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The distribution of health conditions is characterized by extreme inequality.

These disparities have been alternately attributed to disease ecology and the

economics of poverty. Here, we provide a novel framework that integrates

epidemiological and economic growth theory on an individual-based hier-

archically structured network. Our model indicates that, under certain

parameter regimes, feedbacks between disease ecology and economics

create clusters of low income and high disease that can stably persist in

populations that become otherwise predominantly rich and free of disease.

Surprisingly, unlike traditional poverty trap models, these localized dis-

ease-driven poverty traps can arise despite homogeneity of parameters

and evenly distributed initial economic conditions.
1. Introduction
The distribution of health and economic conditions across the globe is charac-

terized by extreme inequality, both between and within countries [1,2].

Because prevention and treatment of diseases require economic resources,

the social science literature often attributes disparities in disease burdens to

disparities in economics [3,4]. The most common explanations for such hetero-

geneity in the economics literature can be broadly grouped into two schools

of thought: (i) variation in parameters (i.e. in aggregate or household ‘pro-

duction functions’) [5,6]; or (ii) variation in state variables (i.e. ‘initial

conditions’) [7]. The literature on poverty traps often focuses on the latter con-

cept that different initial conditions can result in different economic

trajectories owing to feedbacks between income and capital accumulation,

often defined broadly to include savings, education or health [8–10]. In

each case, the role of initial conditions on long-term outcomes has been

used as a theoretical justification for external policy interventions, such as

healthcare or education.

While the role of disease on poverty traps has long been recognized

by economists [11], formal models have tended to focus on individual-level

processes (e.g. malnutrition) and have been generally independent of ecological

theory. The central importance of an ecological perspective is that population-

level processes have a distinctly different character than individual processes.

This is especially relevant for infectious diseases for which transmission

between hosts is a basic life-history requirement.

Although it is broadly taken for granted in the social sciences that hetero-

geneity in outcomes is due to heterogeneity in underlying determinants,

infectious disease models, rooted in dynamical systems theory and based on
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a substantial body of evidence, suggest many potential

causes of heterogeneity. A single infectious disease system

with a homogeneous population can exhibit complex behav-

iour across space and time, from stationary states to travelling

waves, to periodic and chaotic dynamics [12,13]. These dis-

ease processes comprise the real-world underlying structure

of the dynamics of human capital of the poor, and point to

a potentially new family of models for formalizing the struc-

ture of health-related economic ‘externalities’.

In the past couple of years, a new body of theory has been

put forth on disease-driven poverty traps that is based on

explicit epidemiological models [14–16]. This has expanded

our theoretical understanding of the potential role of infec-

tious diseases on poverty traps, but also has fundamental

limitations of its own. This literature is rooted in ecological

theory and explicitly captures population-level processes.

However, it is not integrated with economic growth

theory, which tends to emphasize the role of the systematic

accumulation of capital (or wealth), which may offset the

destabilizing effects of fluctuations in income. In addition,

these models suppress individual-level effects and the poten-

tial complex outcomes that may arise within real-world

populations. Our goal here is to develop a theoretical frame-

work that integrates both ecological and economic theory,

and accounts for interactions between population-level

processes and individual conditions.

To understand how the inherent structure of disease

dynamics may feed back on economics at a local level, we

turn to network theory [17–20]. Because the basic reproduc-

tive number, R0, of an infectious disease depends on the

variance of the distribution of number of contacts [21],

the topology of contact networks determines critical

epidemiological parameters. For example, contact networks

with degree distributions with infinite variance (such as the

scale-free networks that characterize human sexual contacts)

do not have epidemic thresholds [22]. However, scale-free

networks with additional structure do have finite epidemic

thresholds, underlining the importance of the commu-

nity structure on the qualitative behaviour of disease

dynamics [23].

Here, we provide a novel framework that integrates a hier-

archically structured network model of an infectious disease

with a formal economic growth model. We find that feed-

backs between disease ecology and economics can create

clusters of low income and high disease that can stably persist

in populations that become, otherwise, predominantly rich

and free of disease. These divergent outcomes generate

inequality and can arise despite homogeneity of parameters

and evenly distributed initial economic conditions.
2. Material and methods
Our general framework expands from previous studies on

disease-driven poverty traps [15,16], and is structured in

accordance with two canonical theoretical frameworks in

respective epidemiology and economics literatures: (i) the

susceptible–infected–susceptible (SIS) framework, which

has been applied to a wide range of disease systems that

serially reinfect their hosts and that are known to be both

causes and consequences of poverty, such as malaria and

enteric pathogens, and (ii) the neoclassical economic

growth model with human capital as a function of health
status [24]. The system is coupled via the following three

empirically based assumptions: (i) income is determined

by the acquisition of human and physical capital; (ii)

human capital accumulation is a function of health status;

and (iii) disease transmission and recovery rates are deter-

mined by income. The first assumption is a universal

property of neoclassical economic growth models [25]. The

second assumption is based on a recently growing literature

in economics and epidemiology that health status influences

cognitive development, and schooling with long-term impacts

on economic productivity [26–28]. The final assumption is

based on the fact that prevention and treatment of infectious

diseases requires economic resources, which is why poverty

is a social determinant of disease.

We simulate the coupled epidemiological and economic

processes on an individual-based network model. We generate

random transmission networks with a given degree of commu-

nity structure, ranging from 0 to 1. The nodes in the network

represent individuals, and the vertices (links) represent disease

transmission. As in the classic compartmentalized SIS systems,

transmission occurs between pairs of susceptible and infected

individuals at a rate b, which is determined by the income m
of the susceptible individual:

bðmÞ ¼ b1h

mþ h
: ð2:1Þ

This transmission function indicates that poorer individuals are

more susceptible to disease. Similarly, the rate of recovery g

also depends on individual incomes such that poorer individuals

take longer to recover (e.g. owing to undernutrition or lack of

medical treatment):

gðmÞ ¼ g1 m
mþ k

: ð2:2Þ

These transmission and recovery functions are drawn from pre-

vious studies [15,16].

For each individual, we track human capital hi, physical

capital ki and total income mi, which are updated according

to the following equations:

hiðtþ DtÞ ¼ hiðtÞ þ Dt½rhmiðtÞð1� IiðtÞÞ � ehhi�

þ uhiðtÞ
ffiffiffiffiffi

Dt
p

Zh;tþDt; ð2:3Þ

kiðtþ DtÞ ¼ kiðtÞ þ Dt½rkmiðtÞ � ekki� þ ukiðtÞ
ffiffiffiffiffi

Dt
p

Zk;tþDt ð2:4Þ
and miðtþ DtÞ ¼ hiðtþ DtÞskiðtþ DtÞr: ð2:5Þ

Equation (2.5) represents a classic production function

where income is determined by a combination of physical

capital k and human capital h, which exhibit diminishing

returns on investment (i.e. 0 , sþ r , 1). Individuals

invest a proportion of their current income in human and

physical capital at savings rates rh and rk, respectively.

Human and physical capital depreciate at rate eh and ek.

Importantly, when individuals are sick, they cease to acquire

human capital and thus steadily lose income.

To analyse the system, we use the Gillespie algorithm to

run the simulations until equilibrium, and then calculate

summary statistics based on the distribution of long-run

average income and the proportion of time spent infected.

The simulations are started with half of the population (ran-

domly) infected, and all individuals with half of the

maximum possible income. This is the closest approxi-

mation to truly uniformly distributed initial conditions;

the randomness of the network structure inevitably
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Figure 1. A sample run of the model. Each point is an individual. Darker points represent lower income, and larger points represent greater time spent infected.
(a) Equilibrium distribution of health and income in the network. (b) Average long-term income versus proportion of time spent infected.
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Figure 2. (a) Income inequality as measured by the Theil index (box plot) and average prevalence of the infection (thick line) for different values of the
transmission rate parameter b1, with community structure fixed at m ¼ 0.9. (b) Income inequality versus degree of community structure in the network, ranging
from random graphs with no community structure (m ¼ 0) to networks with full community structure (m ¼ 1), with the transmission rate parameter fixed at
b1 ¼ 25. (c) Income inequality is generated from two-way feedbacks. The D feedback represents the assumption that disease state influences economic growth (the
1� ItðtÞ term in equation (2.3)). The D – state removes this term from the equation. The E feedback represents the assumption that the transmission rate b and
recovery rate g depend on income (equations (2.1) and (2.2)). In the E – state, b and g are held constant, corresponding to values of equations (2.1) and (2.2) at
half of maximal income. Mean income inequality is greater for the Dþ Eþ state than all other configurations ( pairwise t-tests, all p-values , 10215).
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results in initial heterogeneities in contact structure and

disease state.
3. Results
Feedbacks between disease and income generate clusters of

poverty and disease in our simulated networks. Figure 1

depicts the result of one simulation, showing the long-run

average income and proportion of time spent infected for

each individual. There is an obvious cluster of poor and

sick individuals, representing a neighbourhood that has

fallen into a localized disease-driven poverty trap. Moreover,

these divergent outcomes are independent of initial con-

ditions (electronic supplementary material, figure S1). As

expected, coupling income and health together results in a

correlation between long-term income and time spent

infected (figure 1b).
To test whether both forces (income-to-disease and dis-

ease-to-income) are necessary to generate the observed

clusters of poverty, we turn off the feedbacks individually

and measure the resulting distribution of income inequality

(Theil index; see electronic supplementary material for

details). The results indicate that both feedbacks are neces-

sary to generate the localized poverty traps (figure 2c). To

explore the role of the infectious disease process in the

creation of income disparities, we run 200 simulations for

each value of the transmission parameter, b1, and record

the observed inequality as well as the mean prevalence

(figure 2). Below a certain threshold, transmission cannot be

sustained, and thus the only variance in income is due to

the stochasticity in the income growth process. However,

when the disease is able to stably persist, the observed

income inequality rises significantly, evidence that the dis-

ease process is allowing for stable disparities in income.

The income inequality peaks when disease transmission is
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quite low (stable prevalence of around 20%) and then

starts declining. As the force of infection increases and

the likelihood of neighbourhoods persistently escaping from

disease decreases, the population approaches a uniformly

sick and poor state.

We then run the simulations 200 times for different values

of m, which represents the strength of community structure in

the network. Figure 2b shows the distribution of the Theil

index for income as a function of the degree of community

structure. As we vary the degree of community structure, the

average observed income inequality falls slightly before rising,

but the maximal observed income inequality rises

significantly ( p-value , 0.001). Moreover, the shape of

the distribution of observed income inequalities varies

significantly. As the community structure increases, the epide-

miology of disease spread changes predictably—there are

more stochastic die-outs and there is a wider variance in the dis-

tribution of long-term disease prevalence. As a result of this, the

distribution of possible income inequality outcomes changes

accordingly, with a wider variance and a bimodal distribution

(electronic supplementary material, figure S2). Health inequal-

ity also shows the same dependence on community structure

as income inequality (electronic supplementary material).
4. Discussion
The existing microeconomic literature on poverty traps often

focuses on feedbacks between income and human capital at

the level of the individual or household, and emphasizes the

effects of different initial economic conditions. In our model,

clusters of poverty and disease result from two kinds of feed-

backs: (i) feedbacks between health and economic conditions

at the individual level and (ii) feedback between individual-

and population-level health conditions (i.e. from disease

transmission). Thus, through the inherent structure of disease

dynamics, individual economic conditions are connected to

their broader communities. These feedbacks can thus lead

to high levels of income and health disparities in otherwise

economically homogeneous populations.

Community structure, as well as network structure in

general, is becoming appreciated for its importance in deter-

mining the observed properties of disease dynamics [29],
whether it be high rates of HIV and other STDs in sexual net-

works with high concurrency [30], or in the role of

community structure in explaining the observed power-law

distribution in epidemic size and duration [31]. Our results

suggest that community structure may have more far-reach-

ing consequences as a factor in the formation and

maintenance of pockets of persistent poverty and long-term

stable health inequalities.

Social epidemiology, a field dedicated to studying health

disparities in various social, economic and ethnic groups, has

often focused on the concept of neighbourhood effects [32].

From inner-city neighbourhoods in the developed world,

where much of the social epidemiology research has been

carried out, to urban slums in the developing world [33], it

is increasingly clear that the human environment directly

affects the health of communities. Our model is meant to

serve as an important framework for exploring such concepts

based on formal ecological and economic theory. Our results

show that persistent neighbourhood-level differences in

health outcomes can arise from individual-level risk factors

as long as one accounts for the web of human connections.

While our study is based on a simple SIS model, we conjec-

ture that the basic drivers of the system—economic and

epidemiological feedback—may be relevant to a wide range

of infectious and parasitic disease systems. Indeed, with

the increasing evidence that even chronic diseases can have

infectious components [34], in addition to the economic

dimensions of prevention and treatment, our work should

motivate further study into the causative role of transmission

networks in the formation and maintenance of general health

and economic disparities.
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