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A population of mouse embryonic stem (ES) cells is characterized by a distri-

bution of Nanog, a gene whose expression is associated with the degree

of pluripotency. Cells exhibiting high levels of Nanog maintain a state of

pluripotency, while those with low levels are more likely to undergo differen-

tiation. Using a cell line with a fluorescence tag for Nanog enables

measurements of the distribution of Nanog in an ES cell culture in a stationary

state or after a perturbation. In order to model the dynamics of the system, we

assume that the distribution of Nanog-GFP for single cells shows distinct

attractor steady states of Nanog levels, with individual cells moving between

these states stochastically. The addition of synthetic inhibitors of signal trans-

duction induces strong shifts in the distribution of Nanog. In particular, the

addition of Chiron and PD03, inhibitors for the ERK and GSK3 signalling

pathways, induces a high level of Nanog. In this study, we placed ES cells

in different culture conditions, including the above inhibitors, and recorded

the change in Nanog-GFP distribution over several days. In order to interpret

the measurements of Nanog levels, we propose a new stochastic modelling

strategy for the dynamics of the system not requiring detailed knowledge of

regulatory or signalling mechanisms, while still capturing the stochastic and

the deterministic components of the stochastic dynamical system. Despite

its relative simplicity, the model provides an insight into key features of the

cell population under various conditions, including the level of noise and

occupancy and location of attractor steady states, without the need for

strong assumptions about the underlying cellular mechanisms. By applying

the model to our experimental data, we infer the existence of three stable

steady states for Nanog levels, which are the same in all the different con-

ditions of the cell-culture medium. Noise, on the other hand, and the

proportion of cells in each steady state are subject to large shifts. Surprisingly,

the isolated effects of PD03 and Chiron on noise and dynamics of the system

are quite different from their combined effect. Our results show that signal-

ling determines the occupancy of each state, with a particular role for

GSK3 in the regulation of the noise across the population.
1. Introduction
The development of an organism relies on the coordination of transitions of

cells through several states that lead to the final differentiated cell types,

which make up tissues and organs. Over the last few years, our understanding

of this process has improved with our increased ability to gather information

about the changes of gene expression that are associated with particular

states [1–4]. The role of noise (spontaneous fluctuation in the levels of transcrip-

tion of particular genes) in triggering transitions has been emphasized in recent

studies [5–8]. In these studies, noise is represented as a stochastic term in a
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Figure 1. Morphology of targeted Nanog-GFP, clone A (TNGA) cells with different levels of Nanog-GFP and key signalling pathways required for maintaining
pluripotency. (a) TNGA cells with three different levels of Nanog-GFP expression were sorted from a steady-state population (red lines) and cultured for 3 days. As
the level of Nanog-GFP increases from low Nanog (LN) to high Nanog (HN) (left to right), the proportion of differentiated cells has visibly reduced as seen from the
absence of flat differentiated cells from the HN cells. MN, middle Nanog. (b) A schematic of the signalling pathways shown to be important in maintaining
pluripotency in mouse ES cells. The LIF-Stat3 and BMP4-Id pathways together maintain self-renewal and are thought to function by inhibiting mesodermal and
neural differentiation, respectively [19]. Pluripotency can also be maintained by the use of two inhibitors, PD0325901 and CHIR09921 [20]. PD03 inhibits the
Fgf-MEK pathway, which is vital for ES cells to commit to differentiation [21]. CHIR, on the other hand, targets GSK3b and, by doing so, stimulates the Wnt pathway
[22] as well as possibly promoting cell metabolism [20].
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stochastic dynamical system driven by the activity of gene

regulatory networks and influenced by signalling pathways.

Mouse embryonic stem (ES) cells, which are cultured cell

populations derived from the blastocyst, are pluripotent, that

is, they can develop into any cell type of the embryo and can

propagate this ability [9]. Experiments with ES cells have pro-

vided examples of the dynamics of cell states during cell-fate

decisions [10–16]. The expression of the transcription factor

Nanog is often used as a marker for pluripotency. Nanog

exhibits high variability from cell to cell; high levels of

Nanog are associated with pluripotency, while low levels

are associated with a tendency to differentiate [10,13,17].

Cells change their levels of Nanog over time but an ES cell

population tends to equilibrate towards a distribution that

remains constant under standard culture conditions

([10,13,18]; figure 1). This distribution is very sensitive to sig-

nals provided by the culture medium. In particular, growth

in the presence of two inhibitors, PD03 and Chiron, dramati-

cally reduces the heterogeneities and enriches the population

in cells with high levels of Nanog [17,23].
The biochemical activities of these molecules are well

known. PD03 inhibits signalling by FGF, which has been

shown to promote commitment to differentiation of ES

cells, and inhibition of GSK3 increases the activity of

b-catenin and potentiates cell viability (see figure 1 for an

overview) [20–22]. Work from Smith and co-workers [20]

has shown that addition of these two synthetic inhibitors of

signal transduction to N2B27 maintains cells in a highly

pluripotent state. However, what the effects of these inhibi-

tors are on the states associated with Nanog expression

and, more importantly, on the dynamics of the system has

not been investigated.

It is known that, under normal self-renewing conditions,

cells from any part of the distribution will reform the original

distribution over time and it is thought that this behaviour is

associated with the regulative properties of an ES cell culture

[10,13]. In order to analyse the effects of these inhibitors on

Nanog distribution and its regulative properties, we obtai-

ned time-series fluorescence-activated cell sorting (FACS)

measurements of the distributions of Nanog expression
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Figure 2. The effect of a potential on the dynamics of a system. (a) A system (symbolized by a ball) is driven by an energy potential towards the nearest local
minimum (in a mechanical model, the movement of a mass under gravity in a highly viscous fluid that dissipates the kinetic energy). The speed or drift is
proportional to the inclination or gradient of the potential function. (b) Without noise, the system converges to the local minimum. (c,d) With noise, the system can
overcome the energy barrier and moves between the local minima and intermediate states, sampling from each state according to a distribution determined by the
potential and the noise. The local minima in the potential correspond to local maxima in the state distribution.
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levels for ES cells placed in different media conditions. We

used stationary populations but, more significantly, we

selected specific subpopulations and monitored their evol-

ution under different culture conditions.
1.1. Modelling strategy
Models of the dynamics of ES cell populations can potentially

provide insights into the function of and interactions between

the elements of the signal transduction pathways and gene

regulatory networks that define pluripotency. A widely

used modelling strategy is to postulate a mechanistic model

based on pathways or networks with precise kinetics that

leads to dynamical models in terms of deterministic or sto-

chastic differential equations derived from regulatory

relationships [10,24,25]. However, these models rely on

detailed knowledge of the architecture of the network and

on mathematical descriptions of regulatory interactions,

which are often difficult to justify directly in terms of exper-

imental data. Moreover, such models are highly parametrized

and flexible, and consequently very different models can

explain the data at hand equally well, complicating the

choice of the correct model. Such choice has to rely on

additional assumptions and knowledge outside the data.

Consequently, it often remains doubtful whether anything

new has been learned from the data that have not already

been incorporated in the model a priori. Extrapolating from
highly parametrized models is problematic as well, as overfit-

ting will diminish their predictive power. On the other hand,

reduction of the number of parameters is only possible after

making even stronger theoretical assumptions about the

details of the regulatory model.

In this study, we propose an alternative modelling strat-

egy. Our aim is to capture the essence of a stochastic

dynamic process with a minimum of model assumptions.

One of our key modelling assumptions is that the distribution

of Nanog-GFP observed in experiments is the result of sto-

chastic fluctuations. A stochastic dynamical system has two

major components: the deterministic part, represented by a

drift term; and the stochastic part, represented by a noise

term. Instead of modelling the drift term through differential

equations derived from known or hypothesized pathways or

networks, we assume a more general functional form. For

systems with one variable, such as the Nanog expression

data from our experiments, the drift term can be represented

as the derivative (slope) of a potential function, if we assume

that a stationary distribution exists.

Figure 2 illustrates these concepts: a potential function has

two stable steady states (local minima). The system, a ball in

the figure, moves deterministically towards the closest

steady state, the closest local minimum in the potential func-

tion, under the influence of the inclination (gradient) of the

potential (figure 2b). In a physical interpretation of this pro-

cess, the ball would move under gravity downhill in a
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Figure 3. The effect of noise on the speed of time evolution. Shown are kernel density estimates for simulations for two different stochastic systems. (a) The minima
in the potential function are wide but the noise is small. (b) The minima are narrow but the noise is large. In the limit, both systems have the same stationary
distribution (blue), but the speed of evolution is quite different. This phenomenon enables the identification of potential and noise parameters from time-series
data. Black line, day 0; red line, day 1; green line, day 2.
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highly viscous fluid that dissipates the kinetic energy. Unless

the underlying potential function changes through outside

influence, the system would stay in this steady state in a

deterministic model. However, in a stochastic model, noise

gives the ball random jolts and can drive it off the stable

steady state. Higher levels of noise allow the ball to overcome

the barriers between stable states and lead to rapid fluctu-

ations between the stable states (figure 2d ), giving rise to a

distribution that represents the time average of the

behaviour of the system (figure 2c). The larger the noise,

the flatter this distribution becomes, even though the under-

lying potential remains the same. Thus, the system has two

significant components: the potential and the noise, and its

behaviour is a result of the interplay between both.

Our approach represents an arbitrary stationary distri-

bution non-parametrically by a mixture of Gaussian

distributions, as in figure 2c, and a potential similar to the

one in figure 2a can be derived from this representation

(given a certain noise level). We thus avoid any need to

develop a detailed kinetic regulation model but still obtain

a representation of the deterministic dynamics. In order to

make such a model identifiable from the data, we have

to make a few technical assumptions. First, the noise term

is independent of the Nanog level. Because we fit our

model using logarithmic Nanog levels, we therefore

implicitly assume that noise intensity is proportional to the

level of Nanog expression. However, alternative functional

dependencies of the noise intensity on Nanog levels can be

easily incorporated into our framework if that seems desir-

able. A more serious restriction of our approach is that it

applies to systems with one variable only: the existence of a

potential is not guaranteed for higher dimensional systems,

even if a stationary distribution exists. However, even in

such cases, the assumption of the existence of a potential is

likely to result in a good approximation (for example, in

three dimensions an approximation based on a Helmholtz

decomposition could be considered).
Stationary data are not sufficient for the identification of

the deterministic and stochastic components in our model.

Intuitively, an observed stationary distribution can be either

the result of a deep potential function but large noise or a

flat potential function and small noise. On the other hand,

time-course data allow us to distinguish between these possi-

bilities and to identify both, the deterministic and the

stochastic components, as long as there is enough change in

the population distribution over the time course. Figure 3

illustrates this by showing the outcome of stochastic simu-

lations with two different noise levels and two different

potentials that are chosen so that the stationary distribution

is the same. The rate of time evolution is very different, and,

as the figure illustrates, identification of noise and potential

is feasible from dynamic but not from stationary data.

An approach using a flexible function for the drift term is,

of course, not suitable for inference on the details of the

underlying regulatory or signalling mechanism. Moreover,

we use only a one-dimensional model with a comparatively

simple representation of the stationary distribution as a mix-

ture of Gaussians. However, even such a straightforward

model allows us to extract surprising and important features

of signalling in the Nanog system, not at all obvious from

looking at the raw data, as shown in §§3 and 4. Despite its

simplicity, it also illustrates the main feature of our modelling

strategy: to extract as much as possible about the structure of a

system, and not only parameters, from data.

For model comparison and estimation of parameters, we

use a statistical technique, nested sampling [26], that has

gained recent interest in some areas such as cosmology [27].

The advantages of this Bayesian method are that it is very effi-

cient computationally (much more so than Monte Carlo

methods) and that it provides a model likelihood along with

posterior parameter estimates (unlike Monte Carlo methods).

We apply the model to time-course data of Nanog-GFP in

order to reconstruct the effect of the two inhibitors and their

combination on the location and depth of the attractor



rsif.royalsocietypub

5
states and on the level of stochastic noise. Despite some stat-

istical technicalities, our modelling approach is reasonably

simple and straightforward to apply: estimating parameters,

for example, turns out to be quite robust, and, owing to its

generality, the method can be easily adapted to other systems.

Software implemented in the R statistical language is available

from the authors.
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2. Material and methods
2.1. Stochastic model
The Fokker–Planck equation (FPE) describes a continuous

Markov process by providing the time evolution of the

probability density function for the system [28]

@pðx; t j x0; t0Þ
@t

¼ � @½Aðx; tÞpðx; t j x0; t0Þ�
@x

þ 1

2

@2½Bðx; tÞpðx; t j x0; t0Þ�
@x2

; ð2:1Þ

where pðx; t j x0; t0Þ represents the probability density func-

tion for state x (Nanog levels in our example) at time t,
when the system is started in x0 at time t0, A(x,t) is the drift
and B(x,t) is the diffusion coefficient. The stationary distri-

bution psðx j uÞ, defined by parameters u, is characterized by

a zero probability current

Jðx; tÞ ¼ Aðx; tÞpsðx j uÞ �
1

2

d

dx
ðBðx; tÞpsðx j uÞÞ ¼ 0: ð2:2Þ

Intuitively, once a collection of cells has reached a stationary

distribution, at each (Nanog) level, the number of particles

(cells) moving to the left (reducing Nanog level) equals the

number moving to the right (increasing Nanog level); so

the overall number of cells with a certain Nanog level stays

the same.

We model the stationary distribution from equation (2.2)

non-parametrically as a mixture of k Gaussian distributions,

psðx j uÞ ¼
Xk

j¼1

aj
1ffiffiffiffiffiffiffiffiffiffi
ð2pÞ

p
sj

exp �
ðx� mjÞ

2

2s2
j

( )
;

aj � 0;
X

j

aj ¼ 1;

ð2:3Þ

with parameters u ¼ faj;mj;sjgk
j¼1. For identifiability, we

assume a time- and position-independent diffusion coeffi-

cient B(x,t) ¼ 2B. From equation (2.2), for zero probability

current J(x,t) ¼ 0, the drift term can be expressed as

AðxÞ ¼ �U0ðxÞ ¼ B
p0sðxÞ
psðxÞ

; ð2:4Þ

where U(x) is the potential function U(x) ¼ 2 B logps(x). The

stationary distribution ps(x) is determined by the potential

U(x) and noise intensity B. Conversely, from the stationary

distribution ps(x) alone, U(x) and B cannot be uniquely

derived as, from equation (2.4), a factor for the drift can

compensate changes in B.
2.2. Inference of parameters
At each time point tr, r ¼ 0, . . . , T we have a set xr ¼ x1,r, . . . ,

xnr,r of nr measurements (here Nanog-GFP levels in single

cells with T ¼ 3). A set of parameters u ¼ faj;mj;sjgk
j¼1

defines a distribution pðX j t; x0; t0; u;BÞ of levels via
equations (2.1), (2.3) and (2.4). The likelihood function is

Lðu;BÞ ¼ pðx j u;BÞ ¼
YT
r¼1

Ynr

i¼1

pðxi;r j tr; x0; t0; u;BÞ; ð2:5Þ

where x ¼ fx0; x1; x2; . . . ; xTg. The dataset x0 is used for a

kernel density estimate of the initial distribution at t0. In

our case, the samples at different time points are independent

of each other, which justifies the multiplication of probabilities

at different time points. The measurements are undertaken on

fresh samples from the total population of cells at each time.

Samples at different time points are therefore independent

of each other. However, all sample distributions depend on

the initial sample distribution x0 at time t0, which is under

experimental control via FACS sorting.

There are several ways to obtain pðx j t; x0; t0; u;BÞ numeri-

cally; for example, by solving the second-order partial

differential equation (2.1) [28]. Here we sample stochastic

trajectories from the stochastic differential equation corre-

sponding to the FPE [28,29] for 1000 initial starting points

drawn randomly from x0, and fit a kernel density estimate to

the results at time point t to approximate pðx j t; x0; t0; u;BÞ.
This scheme turned out to be very robust in that different

runs converge on the same parameter estimates.

For the inference of the model parameters via equation (2.5)

and model comparison, we used a nested sampling procedure

[26,27], which turned out to be much more efficient than

alternative inference methods such as Markov chain Monte

Carlo methods (for details see the electronic supplementary

material notes).

2.3. Embryonic stem cell culture
E14IVc and targeted Nanog GFP, clone A (TNGA) ES cells

were a kind gift from Austin Smith’s laboratory and were

described previously [13]. TNGA cells contain a GFP reporter

that is fused to a puromycin gene, which is inserted into the

Nanog locus, with the one Nanog gene left intact.

All ES cells were maintained in Glasgow minimal essential

medium (Sigma) supplemented with 10 per cent fetal bovine

serum (Sigma), 1 �MEM non-essential amino acids (Invitro-

gen), 100 mM 2-mercaptoethanol (Sigma) and 5 � 105 units

ml21 ESGRO (Millipore) on gelatinized tissue-culture

flasks. For TNGA cells, additional treatment with puromycin

(1 mg ml21) for three consecutive passages led to the removal

of any differentiated or wild-type cells that had lost their

transgene.

ES cells were then cultured in serum-free conditions

(N2B27 supplemented by LIF and 10 ng ml21 BMP4

(R&D)) [19] for two or three subsequent passages before

they were sorted or used in an experiment.

2.4. Flow cytometry sorting
Cells were prepared for flow cytometry sorting using a

Beckman Coulter high-speed cell sorter by harvesting the cells

using Accutase (Invitrogen) and diluting in Dulbecco’s minimal

essential medium-F12 (Invitrogen) supplemented with 0.2 per

cent bovine serum albumin and 100 mM 2-mercaptoethanol.

Cells were then resuspended in LIF and BMP4, and filtered

using a 30 mm mesh. Live single cells were selected for further

analysis on the basis of FSC/SSC/pulse width characteristics

after prior confirmation with a live/dead dye, Topro3

(Invitrogen), that these characteristics yielded live single cells.
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The cell sorter was calibrated each time by using

fluorescence beads. Parental E14IVc ES cells were used as a

negative control because they display a level of autofluores-

cence; this was used to calibrate the laser intensities so that

they were within the range of 100–101. Cells with fluor-

escence levels within this range were considered to be

negative (i.e. low Nanog; LN). Levels between 102 and 103

were considered high (high Nanog; HN). Middle Nanog

(MN) cells have an intermediate level of Nanog-GFP, lying

between 101 and 102. The sorted cells were re-analysed to

check the purity of sorting (which is above 98%).
2.5. Flow cytometry analysis of time course
Cells were plated into N2B27 supplemented with either an

MEK inhibitor (termed PD03 in the following), 1 mM

PD0325901 (Division of Signal Transduction, University of

Dundee, UK), GSK3 inhibitor (termed Chiron in the following),

3 mM CHIR99021 (Division of Signal Transduction, University

of Dundee), 2i (a combination of 1 mM PD0325901 and 3 mM

CHIR99021) [20] or LIF and BMP4 (LIFþ BMP4). Over a sub-

sequent period of 3 days, the media were changed daily and

cells were prepared for analysis in a manner similar to that of

cell sorting, using a Beckman Coulter CyAN ADP analyser.

The plating in different conditions was done twice, once

with an unsorted population of cells (figure 4) and once

with the MN fraction after sorting (figure 5a).

The cell analyser was calibrated for each day as well. For

day 0 (day of sorting), sorted cells that were not plated for the

time course were analysed to give a starting profile, together

with beads of fixed fluorescence (BD Sphero rainbow beads).

For days 1–3, the median of the beads on day 0 was then
used to set up and standardize the PMT voltages of GFP

fluorescence before any readings were taken, in order to com-

pensate for any daily variation of the laser intensity; 10 000

cells were analysed each time.
3. Results
3.1. Structure and dynamics of a pluripotent

cell population
Profiling of Nanog-GFP by FACS indicates that, in optimal con-

ditions (for example, minimal N2B27 medium with LIF and

BMP4 (LIF þ BMP4)), a pluripotent culture contains two dis-

crete populations of cells: some with high levels of Nanog

(HN)—which favour a pluripotent state—and some with low

levels of Nanog (LN)—which is prone to differentiation

[10,13]. When LIF and BMP4 are removed from the culture,

ES cells drift towards differentiation and this is reflected in a

quick shift of the profile of Nanog-GFP expression towards

the LN peak: after 2 days in N2B27, more than 80 per cent of

the population occupies this position. This observation estab-

lishes a basis to test the influence of different signalling

systems on pluripotency [10].

When TNGA cells were switched from LIFþ BMP4 to

different culture conditions, the profile of Nanog-GFP chan-

ged. Figure 4 shows the profiles of TNGA cells in the four

different culture conditions (LIFþ BMP4, Chiron, PD03

and 2i) after 4 days. Beyond the fourth day, the distributions

change little (except perhaps for PD03) and can be assumed

to approach a stationary state soon thereafter. In 2i, the profile

of TNGA cells is very skewed towards the HN population
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Table 1. Model comparison for the number of mixtures component. The
table shows the Bayes factors for the number of Gaussian components
needed to model the distribution of Nanog-GFP data in various culture
conditions: B32 is the odds of three components over two, B34 the odds of
three components over four and B42 the odds of four components over
two. Odds between 1 and 3 are marginal, between 3 and 10 substantial
and above 10 strong.

LIF 1 BMP Chiron PD03 2i

B32 113 713 39.2 1/38560

B34 2.03 2.33 2.14 1/6247

B42 55.7 306 18.3 1/6.17
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with an almost non-existing LN population, which is charac-

teristic of LIFþ BMP4. Chiron maintains the cells in the

LIFþ BMP4 state with some changes in the HN peak and

the decrease of a prominent hump that lies between the

two peaks. On the other hand, PD03 alone exhibits a very

different profile: rather than a maintenance of the LIFþ
BMP4 profile, as might have been expected from the reported

increased pluripotency of the culture [20,21], we observe an

increase in the populations with lower levels of Nanog; in

this condition, a third clear MN population can be observed

between the HN and LN, which is present but very reduced

in other conditions.

Our observations suggest that the description of the

TNGA culture as a mixture of two populations might be an

oversimplification. To establish quantitatively how many

subpopulations exist in a self-renewing culture, we assumed

that the stationary distribution of Nanog-GFP is a mixture of

Gaussian distributions and calculated the Bayes factor for

Gaussian mixtures of two, three and four components,

fitted to the profiles of TNGA cells shown in figure 4. In

the cases of LIF þ BMP4, Chiron and PD03, the analysis

favours a mixture of three components over two or four

(table 1). The distribution resulting from the culture in 2i

requires a simpler distribution with two Gaussian com-

ponents, indicating that this set of conditions affects

drastically one of the populations. Overall, we conclude

that a mixture of three Gaussian distributions is the most suit-

able model among the three competing models to describe

the Nanog-GFP profiles for all but possibly the 2i condition.
However, there is little harm in assuming more components

than necessary, because the importance (occupancy) of an

unnecessary component will just be estimated as small.

Having established the number of components in the

population, we are in a position to probe for the shape of

the potential and the intensity of the noise associated with

the system, and to study the effect that the different signalling

systems have on these parameters. However, as discussed

earlier, the potential cannot be identified independently of

the noise component, unless there is enough change in the

distribution over the time in which samples are collected.

A number of experiments show that the HN population is

very stable, whereas the LN population differentiates and



Table 2. Three component models for different culture conditions. Parameters a, m and s are the percentage, mean and variance of the Gaussian components
of the mixture density for low, middle and high Nanog expression level—LN, MN, HN, respectively. s=

ffiffi
B
p

provides an indication of the width of the potential.

aLN (%) aMN (%) aHN (%) mLN mMN mHN
sLNffiffi

B
p sMNffiffi

B
p sHNffiffi

B
p B

LIF þ BMP 12.7 43.1 44.2 0.807 1.80 2.22 0.955 0.673 0.571 0.230

PD03 43.9 46.5 10.6 0.524 1.71 2.38 0.187 0.393 0.199 0.860

Chiron 10.3 27.5 62.2 0.601 1.65 2.21 0.831 1.05 0.246 0.186

2i 2.68 5.67 91.6 0.598 1.80 2.32 0.195 0.818 0.382 0.303

Table 3. Comparison of parameters across culture conditions. The probability P(uA , uB) that the parameter u labelling the column is smaller in condition A
than condition B for conditions A and B labelling the row. Probabilities above 0.9 or below 0.1 are significant and are highlighted in bold.

aLN aMN aHN mLN mMN mHN
sLNffiffi

B
p sMNffiffi

B
p sHNffiffi

B
p B

LB , Chiron 0.371 0.331 0.677 0.276 0.190 0.532 0.523 0.836 0.538 0.229

LB , PD03 0.999 0.604 0.010 0.152 0.143 0.847 0.016 0.124 0.122 0.994

LB , 2i 0.302 0.052 0.939 0.161 0.479 0.831 0.015 0.676 0.248 0.715

PD03 , 2i 0.004 0.021 1.000 0.552 0.847 0.299 0.433 0.967 0.769 0.011

PD03 , Chiron 0 0.396 0.990 0.848 0.856 0.153 0.963 0.986 0.949 0.006

2i , Chiron 0.618 0.938 0.175 0.132 0.200 0.217 0.459 0.765 0.927 0.074

rsif.royalsocietypublishing.org
JR

SocInterface
10:20120525

8

exhibits a low number of cells returning to the HN popu-

lation under self-renewal conditions [10]. By contrast, the

MN population exhibits rapid changes under all conditions

towards both HN and LN (see below). For this reason,

we decided to focus our study on the dynamics of the MN

population which should provide the necessary information

for estimating coefficients: mean and standard deviation

of each component and their occupancies defining the

deterministic potential, as well as a stochastic noise term.
3.2. Estimation of potential function and noise
A stationary culture of TNGA cells grown in LIF and BMP4

was FACS sorted to obtain a population enriched in MN.

These cells were then placed in different culture conditions

(LIF and BMP4, PD03, Chiron, and 2i) and the developing

distributions of Nanog-GFP were measured on three consecu-

tive days. As an illustration, figure 5 shows kernel density

estimates for the raw data (solid line) and sampled data

from the fitted models (dashed lines). A first impression of

the changes can be obtained by visual inspection of the

plots in figure 5. The HN population is dramatically reduced

in PD03, and becomes distributed over MN and LN in about

equal amounts. This agrees with independent experimental

findings that with PD03 alone ES cells progress to a state of

more homogeneous Nanog expression [21]. Chiron seems to

induce a clear rapid shift of about half of the MN population

into the HN state, while 2i moves almost all cells to the

HN state.

In order to obtain a more precise insight into the nature of

the changes, we have to inspect the model parameters

inferred from the data under each of the four conditions, as

shown in table 2. The relevant parameters are: occupancy

a, mean m and variance s2 of each Gaussian component

and the noise intensity B of the system. A summary of

the results for the stochastic model under the four different
conditions is listed in table 2 (the 95% credible intervals

of the estimated parameters are shown in the electronic

supplementary material, table S2).

Occupancies aLN, aMN, aHN represent the percentages of

cells that occupy the LN, MN and HN valleys in the station-

ary distribution. With reference to figure 2, an occupancy

close to 1 indicates a deep value in the potential function

and the existence of a strong attractor. B represents the

amount of stochastic noise that enables these transitions.

The scaled variance s2/B measures the width of the valleys

in the potential function, while s2 is the width of the mixture

component in the stationary distribution (including variance

owing to noise). A larger noise will result in a wider Gaussian

distribution, and vice versa.

We are interested in the effect of the inhibitors on these

parameters. Table 3 lists the posterior probabilities for the

differences seen in table 2, considering the uncertainty in

the estimation of parameters. The numbers in bold indicate

probabilities of less than 0.1 or greater than 0.9. That is, the

corresponding parameter values are likely to be substantially

different for the respective culture conditions.

A striking observation is that the positions of the three mix-

ture centres mLN, mMN and mHN as the centres of the MN, LN

and HN populations are very similar in all conditions. Any

differences are not statistically significant (table 2). Considering

the very different dynamic evolutions of the MN population in

the four conditions, the similarity of the location of the three

mixture centres lends support to the hypothesis that there are

three distinct steady states that are central to the Nanog

system and are independent from the culture conditions and

not susceptible to regulation by signal transduction.

However, the different conditions have effects on the

scaled variance s2/B, the width of each state. Overall,

Chiron is widening the LN and MN states in particular com-

pared with the narrowing effect of PD03. Both are narrowing

the HN state. Finally, PD03 drastically increases B, the
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Figure 6. Predicted stationary distributions of Nanog expression levels in different culture conditions. The figure shows the potential landscape of Nanog expression
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stochastic noise, while Chiron reduces it slightly, although

not significantly compared with LBþ BMP4. The noise in

2i, which is a combination of PD03 and Chiron, lies in

between that of PD03 and Chiron. The increase in noise

from Chiron to 2i with the addition of PD03 is significant.

Overall, it seems the noise level of 2i is the result of

competing pulls in different directions by Chiron and PD03.

Potential functions for each condition are shown in figure 6.

In 2i, most of the TNGA cells exhibit a HN expression level,

which is reflected in a deep HN valley. By contrast, PD03 has

a rather shallower HN valley. The insets show the correspond-

ing stationary distributions. Interestingly, while PD03 shows

a pronounced LN attractor steady state (and an MN steady

state) and Chiron a pronounced HN steady state, their

combination in 2i shows features of both, steady states at LN

and HN. Figure 6 also shows that Gaussian mixture com-

ponents not necessarily are local minima in the potential

function or attractor steady states. However, all three com-

ponents (LN, MN and HN) show very pronounced local

minima in at least one of the conditions. Most notably is a

clear attractor steady state at the MN point for PD03.

The models can be used to make predictions to some

degree. The predicted stationary distributions as inferred
from the time-series data starting with a narrow MN distri-

bution (figure 5) can be compared with the stationary

distributions obtained from non-gated whole population

cultures under the various inhibitor conditions (figure 4).

The predicted distributions capture the general outline of

whole-population stationary distributions reasonably well:

table 4 lists the log-likelihoods when the predicted stationary

distribution for each of the four media (rows) is used to cal-

culate the probability of the four experimental datasets (in

the columns). We would expect that the estimated model

for each medium predicts the experimental data from the

same medium best—that is, the highest likelihood in each

row appears along the diagonal of the table, which is

indeed the case (highlighted numbers in table 4).
4. Discussion
Recent discussions of mechanisms of cell-fate decisions in

general and in stem cell populations have made use of the

concept of the epigenetic landscape, as first proposed by

Waddington [30], where the differentiation process of a cell

is described by the trajectory of a ball rolling down a
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(solid) of unsorted whole populations (cf. figure 4) in the same four conditions. (a) LIFþ BMP4; (b) PD03; (c) Chiron; (d) 2i.

Table 4. Predicted log-likelihood of stationary experimental data under dynamical models. The rows contain measurements from a stationary distribution under
the corresponding culture conditions (figure 4). The columns contain models obtained from independent dynamic experiments under culture conditions
(figure 5). Each entry shows the log-likelihood of the model in the column applied to the data in the row. The highest likelihood for each dataset, the
maximum in each row (highlighted in bold), should be achieved by a model trained on separate data under the same condition.

LIF 1 BMP4 PD03 Chiron 2i

LIF þ BMP4 230 655 239 091 231 680 245 5367

PD03 259 980 243 988 262 506 2111 399

Chiron 232 127 248 926 227 572 235 164

2i 230 494 253 451 224 947 217 012
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potential landscape with valleys and hills representing local

minima (steady states, attractor states) and local maxima

(energy barriers, as in figure 2) that change with time [31].

However, with rare exceptions in which paths of differen-

tiation have been experimentally inferred [5,32], the use of

this concept is largely metaphorical. Our modelling approach

enables the inference of the shape of the potential function

directly from data as well as the noise level without the

need to know the exact kinetic relationships of the compo-

nents of the underlying system. We applied this approach

to measurements of the expression of a GFP reporter for

Nanog, a key regulator of pluripotency (figure 6).

The shape of the derived potential suggests that an ES cell

population can be described by a mixture of three different

subpopulations of a stochastic dynamical system that rep-

resent three attractor steady states, each defined by specific

levels of Nanog. The choice of Gaussian distributions is for
simplicity and convenience as well as to capture the idea of

subpopulations in the stationary distribution. Note that a

mixture component does not necessarily correspond to a

local minimum in the potential function. Alternative choices

to Gaussians for mixture components are possible. For

example, components that try to model local maxima in the

stationary distribution as distinct components might be able

to capture distinct attractor steady states in the potential

more accurately. However, we feel justified in talking about

a distinct attractor steady state for MN because the PD03 con-

dition clearly shows a steady state in the potential at MN

(figure 6). An earlier model had considered only two attrac-

tors [10]; however, model comparisons with different

numbers of components suggest that the introduction of an

MN population is a better fit to the data. This MN population

can be observed experimentally, shown to have the properties

of an attractor, albeit a weak one, and can be shown to play
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a crucial role as an intermediate state in the transition

between HN and LN in our model.

The analysis provides some insight into the effect of sig-

nalling on the dynamics of the population. It has been

shown that simultaneous inhibition of GSK3 and MEK (2i

conditions) results in a very homogeneous population with

a high degree of pluripotency [20] associated with a dramatic

reduction of the LN population, an elimination of the MN

and an accumulation of cells at HN [23]. The potential func-

tion under this condition reveals that 2i promotes an increase

in the depth of the HN valley, which would make it more dif-

ficult for the cells to leave this state. Surprisingly, each of the

components of 2i exert an opposite effect on the landscape

and the noise.

The potential function for Chiron is very similar to that

for LIF and BMP4 with slightly reduced noise and increased

occupancy of HN. On the other hand, ERK inhibition by

PD03 leads to a very flat landscape owing to high noise

(the B value of 0.86 for PD03 is significantly higher than

that of 0.23 for LIFþ BMP4; table 4). Under the PD03 con-

dition, there is comparatively rapid stochastic exchange of

cells between all three steady states. The characteristics of

the system in 2i suggest that Chiron exerts the dominant

effect in the combination. Furthermore, as the effects of

these signalling pathways are thought to reflect the activity

of the cells under normal conditions [20,22], the lack of

additivity of the effects that we have described indicates

that there may be cross-regulatory interactions between

ERK and GSK3 that are involved in the maintenance

of self-renewal. It will of interest to pursue this at the

molecular level.
Chiron works through inhibiting GSK3 and, in the context

of ES cells, the major target of this inhibition is the activity of

b-catenin [22]. Interestingly, it has been suggested that Wnt/

b-catenin signalling plays an important role in the regulation

of heterogeneities and noise during cell-fate transitions [1].

One of the major effects of Chiron is to keep cells in the

HN state with a very low degree of heterogeneity as reflected

in the high occupancy aHN and low noise B provid-

ing some support for the notion of Wnt/b-catenin

signalling as a controller of noise.

In summary, we propose a new modelling approach to

stochastic dynamical systems that relies on as few modelling

assumptions as possible while still enabling inference of

interesting properties of the system. We only assume the

existence of noise and a potential function of an arbitrary

shape. Applying this approach to time-series data of

Nanog-GFP expression under various conditions showed

that most likely there exist three steady states that stay the

same under all conditions. What changes is the proportion

of cells around each of these states and the noise level. We

were able to predict the stationary distributions from the

time-series data reasonably accurately. Predictions about

transition times of single cells from one steady state to the

next, which can also be inferred from our models, will be

tested in a future project.
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