 9a).

By contrast, the stress curve produced under FEA predicts

the tibia must not exceed 368 from vertical in order to maintain

the same safety factor (figure 9b).

In agreement with results found elsewhere [32], the mini-

mum wall thickness model is found to be most suitable in

estimating ttorsion. Equation (1.6) recognizes that minimum

torsional strength occurs in regions where cortical thickness

is least [30] and is supported by the distribution of cortical

stresses noted in finite element models (figure 6b,c). While

estimates of ttorsion based on the hollow ellipse or thin-

walled ellipse are still affected by the degree of asymmetry

present in the cross section, no such relationship exists

when applying the minimum wall thickness model, and

equation (1.6) provides a reasonable estimate of ttorsion as

calculated by FEA models.

Figure 6b,c clearly illustrates the divergence of complex bone

cross sections from the idealized toroidal cross sections familiar

to engineers. Classic beam theory is a technique that rests upon

certain geometrical assumptions that are clearly invalidated in

the case of irregular long bone morphology, and the conse-

quences are evident in the discrepancy between FEA and

beam theory presented here. Both classic beam theory and

FEA allow the biomechanical behaviour of long bones to be

modelled. As such, the results outlined earlier afford a meth-

odological comparison of two models of reality; however,

they are unlikely to reflect in vivo loaded behaviour, particularly

as both FEA and simple beam models assume uniform elas-

ticity and material density. The results of a previous study, in

which an FEA model of an elephant femur was validated by

means of laser speckle interferometry [33], found strain magni-

tudes predicted by FEA models consisting of homogeneous

isotropic material properties to differ 60 per cent from ex vivo
experimental values. By contrast, FEA models incorporating

heterogeneous material properties deviated only 5 per cent

from experimental values. Incorporating the anisotropic behav-

iour of bone into FEA models has also been found to improve

their accuracy in predicting regions of fracture [45], although

further work is needed to clarify the errors associated with

assumptions of bone isotropy [46].

Furthermore, the loading conditions considered in the

present study are highly idealized, in that forces are applied

only at articular surfaces. In reality, peak locomotory forces

are generated by contraction of muscles attached at various

locations along the length of the shaft, and may be a consider-

able distance from the centre of joint rotation. Although

beyond the scope of this study, future work may focus

upon comparing numerical models to in vivo strain gauge
derived values of stress under average and extreme loco-

motor activity. Such a study would be advantageous in

incorporating realistic muscle forces, and could illuminate

the relative importance of compression, bending and torsion

across taxa and locomotor type.
5. Conclusions
For interspecific samples of diverse morphology, reliance upon

Euler–Bernoulli classic beam theory to address questions of

comparative functional morphology in vertebrate bones will

result in estimation errors of varying magnitude and direction.

The utility of commonly used beam formulae is a function of

the extent to which skeletal elements conform to the assump-

tions of classic beam theory. While beam-theory-derived

values still probably correlate with actual stress values, care

must be taken when interpreting mechanical function based

on these values. In the small sample of vertebrate bones con-

sidered here, application of FEA leads to a change in the

rank order of absolute stress values across species compared

with beam theory predictions, most noticeably so in the case

of compression. It is therefore of concern that real biomechani-

cal signals within the sample may be lost, owing to the use of

inappropriate beam formulae. Suggestions are made for

alternative methods by which beam theory may be more

reliably applied, such as the incorporation of curvature in esti-

mates of scomp, including product moments of area into

estimates of sbending and calculating ttorsion at the location of

minimum cortical wall thickness.

In spite of these extensions of beam theory, when absolute

values of diaphyseal stress are required for biomechanical

analyses, FEA remains the preferred solution. With improve-

ments in computational power, user accessibility and the

availability of CT facilities, it is now feasible to generate

large datasets of finite element models for the purpose of

comparative functional morphology. FEA benefits from the

incorporation of whole-bone geometry into models and over-

comes problems associated with curvature, asymmetry and

shear deformations. With interest in longitudinal variations

in bone strength indices increasing [47,48], FEA represents a

technique by which muscle attachment sites and trochanters

may be studied, when their irregular geometry might other-

wise preclude the application of classic beam theory.

Future studies applying FEA to long bone stress estimation

should proceed with caution, however, particularly when vari-

ables such as applied forces and material properties remain

uncertain. This is necessarily the case in palaeontological

studies, and, therefore, sensitivity analyses should be carried

out in order to quantify the effect of the error introduced by

these unknowns. It must be emphasized that applying an

overly simplified FEA model to a complex biomechanical pro-

blem may result in incorporating just as many assumptions

into the analysis as the application of classic beam theory.
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