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In many animals, rhythmic motor activity is governed by neural limit cycle

oscillations under the control of sensory feedback. In the fruit fly Drosophila
melanogaster, the wingbeat rhythm is generated myogenically by stretch-

activated muscles and hence independently from direct neural input. In this

study, we explored if generation and cycle-by-cycle control of Drosophila’s

wingbeat are functionally separated, or if the steering muscles instead

couple into the myogenic rhythm as a weak forcing of a limit cycle oscillator.

We behaviourally tested tethered flying flies for characteristic properties of

limit cycle oscillators. To this end, we mechanically stimulated the fly’s ‘gyro-

scopic’ organs, the halteres, and determined the phase relationship between

the wing motion and stimulus. The flies synchronized with the stimulus for

specific ranges of stimulus amplitude and frequency, revealing the charac-

teristic Arnol’d tongues of a forced limit cycle oscillator. Rapid periodic

modulation of the wingbeat frequency prior to locking demonstrates the invol-

vement of the fast steering muscles in the observed control of the wingbeat

frequency. We propose that the mechanical forcing of a myogenic limit cycle

oscillator permits flies to avoid the comparatively slow control based on a

neural central pattern generator.
1. Introduction
Locomotion plays a profound role in essential animal behaviours, such as fora-

ging for food, finding mates and evading predation. In most cases, animals rely

on the rhythmic actuation of appendages, such as legs, fins and wings for loco-

motion. While providing reaction forces for forward propulsion or to remain

airborne, these same structures typically also serve as control surfaces to

achieve stability of motion, as well as perform impressive manoeuvres.

In many animals, the rhythmic activity underlying locomotion originates in

neural central pattern generators (CPGs), whose cyclic activity is modulated by

reafferent sensory feedback. CPGs represent a ubiquitous neural mechanism

by which animals generate and control rhythmic activity for various bodily

functions, such as respiration, chewing and limb actuation [1].

CPGs have been successfully modelled using oscillators with a stable limit

cycle (limit cycle oscillators, LCOs) [2–4]. The intrinsic properties of such non-

linear oscillators are illustrated in figure 1 by example of the van der Pol

oscillator [5]. The oscillation of position in time (black trace in figure 1a) rep-

resents a limit cycle orbit in the position-velocity phase space (black curve in

figure 1b). Limit cycle orbits are asymptotically stable, i.e. the system converges

to the limit cycle following a transient perturbation. In the example shown, the

delivery of pulse perturbations during three consecutive cycles (figure 1a) tem-

porarily affects the periodic activity (green curve), which subsequently returns

to its stable limit cycle (figure 1b). Depending on the cycle phase, in which such
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Figure 1. (a) Time course x(t) of a van der Pol oscillator perturbed by external force F(t). The equation of motion is €x � mð1� x2Þ_x þ x ¼ FðtÞ with m ¼ 0.3.
Blue trace, perturbation F(t); black trace, x(t) before and after perturbation; green trace, x(t) during perturbation and dashed trace, continuation of unperturbed oscillation
( perturbation not switched on, F(t) ¼ 0). (b) Limit cycle of van der Pol oscillator. The black and green traces from (a) are replotted in the phase space (velocity dx/dt
versus coordinate x); increasing time t corresponds to clockwise rotation.
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a forcing is applied, the frequency of the LCO is transiently

affected [6]. In the present case, the delivery of the pulses

leads to a frequency increase (compare green and dashed

lines in figure 1a). In such a way, precisely timed input can

control the rhythmic pattern of LCOs efficiently and

rapidly—a phenomenon that has also been experimentally

demonstrated in CPGs [7,8]. Computational modelling has

shown that phase-dependent reafferent feedback from the per-

iphery to the CPG can ensure robustness of the rhythm in

presence of environmental perturbations [9–11]. Such limit-

cycle-based control, therefore, provides a conceptual frame-

work in which to understand how animals generate and

control complex motor patterns robustly and efficiently [12].

CPGs were originally discovered in locusts [13], in which

they provide the neural rhythm for the activity of the thoracic

flight muscles giving rise to the wing motion. Synaptic input

from the sensory system modulates these patterns to achieve

flight control [14–16]. An entirely different actuation mechan-

ism is found in flies, whose highly specialized flight

apparatus likewise serves as a model to explore fundamen-

tal control mechanisms. The sophisticated flight control

abilities of flies are exemplified by the tiny fruit fly Drosophila
melanogaster, which performs sharp turning manoeuvres

within a fraction of a second (around 50 ms or 10 wingbeats)

[17]. Unlike in locusts, the fast and power demanding wing-

beat of fruit flies arises myogenically, without direct neural

control [18]: antagonistic sets of stretch-activated muscles

bring the thorax and with it the wings into resonant oscil-

lation at around 200 Hz. At the timescale of single wing

strokes, the wing motion is finely modulated by minuscule

steering muscles, which insert directly at the sclerites of the

wing articulation and are under immediate neural con-

trol [19–22]. The activity of these direct steering muscles

depends on a reflexive feedback loop involving speciali-

zed mechanosensory organs, the halteres, which sense the

rotational velocity of the fly’s body [23–29]. According to

the current understanding, the powerful, but ‘dumb’ [30]

stretch-activated muscles supply a periodic force to drive

the roughly sinusoidal wing motion [31,32], whereas the

weak, but fast direct steering muscles modulate stroke

position and amplitude to stabilize flight and manoeuvre.
In this way, the highly differentiated muscle types of flies are

assumed to bring about the generation and control of the wing-

beat rhythm as functionally separate processes [30,33]—unlike

in locusts, in which actuation and control are closely integrated

within the framework of an LCO forced by afferent neural input.

In the fly, it remains unclear if and how the myogenic rhythm,

which cannot be controlled on a cycle-by-cycle basis through

direct neuronal input, may be efficiently regulated by sensory

feedback. While cycle-by-cycle control of wing stroke ampli-

tude, stroke deviation and mean stroke position by the direct

action of the steering muscles has been extensively studied

[33–36], the fast control of the thorax/wing oscillator frequency

has not been investigated in the previous literature. To achieve

such frequency control, the myogenic rhythm would have to

be coupled to the only system that is able to act on such fast

timescales, i.e. the steering muscles. The null hypothesis of a

functional separation between power and steering muscles pre-

dicts that flies are unable to control their wingbeat frequency

(WBF) at the timescale of single wing strokes.

While flies apparently do not rely on CPGs to provide their

wingbeat rhythm, it is intriguing to consider the possibility

that the indirect muscle actuation mechanism itself represents

an LCO, which is forced in a phase-dependent manner by the

mechanical activity of the steering muscles. This alternative

hypothesis is consistent with the ‘limit cycle control’ scheme

for insect flight suggested in Taylor & Zbikowski [37] and

Zbikowski et al. [38]. If confirmed, the flight control strategy

of flies, and the functional role of their steering muscles in

particular, would appear in a new light altogether.

We explored this possibility by testing fruit flies for a

functional coupling of the steering muscles onto the wing

stroke pattern generated by the stretch-activated muscles.

We evoked steering muscle activity from a periodic mechanic

stimulation of the halteres, which are known to provide

direct input to the steering muscles [21]. We used a laser vib-

rometer to measure stroke-by-stroke variations in the WBF of

tethered flying flies and attribute these changes unam-

biguously to the activity of the direct steering muscles,

which are the only muscles in the flight apparatus of flies

that are capable of responding at the timescale of a single

wing stroke.
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In the case of sustained periodic forcing, an LCO may

adjust its frequency and eventually synchronize with the for-

cing, a phenomenon that has been observed in various

biological LCOs (e.g. [39,40], review [41]). Depending on the

value of the forcing frequency and amplitude, one can expect

to obtain 1 : 1 synchronization (entrainment), or a regime in

which the forcing frequency and the LCO frequency are other

rational multiples of each other, such as 2 : 1, 3 : 2, etc. Consist-

ent with this generic property of periodically forced LCOs, we

found four distinct regions of stimulus parameter space (the so-

called Arnol’d tongues), in which the flies synchronized their

wingbeat with the forcing. Furthermore, we found that the

stimulation caused a fast modulation of the WBF just outside

of these parameter regions, demonstrating control of the wing-

beat rhythm on a cycle-by-cycle basis. Our results indicate that

the direct steering muscles of flies function as a weak mechan-

ical forcing of an LCO embodied in the myogenic wing

actuation mechanism.
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2. Material and methods
2.1. Flies
We obtained fruit flies (D. melanogaster Meigen) from our labora-

tory stock (descended from a wild-caught population of 200

mated females). A standard breeding procedure was applied

(25 females and 10 males, 12 : 12 hour light/dark cycle, standard

nutritive medium). The experiments were performed during the

first 8 h of a subjective day with 5–10 day old female flies.
fstim : fnat

2 : 13 : 21 : 11 : 2

a st
im

 

Figure 2. (a) Experimental setup. Flies were tethered to a steel pin, which
was attached to a piezoelectric actuator. The piezo oscillated the tether, and
with it the fly, according to the applied voltage signals created by a function
generator. In addition, the fly’s wingbeat causes the tether to vibrate; we
measured the total tether oscillation using a laser Doppler vibrometer. (b)
Data processing. (i) Raw data of the tether vibration generated by a flying fly
and a sinusoidal piezo oscillation with a frequency close to the baseline WBF
of the fly (about 200 Hz). (ii) The raw data were high-pass and low-pass
filtered to separate the fly’s signal (spiky trace, red) from the piezo signal
(sinusoidal trace, blue). (iii) Instantaneous phase of the piezo oscillation (blue
trace) and the phase in which the main peak in the fly’s signal occurred (red
dots). (c) Schematic Arnol’d tongues. Four selected regions of synchronization
( filled triangles) for a generic LCO with natural frequency fnat, forced by an
external stimulus of frequency fstim and amplitude astim. At low stimulus
amplitudes, locking of the oscillator to the stimulus occurs when fstim is close
to a rational multiple of fnat; the frequency range increases with increasing
astim. Arrows indicate amplitude and frequency sweeps (see text).
2.2. Experiments
We cold-anaesthetized single fruit flies and glued them by their

thorax to the tip a steel tether (figure 2a). We then attached the

tether to a piezoelectrical actuator (P830.40, Physik Instrumente,

Germany). We used a function generator (Agilent 33120A,

Hewlett-Packard, USA) to create a sinusoidal voltage signal,

amplified it using a custom built amplifier and applied to the

piezo. The piezo-induced displacement of the tether was pro-

portional to the voltage with a conversion factor of 0.9 mm V21.

The resulting sinusoidal displacement of the tethered fly

caused an inertial force Fi on the endknobs of its halteres,

given by Fi(t) ¼ 2 ATv
2 sin(vt)mH, with AT the amplitude of

the tether displacement, v the signal’s frequency and mH the

mass of the haltere endknob [24].

We oscillated the flies along the anterior–posterior axis,

applying either voltage frequency sweeps (0.1–500 Hz, sweep

rate 5 Hz s21, holding constant the voltage at 1, 2, 4, 6, 8 or

10 V) or voltage amplitude sweeps (0.1–8 V, sweep rate

0.8 V s21, holding constant the frequencies close to the baseline

WBF of the fly currently being tested). Note that as the inertial

force is proportional to the square of the stimulus frequency,

the forcing amplitude slowly increases during a voltage

frequency sweep—despite the voltage amplitude at the piezo

staying constant.

When the stimulus frequency v is equal to (or very near)

the WBF, and when the stimulus and the wingbeat are in the

appropriate phase relation, the inertial force Fi resembles the

Coriolis forces acting on the halteres during pitch manoeuvres.

Specifically, to mimic the time course of the Coriolis forces, the

phase relation must be such that the tether acceleration is zero

at the time points corresponding to the dorsal and ventral

wing reversal [28]. The amplitude range of our stimulation

(1–10 V) then corresponds to pitch rotations of 120–12008 s21

(see the electronic supplementary material), which lies in the

range typical for free-flight manoeuvres [42].
We recorded the stimulation and the fly’s response together

by measuring the velocity of the tether vibration about 1 mm

above the fly’s body using a laser Doppler vibrometer (MSA-

500, Polytec, Germany), sampling at 10 240 Hz. We chose

appropriate tethers (stainless steel, 1 cm length, 200 mm diam-

eter) to tune the system suitably for our measurements. In each

wing cycle, the wings generate a sharp force peak that is

known to occur near the ventral reversal phase of the wingbeat
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[43]. This leads to an overdamped, high-frequency (greater than

1000 Hz) oscillation of the tether within each wing cycle. In the

measured tether velocity trace, this fly-induced signal was over-

laid with a low frequency signal corresponding to the piezo

actuator (0.1–500 Hz, see figure 2b(i)).

2.3. Data analysis
2.3.1. Phase extraction
To extract the wing stroke phase from the tether vibration, we

applied a seventh order high-pass Butterworth filter in a zero

phase lag configuration with a cut-off frequency of 1000 Hz (red

trace in figure 2b(ii)). We then up-sampled the data to 50 kHz

and applied a peak detection algorithm to determine the times

tk of the prominent peak in this fly-induced signal. The times tk

approximately coincide with the ventral reversal of the wings.

To extract the stimulus phase, we applied a seventh order

low-pass Butterworth filter with a cut-off frequency of 500 Hz

(blue trace in figure 2b(ii)). We then applied the Hilbert transform

to obtain the forcing phase C(t) (blue trace in figure 2b(iii)).

Zero phase (i.e.C ¼ 0 modulo 2p) was chosen to coincide with

the time points at which the tether moves with maximal velocity in

the direction towards the posterior direction of the fly (figure 2a).

Note that when C(t) ¼ 0 and C(t) ¼ +p, the acceleration of the

tether becomes zero.

2.3.2. Synchrogram construction
We applied a method called synchrogram analysis to reveal syn-

chronization between the stimulus and the response in our

data. This method was developed and successfully applied to

detect phase-locking in non-stationary and irregular signals

[44,45]. A synchrogram can be described as a ‘phase strobo-

scope’: intervals of synchronization between an external forcing

and an oscillator are revealed by plotting the phase of the

oscillator at periodic instances of the forcing, or vice versa.

We constructed the synchrograms by computing the phase

C(tk) of the forcing at the periodic instances of the wingbeat

(red dots, figure 2c). When the fly’s wing stroke and the applied

force are not synchronized, C(tk) changes rapidly (figure 2b(iii),

0–0.7 s). When the fly phase-locks to the stimulus and beats its

wings at the forcing frequency (1: 1 synchronization), C(tk)

remains constant (single, almost horizontal line in figure 2b(iii),

0.7–1 s). In the case of higher-order synchronization (i.e. n
wingbeats fit to m stimulus cycles, n : m locking), the phase

points form m roughly horizontal lines in the synchrogram.

2.3.3. Automated synchrogram evaluation
To determine the stimulus parameter regions in which synchro-

nization took place (i.e. the Arnol’d tongues), we adapted a

synchronization detection algorithm for synchrograms from

Bartsch et al. [46] and Hamann et al. [47]. Because higher-order

lockings tend to be difficult to detect [6], we restricted our analy-

sis to four low-order lockings (1 : 2, 1 : 1, 3 : 2 and 2 : 1). The

synchronization detection algorithm operates as follows on the

synchrogram time series C(tk). First, the phase is rewrapped

according to the locking index m, such that Cm(tk) ¼ C(tk)

modulo 2 pm in the vicinity of each potential n : m locking

region. Next, for each data point in the series, a window span-

ning 10 wingbeat cycles preceding it and following it is

defined, and the mean and the standard deviation of Cm in

this window are calculated. If the standard deviation is higher

than a threshold of 2.5 per cent of 2pm, the data point is deleted.

Following this step, the time series is defined on a single

or multiple intervals in which the wingbeat is phase-locked

with the stimulus. Multiple intervals are present, if a transient

loss of locking occurs while still within the synchronization

region (the so-called phase slips [6], see §3.1 for an example).
To determine the width of the synchronization region, we there-

fore merged multiple intervals by linear interpolation, if (i) their

length was at least 15 points (wingbeats), and (ii) their distance

was less than 10 points. The longest remaining interval was

considered to be the candidate region of synchronization.

To exclude false positives, i.e. intervals in which an increase

in WBF was not caused by the stimulation but by random

fluctuations in the WBF, the candidate region was classified as

‘synchronized’ only if the total number of points in the interval

was above a threshold value Nnm. To determine Nnm, we con-

structed synchrograms from control data measured without

piezo stimulation. This control synchrogram was constructed as

described above, but in this case the measured phase C of the

stimulus was replaced by the phase of a fictitious stimulus. The

synchrogram analysis was then run as described in the previous

paragraph. We found that by setting N12¼ 45 for 1 : 2 lock-

ing, N11¼ 140 for 1 : 1 locking, N32 ¼ 117 for 3 : 2 locking and

N21 ¼ 218 for 2 : 1 locking, our algorithm discarded at least 99.5

per cent of lockings (of each order) in the control synchrogram.

Consequently, we used these threshold values of interval

length to declare a candidate region as ‘synchronized’ in our

test datasets (with piezo stimulation). The first and the last

point of the synchronized interval were taken as beginning and

end of the respective Arnol’d tongue.

2.3.4. Construction of Arnol’d tongues
To place these border points into the frequency–amplitude

parameter space of the forcing, we determined the stimulus

amplitudes, i.e. the acceleration amplitude of the tether at the

beginning and end of the synchronized interval. The acceleration

was calculated from the measured velocity signal according to

Woltring [48]. To account for possible differences in the baseline

frequency (i.e. the WBF in absence of piezo stimulation) in

between tests and in the six flies tested; we divided the stimulus

frequency at the border points by the fly’s mean WBF in the 3 s

preceding the synchronized interval plus the 3 s following the

synchronized interval.

For each frequency sweep test during which synchronization

of a given order occurred, we placed two border points into the

parameter space, with the ratio of stimulus frequency to baseline

frequency on the abscissa, and the acceleration delivered by

the piezo on the ordinate. The set of all such border points (from

the six flies tested) defines the Arnol’d tongue.
3. Results
3.1. Nonlinear response to periodic mechanical stimulus
When we stimulated flies periodically with the piezo, we

observed nonlinear responses typical for forced LCOs. We

will first present three examples to describe these phenomena

in detail.

Periodically forced LCOs are generically expected to exhibit

multiple Arnol’d tongues, corresponding to synchronization

at various commensurate ratios of stimulation frequency and

oscillator frequency. The frequency range in which locking

of a given order occurs typically increases with the forcing

amplitude and gives rise to the characteristic tongue shape

(figure 2c). A transition to synchronization should occur

when the stimulus parameters are varied so that the border

of the tongue is crossed. This can be achieved, e.g. by a stimulus

amplitude sweep (vertical arrow in figure 2c) or stimulus

frequency sweep (horizontal arrow in figure 2c).

To test for such a transition at the border of the 1 : 1

tongue (WBF equal to stimulus frequency), we stimulated

flies with amplitude sweeps at fixed frequencies close to the
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Figure 3. (a) Example of a recorded amplitude sweep. We stimulated with
fstim ¼ 230 Hz, while linearly first increasing and then decreasing astim, thus
crossing the 1 : 1 Arnol’d tongue border vertically. The fly’s baseline WBF was
235 + 3 Hz. (i) Relative phase C(tk) between stimulation and wingbeat.
(ii) WBF, fstim(dashed, blue), astim(dotted, red). Arrows on top indicate phase
slips. (b) Example of a recorded frequency sweep. We stimulated with mean
astim ¼ 8.1 m s22, whereas linearly increasing fstim, thus crossing the 1 : 1
Arnol’d tongue border horizontally. The fly’s baseline frequency was 209 +
4 Hz. (i) Relative phase C(tk) between stimulation and wingbeat. (ii) WBF,
fstim(dashed, blue). Arrows indicate quasi-periodic modulation of the WBF.
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fly’s baseline frequency. For example, we increased the

amplitude from 0 to 3.8 m s21 at a fixed detuning (difference

of baseline frequency and stimulus frequency) of about

5 Hz (figure 3a). Here, the synchrogram reveals synchroniza-

tion as a line of constant relative phase Cm(tk) (black dots, top

trace), while the stimulus amplitude is above 2.3 m s22 (red

dotted line, bottom trace). This phase-locking lasts for about

7 s or about 1650 wingbeats. It is interrupted by three inter-

vals, during which the phase changes rapidly (arrows in

figure 3a). The occasional occurrence of such rapid phase

changes, called phase slips, is typical for biological oscillators

due to their inherent noisiness [6]. The calculated WBF (black

line, bottom trace) shows that the fly returns to its baseline

frequency during the phase slips.

Similarly, we tested for a transition to synchronization

when decreasing the detuning. We stimulated flies with fre-

quency sweeps with starting frequencies well below their

WBFs. We then increased the stimulus frequency while keep-

ing the applied voltage amplitude constant. In the example

shown in figure 3b, the fly’s baseline WBF was 209 + 4 Hz

(mean + s.d.) and we stimulated with a frequency sweep

(0.1–500 Hz, 10 V). The fly locked to the forcing when the

stimulation frequency was above 199 Hz and de-locked

when it reached 220 Hz. The locking lasted for about 4 s or

835 wingbeats. Before and after locking, the WBF oscillated

(see arrows). This oscillation reflects a regime in which the

forcing frequency is too far away from fly’s baseline fre-

quency to fully entrain the fly; however, it is close enough

to significantly influence the oscillator. Indeed, similar fre-

quency oscillations are generically expected for LCOs when

the forcing parameters are just outside the Arnol’d tongues
(called phase walk-through or quasi-periodicity [6,49]). The

phenomenon is likewise visible in figure 3a just before the

onset of locking.

Besides 1 : 1 entrainment of the oscillator frequency

to stimulus frequency, forced LCOs typically also show

higher-order synchronization (also called subharmonic and

superharmonic entrainment in the literature). The corre-

sponding Arnol’d tongues touch the abscissa axis (figure

2c) at points obtained as rational fractions of stimulus fre-

quency and baseline frequency, fstim : fnat ¼ n : m, where n, m
are relatively prime integers larger than 1. The most robust

tongues are generically expected for n, m small (for example

1 : 2, 3 : 2), whereas the tongues with large n, m tend to be

very narrow and difficult to observe in the presence of noise.

To test for the existence of higher-order synchronization,

we applied frequency sweeps and constructed synchrograms

in a range from 40 to 455 Hz. As the baseline WBFs were

around 200 Hz, the sweeps were expected to cross the borders

of multiple Arnol’d tongues. If, for example, a fly beating with

195 Hz is stimulated at 400 Hz, we expect the fly to increase its

frequency to 200 Hz, so that the frequency ratio adjusts to the

locking order 2 : 1. An example synchrogram of a full recording

is shown in figure 4. Here, the synchrogram reveals not only the

extended 1 : 1 locking region (around 210 Hz), but also several

lockings of higher-order n : m. The fly synchronized in intervals

in which the phase points form a single horizontal line (for

locking orders with m ¼ 1, like 1 : 1 and 2 : 1) or m horizontal

lines (for m . 1, see also §2.3.2). In the presented example, all

prominent lockings with a minimum length of 100 wingbeats

are marked on top with the corresponding locking order.

Note the phase slip at the beginning of the 2 : 1 locking. This

measurement contains four prominent lockings, with 3 : 2

being the highest locking order.
3.2. Locking statistics and Arnol’d tongues
To extract the Arnol’d tongue boundaries and to quantify the

occurrence of phase-locking, we focused on the frequency

sweep experiments. This had the major advantage that by

applying a single sweep, we crossed the borders of multiple

Arnol’d tongues and, in case of synchronization, obtained

both an entry and an exit point of the respective Arnol’d

tongue. We tested six flies and stimulated each with six

frequency sweeps of varying voltage amplitude (see §2.2).

We obtained results from 33 measurements (table 1); during

three trials, the flies stopped flying and the respective

measurements were discarded. 1 : 1 locking occurred in

16 out of 33 trials (48%). 1 : 2, 3 : 2 and 2 : 1 lockings occurred

in 56 per cent, 52 per cent and 33 per cent cases, respectively.

We found 1 : 1 entrainment and higher-order locking in every

fly. The percentage of sweeps, in which locking was observed

in a fly, was 47 + 10% (mean + s.t.d.).

From the identified locking intervals, we reconstructed

the Arnol’d tongue boundaries, as described in §2.3.4. We

found that the 1 : 1 tongue is roughly triangular, i.e. an

increasing forcing strength leads to a roughly proportional

increase in locking width, as expected for a weakly forced

LCO (figure 5b). The width of the tongue shows that the syn-

chronization is maintained for a detuning up to +5% of the

WBF (which corresponds to about +10 Hz). The shapes of

the higher-order tongues (figure 5a,c,d) are more inconclusive

and do not appear to be triangular. Still, all tongues cover

extended areas in the frequency–amplitude space.
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Table 1. Locking quantification. Lockings rates, i.e. percentage of frequency sweeps in which phase-locking was observed, obtained from 33 frequency sweeps
at piezo voltage amplitudes of 1 – 10 V.

locking rate per locking order

locking rate per fly1 : 2 1 : 1 3 : 2 2 : 1

fly 1 100 100 83 83 92

fly 2 25 50 50 25 38

fly 3 67 67 67 67 67

fly 4 50 33 33 0 29

fly 5 60 20 60 20 40

fly 6 33 17 17 0 17

mean locking rate per locking order 56 48 52 33 mean locking rate

per fly + s.d.

47 + 10
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Note that each measured tongue is nearly symmetrical,

which is a generic property of very weakly forced LCOs [6].

While it cannot be entirely excluded that a hysteretic effect

was nevertheless present owing to a frequency scanning in

one direction only, it is rather unlikely that this would have

exactly compensated an existing intrinsic asymmetric shape.

Furthermore, the possible existence of a hysteresis effect does

not challenge any of the drawn conclusions in this work.

3.3. Fast and phase-dependent modulation of
wingbeat frequency

We showed that sustained mechanical stimulation at a fixed

frequency (or slowly increasing frequency in the case of a fre-

quency sweep) acts as a forcing that can entrain the wingbeat
rhythm. This result, however, does not tell us the timescale

on which the forcing acts. To deduce this timescale, we ana-

lysed the intervals of fast WBF modulation prior to 1 : 1

locking (see §3.1) in more detail. Such intervals were readily

identified for stimulus amplitudes of more than 2 m s22.

In these intervals, the WBF was found to oscillate with a fre-

quency that increased with the difference between baseline

WBF and stimulation frequency. We observed WBF oscil-

lations with frequencies up to 40 Hz. In the example shown

in figure 6a, the time courses of WBF and the phase of stimu-

lation reveal that the WBF varies from cycle to cycle, and

follows the phase C of stimulus relative to the wingbeat.

For further analysis, we selected recordings, in which the

WBF oscillation lasted for at least 2 s (seven measurements

from four flies). The range of modulation frequencies was
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11 to 18 Hz (mean 14 Hz, s.d. 2.5 Hz). We found that the

response to stimulus is consistent across the recordings, and

that the resulting change in WBF varies approximately sinu-

soidally with the relative phase C (figure 6b). The observed

response function (which by definition is periodic in C ) can

be well fitted (r2 ¼ 0.92) with the first two components of
its Fourier series (figure 6b). A maximal decrease in WBF is

observed around relative phase +p, whereas a phase offset

of 0 led to a maximal increase in WBF. Stimulation with

phase offsets of 2p/2 and p/2 did not elicit a response

in WBF. Recall that when the stimulus is applied with the

frequency close to WBF and with the relative phase C ¼ 0
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or C ¼+p, the resulting acceleration has a time course

mimicking the Coriolis force acting on the haltere knobs

during a pitch manoeuvre in free flight (see §2.2). For other

values of C, the time course of the acceleration does not

match the Coriolis force in any rotational manoeuvre

during free flight. The response of the wing/thorax oscillator

is thus maximal when the stimulus mimics the Coriolis force,

to which the haltere mechanosensory pathway is known to be

highly sensitive [25].

Based on the observed phase-dependent response, we can

make a deduction on how quickly the stimulus affects the

WBF. Suppose that a fixed time delay t elapses between the

mechanical stimulus and the resulting WBF adjustment. In

the response curve in figure 6b, the time delay t would

appear as a phase delay t/T, where T is the period of the

modulation of WBF. The response curve was obtained, how-

ever, from data segments in which the modulation frequency

varied widely (by 60%). Therefore, a sizeable time delay

t would result in a range of phase delays, and after averaging,

a clear phase-dependent response (as in figure 6b) would

likely not be obtained. In addition, the coincidence of the

optimal stimulus (resulting in maximal response) with the

Coriolis force would be lost. This suggests that the time

delay t is small compared with the typical period of WBF

modulation (about 0.07 s or 14 wingbeat cycles). Our analy-

sis, therefore, indicates that the mechanical stimulus affects

the WBF within a few wingbeat cycles.

3.4. Control experiments
To test if the observed entrainment was indeed mediated by

the halteres, we measured the responses of six flies whose

haltere endknobs had been ablated (which reduce the haltere

sensitivity by about 90% without damaging the sensory fields

at the haltere base [25]). We performed six frequency sweeps

per fly. In four out of the six flies with ablated halteres, we

found no entrainment. In two flies we observed a single,

reduced locking region at the highest stimulation strengths

(figure 5, filled triangles). Our direct observations of the

wingbeat of tethered flying flies revealed no gross difference

between flies with ablated halteres and untreated flies. Like-

wise, no qualitative differences were found in the vibrometry

traces. Comparison of WBFs (extracted from the tether

vibration) showed, however, an increased mean baseline

WBF (225 + 14 Hz) in flies with ablated halteres, which

was about 12 per cent elevated, compared with untreated

flies (202 + 16 Hz). A similar observation was made by

Dickinson [25], who reported an increase in WBF of about

24 per cent following endknob ablation.
4. Discussion and conclusions
In this study, we explore the possibility that the steering

muscles of flies affect the myogenic wingbeat rhythm as a

mechanical forcing of an LCO. Our synchrogram analysis on

the phase data of a mechanical stimulus and the wing stroke

reveals several characteristic features of an LCO, namely

phase-locking, phase slips, higher-order locking and quasi-

periodicity (§§3.1 and 3.2). We interpret the measured fast,

phase-dependent control of the WBF (§3.3) to result from the

activity of the direct steering muscles that function as a

mechanical forcing of an LCO embodied in the myogenic

wing actuation mechanism. Our data refute the null
hypothesis according to which the power-muscle-generated

rhythm is functionally decoupled from the activity of the

direct steering muscles.

We adopted our experimental approach from the seminal

studies performed by Nalbach & Hengstenberg [24] and

Nalbach [28,50,51], who vibrated blowflies back-and-forth

to emulate the Coriolis forces acting on the halteres of flies

during rotations of the body in free flight. While these studies

already revealed the basic synchronization phenomenon (1 : 1

locking, [50,51]), they did not systematically explore the poss-

ible LCO properties of the flight apparatus. We extended the

previous approach by sampling at a high rate the phase

relationship between the wing stroke and the mechanical

stimulus, using laser vibrometry. Furthermore, we systemati-

cally varied the frequency and amplitude of the applied

mechanical stimulus to determine the Arnol’d tongues (i.e.

regions of synchronization) of the flight control system, and

to induce rapid modulation of WBF prior to entrainment.

Our results show that the fly responds to mechanical

stimulation as a nonlinear oscillator. The essentially nonlinear

properties we observed included transitions to/from syn-

chronization, subharmonic/superharmonic entrainment and

phase slips. More specifically, our measurements showed be-

haviour typical for a nonlinear oscillator with a stable limit

cycle [4,6]. A special type of chaotic oscillator (with narrow

strange attractor and a high degree of phase coherence)

could have similar synchronization properties [6, §10.1.2].

Our observations are, however, most straightforwardly

understood in the framework of a periodically forced LCO,

and we have found no signs of an attractor other than a

single limit cycle.

Nalbach [50] interpreted the 1 : 1 entrainment observed in

blowflies as arising from a pitch illusion reflex. Our exper-

imental approach, however, revealed synchronization also

at higher frequency ratios (1 : 2 and 3 : 2), at which the mech-

anical stimuli can no longer mimic Coriolis forces [28]. Hence,

we interpret the observed synchronization as an emergent

property of a periodically forced LCO embodied in the

myogenic wing actuation mechanism of flies.

Our results are highly consistent with the notion that fast

sensory input from the halteres mediates the forcing. First,

the maximal response was obtained when the stimulus

mimicked the time course of the Coriolis force that would

act on the haltere knobs during a pitch manoeuvre (§3.3).

This agrees with previous studies in which blowflies [24,50]

and fruit flies [25] were mechanically stimulated. Second,

the responses were strongly reduced after ablating the

end-knobs of the halteres (see §3.4).

In our study, we used observations of rapid phase-

dependent modulation of the WBF prior to locking to infer

that the forcing acts on a timescale comparable to one wing-

beat cycle (§3.3). We attribute the periodic forcing to the

mechanical action of direct steering muscles, which have

the fast response properties that can explain the measured

strict phase relationship between the mechanical stimulus

and the frequency response (figure 6). The basalar muscle

M.b1 could serve this function, as it is known to modulate

the wing kinematics according to the phase of its single

contractions during successive wing strokes and receives

fast monosynaptic input from the halteres [21,22,33,34].

It might be argued that the halteres directly affect the

thoracic rhythm mechanically, rather than acting through

the mechanosensory system and steering muscles. We
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evaluate this possibility as follows. We first consider the

order of magnitudes of forces exerted on the thorax by the

halteres. During 1 : 1 locking in our experiments, the accelera-

tion reaction force owing to the piezo actuation peaks at

around 6 � 1028 N (see the electronic supplementary

material). We then compare it with the estimated force

exerted by a steering muscle. In the blowfly Calliphora, the

peak force of the steering muscle M.b1 is of order 1022 N

and depends substantially on the phase in which it is acti-

vated (fig. 8 in [52]). Given that Drosophila is 10 times

smaller in length than Calliphora and following the scaling

laws for insect flight muscles [53], we estimate the forces gen-

erated by the homologue M.b1 muscle in Drosophila to be

103 ¼ 1000 times smaller than in Calliphora. Hence, the

forces generated by Drosophila’s steering muscles (10 mN)

exceed the reaction acceleration forces from the halteres

(60 nN) by more than two orders of magnitude. We therefore

conclude that the mechanical forcing of the thoracic rhythm is

predominantly effected by the steering muscles.

While the limit cycle properties of CPGs are well under-

stood, these are now also revealed in the myogenic wing

actuation mechanism of an insect. It is per se not very surpris-

ing that a myogenic oscillation can be described as a limit

cycle. Our study, however, reveals a coupling of the fly’s hal-

tere mechanosensory pathway to the thorax/wing LCO that

is functionally significant for flight control. This is evidenced
by substantial changes in WBF (about + 10 Hz) measured

when the halteres were stimulated by forces in the range of

those occurring during typical flight manoeuvres. We con-

cluded that this coupling is effected by the mechanical

activity of the steering muscles. In this way, the flight appar-

atus of the fly is able to avoid the computationally expensive

(and comparatively sluggish) neural mechanism of CPGs,

and instead replace it with a direct realization of a mechanical

LCO. A mechanical system of this type has been recently

implemented in a swimming robot by Seo et al. [54].

Myogenic limit-cycle-based control provides an elegant con-

ceptual framework in which to understand how flies can

achieve extremely fast and precise flight control with minimal

neural resources. The fruit fly offers itself as a model system to

explore limit-cycle-based control mechanisms that minimize

the required computational power and operate at high frequen-

cies. Such knowledge could serve the design of biomimetic

micro air vehicles, which like flies are under severe constraints

in terms of mass and power consumption, and, therefore,

depend on highly efficient control strategies [55,56].
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45. Schäfer C, Rosenblum MG, Abel H-H, Kurths J. 1999
Synchronization in the human cardiorespiratory
system. Phys. Rev. E 60, 857 – 870. (doi:10.1103/
PhysRevE.60.857)

46. Bartsch R, Kantelhardt JW, Penzel T, Havlin S. 2007
Experimental evidence for phase synchronization
transitions in the human cardiorespiratory system.
Phys. Rev. Lett. 98, 054102. (doi:10.1103/
PhysRevLett.98.054102)

47. Hamann C, Bartsch RP, Schumann AY, Penzel T,
Havlin S, Kantelhardt JW. 2009 Automated
synchrogram analysis applied to heartbeat and
reconstructed respiration. Chaos 19, 015106.
(doi:10.1063/1.3096415)
48. Woltring HJ. 1985 On optimal smoothing and
derivative estimation from noisy displacement data
in biomechanics. Hum. Mov. Sci. 4, 229 – 245.
(doi:10.1016/0167-9457(85)90004-1)

49. Ermentrout GB, Rinzel J. 1984 Beyond a
pacemaker’s entrainment limit: phase walk-through.
Am. J. Physiol. Regul. Integr. Comp. Physiol. 246,
R102 – R106.

50. Nalbach G. 1991 Verhaltensuntersuchungen zur
Funktion der Halteren bei der Schmeißfliege
Calliphora erythrocephala mit echten und simulierten
Drehreizen. PhD thesis, Eberhard-Karls-Universität
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