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The increasing interest in the investigation of social behaviours of a group of

animals has heightened the need for developing tools that provide robust

quantitative data. Drosophila melanogaster has emerged as an attractive model

for behavioural analysis; however, there are still limited ways to monitor fly

behaviour in a quantitative manner. To study social behaviour of a group of

flies, acquiring the position of each individual over time is crucial. There are

several studies that have tried to solve this problem and make this data acqui-

sition automated. However, none of these studies has addressed the problem

of keeping track of flies for a long period of time in three-dimensional space.

Recently, we have developed an approach that enables us to detect and keep

track of multiple flies in a three-dimensional arena for a long period of time,

using multiple synchronized and calibrated cameras. After detecting flies in

each view, correspondence between views is established using a novel

approach we call the ‘sequential Hungarian algorithm’. Subsequently, the

three-dimensional positions of flies in space are reconstructed. We use the

Hungarian algorithm and Kalman filter together for data association and

tracking. We evaluated rigorously the system’s performance for tracking and

behaviour detection in multiple experiments, using from one to seven flies.

Overall, this system presents a powerful new method for studying complex

social interactions in a three-dimensional environment.
1. Introduction
There has been a growing interest in studying the social behaviours of a group of

animals. There are several systems that track and monitor behaviour of animals,

including fish [1–5], mice [6–8], starlings [9,10], bats [11–14] and insects such as

bees [15], ants [16,17] and fruit flies [18–25]. The fruit fly, Drosophila melanogaster,
has been extensively used as a model organism for studying the genetic basis of

behaviour, including social behaviours; however, a major limitation has been dif-

ficulty in acquiring three-dimensional spatial information of individuals. Having

three-dimensional trajectories enables us to identify and have quantitative

descriptions of complex behaviour patterns [26,27]. Fruit flies are fast-moving

animals, and their motion model is complex. Moreover, individuals are indistin-

guishable from each other. While several groups have tried to automate data

acquisition, the problem of keeping track of multiple flies for a long period of

time in three-dimensional space is still challenging [19,22,25,28].

We have developed an approach that enables us to detect and keep track of

multiple flies in a three-dimensional arena for a long period of time, using mul-

tiple synchronized and calibrated cameras. Our multi-resolution camera system

provides both high spatial and temporal resolution. To track fast-moving tar-

gets such as Drosophila, it is essential to have high temporal resolution, which

is obtained using four cameras working at 30 frames per second (fps). More-

over, visibility of details of the body and wings, which is important for

characterizing the different fly behaviours, is achieved by two extra cameras
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that work at a lower frame rate, but at a much higher resol-

ution. Flies are detected in each view using a background

subtraction technique. Once correspondence between views

is established, the positions of flies in three-dimensional

space are reconstructed and then tracked over time. We

show that measuring the trajectories of multiple individual

flies over time enables high-resolution measurements of loco-

motive activities, as well as complex behaviours and social

interactions, including courtship, aggression and mating.

In this paper, we describe our approach for acquiring and

tracking three-dimensional trajectories. We rigorously evaluate

our tracking efficiency by running multiple test experiments

and report our results with relevant metrics for tracking evalu-

ation. We show the results of three different sets of pilot

experiments to demonstrate the opportunities that our

system offers for generating and analysing high-throughput

behavioural data. We first demonstrate that we are able to

monitor locomotive behaviour and activity levels. The

second and third experiments involve automated behaviour

detection in which instances of behaviours that are more diffi-

cult to quantify, such as courtship, aggression and mating, are

computationally flagged. We use machine-learning techniques

and trajectory analysis for detecting such behaviours automati-

cally. We compared our result with annotations that an expert

has manually generated by looking at low and high-resolution

videos. The system presents a powerful method for tracking

complex social interactions in a three-dimensional environ-

ment, which better approximates a fly’s natural environment.
2. Related work
Automated multi-target tracking has been extensively studied

in the computer vision community. The purpose of these

studies is to detect targets and acquire their trajectories

within a sequence of images without mixing their identities.

This problem is notably demanding, especially when targets

are indistinguishable by appearance and have sophisticated

interactions. The first step for all tracking systems is target

detection (see §3.2). In detection-based tracking methods, in

addition to the positions of targets, appearance features of

the targets, such as their colour histogram or shape, are

extracted as well. These features are used to distinguish indi-

viduals and facilitate the data-association step and so

improve tracking [29,30]. Tracking systems generally fall into

two categories, two-dimensional and three-dimensional track-

ing. For two-dimensional tracking, a single view is usually

sufficient. In Khan et al. [16], a two-dimensional tracking

system has been reported for tracking ants. Similar systems

have been developed for walking flies [20,21] and bees [15].

For three-dimensional tracking, multiple views are

required because a single view provides no depth information.

By establishing correspondence between multiple camera

views of a three-dimensional scene, the location of the

animal in three-dimensional space can be reconstructed [31].

Once the three-dimensional position of an animal is estimated,

it can be tracked over time using a variety of filtering algor-

ithms. Tracking algorithms range from the simple Kalman

filter (KF) [8] to the extended Kalman filter (EKF) [19,22] and

the Markov Chain Monte Carlo-based particle filter [16].

There are different approaches for reconstructing three-

dimensional trajectories using a multi-camera system. In

some studies, targets are first tracked in two-dimensional,
and then three-dimensional trajectories are reconstructed by

matching two-dimensional fragments temporally. Thus, the

correspondence problem in this case is matching tracked

two-dimensional trajectories over some time length. In Wu

et al. [23], a solution has been proposed to acquire three-

dimensional trajectories of hundreds of indistinguishable

fruit flies, using two cameras. They formulated the matching

of two-dimensional tracks of targets as a linear assignment

problem and found three-dimensional trajectories with aver-

age length of 109 frames in 1 s of a 200 fps video. A similar

problem has been addressed in Wu et al. [32], where three cam-

eras are used to track a large group of bats. They used an

iterative search procedure to find the correspondence between

views that has the minimum cost. For tracking, they ran a KF

for each view and handled ambiguities and error in tracking

by keeping a consistency table for two-dimensional tracks

and final three-dimensional reconstructed points.

There are other studies that try to solve stereo matching

and temporal tracking simultaneously. For example, in Zou

et al. [33], a solution has been proposed to acquire three-

dimensional trajectories for a large number of fruit flies,

using two views. To disambiguate view correspondence

and tracking at the same time, a cost function is defined

that integrates epipolar constraints, kinetic coherency and

configuration–observation match. By using Gibbs sampling,

the cost function is minimized. They have reported tracking

of hundreds of fruit flies with an average length of 67.7

frames in 1 s of a 200 fps video.

Another widely used approach is to correspond measure-

ments across multiple views to reconstruct three-dimensional

measurements for targets, and then use it for temporal track-

ing [19,22,34]. The efficiency of this method depends

significantly on the accuracy of the correspondence method,

because inaccuracies can lead to the wrong three-dimensional

reconstruction of targets and can possibly misguide the

tracker. In Zou et al. [35], a camera system has been reported

that records movement and behaviour of flies housed indivi-

dually in a nine-cage tray. They have used their system for

behavioural monitoring of individuals for 60 s in a set of

5 fps videos. The tracking system reported in Grover et al.
[19] uses multiple camera images (silhouettes) to construct

polygonal models of the three-dimensional shape of the fly,

also known as the visual hull, and tracks multiple visual

hulls using an EKF at real-time speed.

A three-dimensional tracking system for fruit flies and

hummingbirds has been reported in Straw et al. [22] that

allows tracking in large areas of space. This system estimates

three-dimensional points from multiple two-dimensional

views as the intersection of lines emanating from the different

camera views. A nearest-neighbour algorithm groups points

in three-dimensional space that are close to each other to rep-

resent the animal. This information is sent to the EKF for

tracking. They were capable of tracking three flies using

11 cameras in 60 fps videos.

In another recent study, a three-dimensional tracking

system using one camera and two mirrors is presented [25].

They used two mirrors to obtain two extra views to be able

to reconstruct the three-dimensional position of flies. After

generating a virtual representation of chamber, camera and

mirrors, they do an exhaustive search to find a combination

of three rays that leads to minimum reconstruction error

based on geometrical constraints, and so reconstruct the pos-

ition of flies. They have not reported their accuracy in
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Figure 1. Overview of the tracking system. (Online version in colour.)
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tracking individuals, but they used their system to measure

aggregated activity level of 10 flies housed in a confined

space (a vial with radius of 1 cm and height of 10 cm) in a

set of 30 fps videos of length of 90 s.

In summary, a multitude of strategies have been devel-

oped for three-dimensional tracking of small targets.

Despite this recent progress, there are some drawbacks in

existing fly tracking systems, including an inability to track

in three-dimensional for long periods of time, lack of port-

ability, relatively high cost and poor evaluation of tracking

accuracy and efficiency.
3. Proposed approach
Our system consists of four main building blocks: input, two-

dimensional measurement, three-dimensional measurement

and tracking. Figure 1 shows an overview of our tracking

system. In this section, we describe each building block and

its sub-blocks in detail.

3.1. Data acquisition
The first step in all surveillance systems is to obtain input

videos. For this purpose, we calibrate a fixed number of cam-

eras and then synchronously grab still frames, usually at a

rate of 30 fps, of the desired arena housing the flies (see §4).

Synchronization of all cameras is an important aspect in

data acquisition for our system. For this purpose, we acquire

a single frame of a particular time instant from all cameras in

multiple threads, and then assemble them as input for that

instant. All other cameras wait for the slowest camera to

acquire the frame before another frame is acquired by all of

them in parallel again. This approach is suitable when

videos are recorded using a single computer (our case), and

by design of the method, the maximum possible lag between

any single frame captured from different cameras can be

1/fps seconds. At a rate of 30 fps, this is approximately

33 ms, which is acceptable for tracking flies.
3.2. Silhouette detection
The next step after acquiring input video sequence is target

detection. In our case, we need to detect the silhouette of

each fly and calculate its centroid as our two-dimensional

measurement for each view. Background subtraction is one

of the preferred and commonly used approaches to detect

moving objects from static camera views [36]. Many

approaches have been proposed over the years, ranging

from the straightforward running Gaussian average method

to state-of-the-art mean-shift vector techniques such as

sequential kernel density approximation and spatial co-

occurrence of image variations [36]. For tracking in real-

time, fast silhouette detection is needed; so we use a running

Gaussian average approach, which is fast and efficient. This

algorithm lets us model the background independently at

each pixel. This model fits a Gaussian distribution to the

intensity values of the pixel in the last n frames. Let mn be

the mean of a Gaussian model calculated after processing

n 2 1 frames. A pixel is categorized as foreground if jvn 2

mnj. T, where vn is the intensity value of the pixel and T is

a threshold value that can be determined empirically. Let B
be a binary value, which is 1 if the pixel is background and

0 otherwise. After classifying pixels in the current frame,

we calculate mnþ1 as follows:

mnþ1 ¼
mn; if B ¼ 0
avn þ ð1� aÞmn; if B ¼ 1;

�
ð3:1Þ

where a is the adaptation rate. As can be seen from

equation (3.1), by changing a from 0 to 1, we get a compro-

mise between stability and quick update. This approach is

known as selective background update, and was proposed

in Koller et al. [37]. Once a background model is obtained,

a binary change mask is calculated by subtracting back-

ground from the current frame and applying a threshold in

the obtained change mask. Finally, silhouettes of flies can

be found by detecting connected components in the binary

change mask. We calculate the centre of mass for each
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Figure 2. Two-dimensional measurements (a) before correction and (b) after correction.

Figure 3. Dome with diameter 10 cm containing two flies.
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component as the centroid of each fly, which is used as the

two-dimensional measurement for the current frame.

3.3. Two-dimensional measurement correction
In many practical situations in computer vision, one of the

most important reasons for missing measurements is occlu-

sion and merging of two or more targets. Most studies treat

the problem of merged targets as missing measurements

and use statistical approaches to solve the tracking pro-

blem [16,17,38]. However, there are always limitations for

these methods; for example, acquiring the motion model of

targets can be challenging. Here, we try to get more accurate

measurements to avoid missing measurements in the

detection step as much as possible.

In our setting, merging two targets happens quite often

owing to interactions between flies. For example, ‘follow-

ing’, ‘licking’ and ‘tapping’ and ‘attempted copulations’

happen as part of the courtship routine [39]. In these

cases, because flies are close to each other, a naive con-

nected component analysis would fail because it detects

two merged flies as one connected component, which

leads to just one measurement from two flies. However,

as is shown figure 2, in many cases, occlusion is partial

and measurements are still inferable. The challenge is to

decide whether the detected connected component is a

result of merged flies or of just one fly. We cannot use

the size of blobs as a criterion to distinguish between

these situations due to the fact that flies that are far from

the cameras look smaller while the ones that are close

look larger. Our approach for merge detection is by looking

at the history of the measurements. If in an area we have

two measurements at frame n þ 1 and one measurement

at frame n þ 2, as depicted in figure 2, a merging has hap-

pened. After detecting a merging, we run a k-means

clustering algorithm on connected component points with

k ¼ 2 to find the centres of each of the two merged blobs

(figure 2b). This simple yet effective approach saves our

system from frequent missing measurements and makes

the tracking more robust.

3.4. Correspondence across views and three-
dimensional reconstruction

For tracking in a larger space, one needs to place cameras

physically far from the targets in order to increase the field
of view. This leads to a smaller silhouette from each target

(see §3.2). Moreover, individuals in a fruit fly group have

very similar appearance. As a result, flies appear in each

camera view as small black blobs, devoid of any distinguish-

ing features (figure 3). We need to identify the two-

dimensional centroid in each view corresponding to the

same fly to be able to reconstruct the three-dimensional

position of that fly [31]. In this section, we address the gener-

alized problem of reconstructing three-dimensional positions

for featureless targets that have been identified in multiple

calibrated views.

Our goal is to minimize the total back projection error in a

three-dimensional reconstruction of a scene. Unfortunately,

for three or more views, the problem of correspondence is

equivalent to another known NP-hard problem called

‘multi-index assignment’ [40]. This fact motivated us to

look for novel heuristic algorithms that run fast enough and

do not compromise the solution quality too often. In an

unpublished work, we compared two novel algorithms,

sequential Hungarian (Seq-H) and Seq-SM, for establishing

the correspondence. We set our primary goal to be achieving

maximal solution quality while still being able to do the

processing in real time. Seq-H proved to be a better choice

for this purpose, as it boasts better solution quality than

Seq-SM, although it was slower than Seq-SM in an asympto-

tic case. We were able to keep our system well within the

realm of real-time processing (see §4.5.1). Here, we present
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a formal description of the correspondence problem and

briefly describe the Seq-H algorithm we used.

3.4.1. Problem description
Notation:

— V ¼ fv1,v2, . . ., vKg: set of all views, and jV j ¼ K
— N: number of targets

— xi
j: jth measurement in ith view

— costðx j1
i1 ; x

j2
i2 Þ: back projection error, assuming x j1

i1 and

x j2
i2 correspond to the same target (i1 = i2)

— if M ¼ fx j1
i1 ; x

j2
i2 ; . . . ; x jr

ir g is such that ia ¼ ib , a ¼ b, we

call M an ‘r-matching’

— we extend the definition of cost to matchings as follows:

costðMÞ ¼ 1

2
�

X
fða;bÞ[M2ja=bg

costða; bÞ

Input:

— X ¼ fxj
ijði; jÞ [ f1; 2; . . . ;Kg � f1; 2; . . . ;Ngg, i.e. two-

dimensional measurements of all targets in all views.

— projection matrix for all views (see §4.3).

Output:

— set C containing exactly N K-matchings; C ¼ fM1,M2, . . .,

MNg such that all pairs (Mi,Mj) are mutually disjoint

(1 � i = j � N), and the returned set C has the minimum

cost ð¼
P

Mx[C costðMxÞÞ among all possible candidates.

3.4.2. Sequential Hungarian algorithm
The Seq-H algorithm is presented in algorithm 1. Note that

the final output C of Seq-H depends on choice of initial per-

mutation P. Because the number of views (K ) is fixed in an

experiment, we can run the Seq-H algorithm for all possible

permutations P and chose the minimum C returned. K is

usually small; so this results in the same asymptotic complex-

ity, and in particular a constant K! factor increase in run time.

This heuristic allows us to overcome the ‘bias’ created by

choice of the two initial views in permutation P.

Algorithm 1. Seq-H algorithm.

1: Let P be an arbitrary permutation of the set f1,2, . . ., Kg, and

let P[i] denote the ith element in the permutation. Define

C ¼ fC1,C2, . . ., CNg, with Cj ¼ fxj
P½1�g.

2: for l ¼ 2,3, . . ., K do

3: Construct an N � N error matrix E, where element E(i, j ) is the

total back projection error assuming all centroids in Ci correspond to

jth centroid in view vP[l ]; Eði; jÞ ¼ costðCi; xj
P½l�Þ; where

costðff1; f2; . . . ; fmg; gÞ ¼
Pm

i¼1 costð fi; gÞ
4: Calculate a matching (more precisely, an l-matching) between

centroids in view vP[l ] and elements of C using the Hungarian

algorithm.

5: Update step: if Ci is matched to xri
P½l� in step 4, then

Ci ¼ Ci < xri
P½l� for i ¼ f1,2, . . ., Ng

6: end for

7: Return C.
Once we have run the Seq-H algorithm with the heuristic pre-

sented above, a minimal-weight set C of N K-matchings is

returned. Each of the K-matchings contains exactly one

two-dimensional centroid from each view, such that all

two-dimensional centroids present in a K-matching are the

back-projection of a single target. Thus, each of N K-match-

ings yields, on triangulation, exactly one three-dimensional

point. Therefore, we are able to reconstruct the actual

three-dimensional position of all N targets.

The Seq-H algorithm proposed above works when at least

two views have N two-dimensional measurements. But it can

be the case that Mi , N objects are detected in the ith view.

We can easily extend the algorithm by adding N 2 Mi

‘dummy’ two-dimensional points to the ith view (with

cost¼ þ1 with ‘real points’ in other views, and cost¼2 1

with other dummy points). With this approach, the dummy

points are associated only with other dummy points in other

views if available and we are still able to obtain Mi valid

three-dimensional measurements. After establishing correspon-

dence between views and reconstruction, three-dimensional

measurements are obtained and fed to the tracker.

3.5. Tracking
Once the three-dimensional reconstruction step is performed,

we are provided with a vector of three-dimensional measure-

ments emanating from the targets. In multi-target tracking,

two steps of data-association and state estimation for each

target should be done. The data-association step assigns

each measurement to a target and determines which

measurement belongs to which target. The next step is to esti-

mate the state of each target from consecutive measurements

over time. These two steps are not independent and we use

the second step, i.e. state estimation of each target, to do

the first step more efficiently. To elaborate our approach,

assume the first step has been done and we want to estimate

the state of each target based on the assigned measurement.

The general form of the equations that govern the

dynamics of a single target is as follows:

St ¼ FtðSt�1Þ þWt

and Zt ¼ HtðStÞ þ Vt;

)
ð3:2Þ

where St is the state vector of the target at time t and Wt and Vt

are process and observation noise, respectively, which are both

usually assumed to be multivariate Gaussian processes. The

measurement that is emitted from the target at time t is denoted

by Zt, and Ft and Ht are process and observation, respectively.

Here, we use linear process and measurement models.

Moreover, we assume that the velocity between successive

frames is constant. The frame rate of our cameras (30 fps) is

sufficiently high to warrant this assumption. We define the

state vector of each target based on its position and speed.

More precisely, St ¼ ðx1t; x2t; x3t; v1t; v2t; v3tÞ where xit and vit

are position and velocity in each dimension. On the basis of

these assumptions, Ft and Ht are as follows:

Ft ¼

1 0 0 Dt 0 0
0 1 0 0 Dt 0
0 0 1 0 0 Dt
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

2
6666664

3
7777775
; Ht ¼

1 0 0
0 1 0
0 0 1

2
4

3
5 ð3:3Þ

where Dt is the time step-size. The KF, as other Bayesian fil-

ters, has two steps: prediction and update. In the prediction
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step, the current state is predicted using the previous state

and the process model. This estimated state is updated by

including information from the current observation. Let

Ŝmjn be the estimated state vector of the target at time m
after having observations up to and including time n. Then

Ŝtjt�1 ¼ Ft Ŝt�1jt�1 : ð3:4Þ

We need to know the correspondence between measure-

ments and targets to be able to perform the update step for

each target. We use the Hungarian algorithm to find an

optimized solution for this bipartite assignment problem.

We define at(i, j ) to be the cost of each assignment

between the predicted position of the ith target and the jth
measurement at time t. The Hungarian algorithm finds the

assignment with minimum At ¼
P

i;j atði; jÞ. After finding

assignments, states are updated and we get the state of the

current time, which we use for prediction at the next time

point, and so on. Figure 4 shows our approach for measure-

ment correspondence and tracking.
4. Implementation and evaluation
In this section, we describe the hardware and software

implementation of our approach.

4.1. Hardware
We constructed a tracking rig composed of four calibrated and

synchronized PointGrey Grasshopper digital cameras mounted

on the camera rig, each fitted with an Edmund optics 88 mm

megapixel fixed focal lens (figure 5). The cameras are con-

nected with FW800 PCI-E cards to a computer running two

Intel 64-bit Quad Core Xeon Processors (2.8 GHz per core)

with 8 GB of RAM. For some experiments, we added two

more cameras to obtain high-resolution images (see §5.2.1).

4.2. Software
All building blocks of our tracking system (figure 1), includ-

ing acquisition of images from cameras, silhouette detection

and extraction of two-dimensional measurements, three-

dimensional reconstruction and tracking algorithms, are

implemented in Microsoft Visual Cþþ 2005 using the Point

Grey SDK and OpenCV libraries. Trackfix (§4.6) is

implemented also in Cþþ and uses the QT library (http://
qt.nokia.com/) to provide an intuitive graphical user inter-

face (GUI) for the user. Our trajectory analysis and

automated behaviour recognition (§5) were implemented in

Matlab using Statistics Toolbox v. 7.5.

4.3. Camera calibration
To calibrate the cameras, we chose to use freely available soft-

ware called Camera Calibration Tool (http://www.cs.ucl.ac.

uk/staff/Dan.Stoyanov/calib/). This software implements

Zhang’s [41] method for camera calibration. To calibrate each

camera, we need to have images of a planar pattern (e.g. the

checkerboard) in at least two different orientations. We used

a 10� 10 checkerboard in which each block was 5 � 5 mm.

To have accurate calibration, we used five images of the check-

erboard with different orientations for each camera.

4.4. Three-dimensional reconstruction evaluation
To evaluate the performance of seq-H in terms of accuracy of

three-dimensional reconstructed points, we performed two

sets of experiments. First, we put one fly in the container

and recorded video with four calibrated cameras for 30 min.

A typical two-dimensional image of the fly is approximately

10� 20 pixels. We then used the proposed method to recon-

struct the three-dimensional positions of the fly over time.

Reconstructed three-dimensional points were projected back

into each two-dimensional view. The back-projection error is

defined as the Euclidean distance between the centroid of

the fly in the original two-dimensional image, and its back-

projection from the reconstructed position of the fly in three-

dimensional space. Figure 6 shows the histogram of the back

projection error in these views. The average back projection

error is 1.75 pixels with a standard deviation of 1.8 pixels.

http://qt.nokia.com/
http://qt.nokia.com/
http://qt.nokia.com/
http://www.cs.ucl.ac.uk/staff/Dan.Stoyanov/calib/
http://www.cs.ucl.ac.uk/staff/Dan.Stoyanov/calib/
http://www.cs.ucl.ac.uk/staff/Dan.Stoyanov/calib/
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Figure 7. (a – d) Trajectory fragmentation factor (TFF) explanation. (a,b) Ground truth trajectories; (c,d) computed trajectories. (Online version in colour.)

Table 1. Performance of the tracking system in terms of TFF and NBF and
average time for processing one frame.

no. of flies avg. TFF avg. NBF time (ms)

1 1.00 0 21.00

2 1.00 0 21.00

3 1.53 1.3 21.30

4 1.72 2.2 22.07

5 1.68 2.1 22.90

6 2.13 5.1 22.75

7 1.48 4.7 23.00
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To measure the efficiency of the Seq-H algorithm with differ-

ent numbers of flies, in the next experiment we used synthetic

data. Because there is no general consensus for a movement

model of flies, we generated our ground truth trajectories by

tracking a single real fly. We made a set-up with one fly inside

a hemispherical dome (as shown in figure 3) and reconstructed

the three-dimensional trajectory of a single fly inside the dome

for around 108 000 frames (1 h of video). This three-dimensional

trajectory was used to build a ground truth database. We ran-

domly chose fragments of 150 frames from ground truth

database and treated each of them as a ‘ground truth path’ for

a single fly. The starting position of each fly was chosen ran-

domly inside the dome and three-dimensional paths were

shifted accordingly. After generating three-dimensional trajec-

tories (150 frames each) for the desired number of flies, we

projected them on multiple two-dimensional views to obtain

two-dimensional measurements in camera views. To mimic the

real-world scenario, we added Gaussian noise with mean zero

and standard deviation of five pixels independently to both coor-

dinates of all targets in all views. We used these noisy

measurements as input to our algorithm.

We tested our algorithm by corresponding 10, 50 and 100

flies for 150 frames across multiple views. To measure the cor-

respondence efficiency of Seq-H, we defined an intuitive and

useful measure, the normalized reconstruction error (NRE).

For a single time frame, we computed the minimum cost

one-to-one matching between ground truth and reconstructed

three-dimensional points. NRE is defined as the average Eucli-

dean distance between matched ground truth and

reconstructed three-dimensional points. We then normalize

this parameter by dividing by the number of targets in each

view. In every trial, we corresponded flies for each of 150

frames and averaged NRE values for them. We repeated this

process and averaged the values obtained over five indepen-

dent trials, with randomly chosen fragments from ground

truth database. NRE values for 10, 50 and 100 targets were

0.06, 0.12 and 0.44 cm, respectively, which shows that the

three-dimensional reconstructed points are accurate.
4.5. Tracking evaluation
We used two parameters, trajectory fragmentation factor

(TFF) and number of bad frames (NBF), to evaluate the track-

ing accuracy. They are defined as follows:

TFF is a metric for measuring the accuracy of a tracker.

We adopted this metric from [42]. TFF measures the
number of acquired trajectories used to match one ground

truth trajectory in a video segment. The ideal score of TFF

is 1, which means the target has been perfectly tracked; the

worst score is the number of flies in the experiment, which

means the fly has been mixed up with all other flies during

a tracking period. Figure 7 describes the TFF parameter in

more detail. Figure 7a,b show the ground truth trajectories

for two flies. Assume a mixing happens between fly 1 and

fly 2. As shown in figure 7, to generate the ground truth

trajectory (a) we need to use both the computed trajectories

(c) and (d ). In this case, the TFF is equal to 2.

NBF is the number of problematic frames in a video seg-

ment where any switching between identity of flies happens.

In general, both TFF and NBF values are dependent on

the length of the video. Here, we chose the length of each

video segment to be 1000 frames. To evaluate the tracking

performance, we performed experiments with different num-

bers of flies, from one to seven, housed in a dome-shaped

container with a radius of 50 mm (figure 3). For each trial,

we recorded videos of 30 min duration at a resolution of

640 � 480 and a frame rate of 30 fps. We used four cameras

and applied our software to process the videos and extract

trajectories. We randomly chose 10 segments of video for

each trial and manually checked them. Specifically, we

counted all frames where there was a switching between

flies (NBF). Moreover, we kept a record of the identity of

flies that were mixing with each other and calculated TFF,

based on these records. The reported results are the average

of 10 segments for each trial.

As is shown in table 1, the average number of bad

frames is low. For one and two flies, we do not have any



Table 2. Flagging performance: true positive (TP), true negative (TN), false positive (FP), false negative (FN), sensitivity and specificity. Asterisk stands for
undefinable.

no. of flies TP TN FP FN specificity (%) sensitivity (%)

2 0 994.7 1.3 0 100 *

3 1 893.2 26.9 0.3 96 87

4 2.2 816.9 35.0 0 95 100

5 1.8 883.6 24.4 0.3 97 83

6 4.7 822.9 42.0 0.2 95 95

7 4.7 669.5 31.9 0 95 100
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bad frames and in the worst case, the average number of bad

frames is 5.1 in 1000. Moreover, we can see from table 1 that

as the number of flies increases, we have a higher TFF; this is

expected because there is more chance of switching between

flies in a larger group.

4.5.1. Processing time analysis
We measured the running time of our approach by averaging

the time taken for each step of processing over 15 000 frames

(table 1). The most time-consuming step in our system is

video acquisition and silhouette detection, which take up

almost 95 per cent of the processing time for the single fly

case (about 20 ms per frame). The video acquisition and sil-

houette detection are in practice independent of the number

of flies. Silhouette detection is completely parallelized for

each camera and the pixels in each frame. Despite the fact

that our set-up consists of a single computer, the running

time of our approach is comparable to Straw et al. [22].

As shown in table 1, we can process half an hour of seven-

fly video recorded at 30 fps in about 21 min. This shows

that the proposed approach could be used in real time.

4.6. Flagging and TrackFix
As discussed in §4.5, if we can fix bad frames, we obtain the

three-dimensional trajectory of each individual fly without

confusion with other flies. To find those frames in an auto-

mated fashion, we propose a flagging scheme that marks

‘risky’ frames while we are processing videos. An ideal flag-

ging system marks all problematic frames while avoiding

false positives. After some visual inspection, we have found

the most important indicators to decide whether a frame is

risky or not: losing measurements in more than two views,

having no measurement for more than a few frames and

wrong correspondence. Frames in which more than two

flies are merged or are too close to each other are often

those from which we do not get measurements from some

flies. In these frames, there is a high probability of mixing

between flies. On the basis of these observations, we flag

frames that do not have enough measurements and/or the

correspondence error (see §3.4) is large.

We used our flagging method in the experiments men-

tioned in §4.5. Accumulated results for all fragments for

each experiment are reported in table 2. As can be seen

from the table, our flagging method is quite efficient. The

average number of FN is small, which shows that we rarely

miss a risky frame. By adjusting the threshold for correspon-

dence error and number of missing measurements, one can
change specificity and sensitivity. In our experiments,

around 10 per cent of frames were flagged. Once problematic

frames are flagged, we fix them using a utility, called Track-

Fix, that we have developed for this purpose.

TrackFix provides an intuitive GUI for someone to per-

form this task efficiently. Once a user starts watching

flagged frames, if they see any switching between flies, they

can select the ‘fix this frame’ option and correct the frame.

All frames that occur after the corrected frame are automati-

cally corrected based upon the mix-up in the previous frame,

and hence consistency of trajectories is maintained in all oper-

ations of TrackFix. Another useful feature in TrackFix is the

possibility of correcting two-dimensional measurements,

which allows one to correct errors in silhouette detection

(§3.2). This, in turn, leads to a low number of flags after

reprocessing the video.

4.6.1. Merging and splitting
In experiments, there are some situations in which two indi-

viduals move or stay very close to each other for a

considerable amount of time, for example when mating hap-

pens. In these cases, trajectories of flies are merged and they

are not distinguishable from each other. Our approach is to

track both individuals as one until they split. Merging and

splitting frames are automatically recognizable from

two-dimensional measurements and reconstructed three-

dimensional trajectories. Thus, on top of our flagging scheme

described in previous section, we make sure that splitting

frames are also flagged so that a user can check those frames

and fix the tracks if there is any mixing between identities.
5. Experimental applications
In this section, we present some experimental possibilities

that our system provides for different types of experiments.

Our first pilot experiment is activity level and movement

analysis of two flies. We present two further experiments to

demonstrate the capability of our approach for automating

behaviour detection.

5.1. Activity level and movement analysis
We present a simple pilot experiment and preliminary analy-

sis of trajectories to illustrate the usage of our approach. We

put two flies in a Petri dish with a radius of 90 mm and

height of 9 mm and recorded synchronized 30 fps videos,

using four calibrated cameras, for 15 min (figure 8a). After

running the tracking software, there was only one frame of
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27 000 that needed to be fixed. We fixed this frame and

acquired true three-dimensional trajectories of the two flies.

Figure 8c– f shows the two-dimensional trajectories of these

flies and the histogram of two-dimensional positions of the

flies, respectively. As can be seen, fly 1 spends most of the

time on the edge, while fly 2 stays more or less in the

middle of the container. By calculating the speed of flies

over the time, a measure of activity level is obtained.

Figure 8b shows the activity level of flies over time. As can

be seen, fly number 1 was active for the first 4 min, when fly

2 started to be active as well. After 10 min, the activity level

of fly 2 decreased again. Figure 8g,h shows three-dimensional

trajectories of the flies, colour coded by their speed. By looking
at this figure and figure 8d,e we can infer that although fly 2

made some fast movements, he was mostly stationary at

some location close to the middle of the container.
5.2. Automated behaviour analysis
We provide a framework based on machine-learning for auto-

mating annotation of different behaviours such as chasing,

mating and aggression. This will save researchers from the

laborious task of manually annotating videos and provides

high-throughput data of individual and social behaviour

of Drosophila.
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We trained a support vector machine (SVM) with linear

kernel function for behaviour classification. We used sequen-

tial minimal optimization for training [43]. The input features

for the SVM are the distance between two flies, the speed of

each fly and the angle between their trajectories. We created a

training and a testing set for each experiment. The results

reported in this section are based on our performance on

test sets. Details of training and test sets are provided for

each experiment.

5.2.1. Courtship experiments
Courtship is a complicated behaviour in Drosophila. One of

the most common approaches for studying courtship is to

put flies in small containers and record short videos (e.g.

on the order of 10 min) and annotate videos manually. We

show here that this task is highly automatable. To evaluate

our approach, we ran 10 experiments pairing a single male

and female and recording their interaction for 1 h. Flies

were from a wild-type isofemale line from Montgomery,

Alabama. Our recording settings and container were the

same as §4.5. Videos were manually annotated for courtship

events by an expert. More specifically, for each second in the

video, the expert determined whether courtship had hap-

pened or not. We used the first experiment as the training

set. The training sample size was 3600 (one sample per

second). We trained the SVM for annotating the other nine
experiments automatically. We compared the automated

annotations with manual annotation given by the expert.

As shown in table 3, we have high specificity and sensitivity

for test experiments. We have a very small number of FNs; on

average, we miss 27 s in a 1 h video. In table 3, copulation

time is included in the accuracy assessment. If copulation

time is excluded, there is a slight improvement in specificity

(from 95.7% to 97.1%) and a small decrease in sensitivity

(from 95.9% to 91.5%); detailed data are not shown.

Figure 9 shows a graphical comparison between manual

and automated annotation for trial 5. This demonstrates

that our system is capable of finding courtship instances,

and provides the opportunity to do experiments in a dome

with diameter 10 cm instead of a small courtship chamber

in which flies do not have much freedom to move.

5.2.2. Social behaviour analysis
Courtship experiments are usually carried out with one male

and one female. However, courtship as well as some other

social interactions are important to study when individuals

are in a larger group. We performed a pilot experiment to

show how our system can be used for analysing interaction

between two individuals in a group. We evaluated our per-

formance for detecting aggression (i.e. lunging, tussling and

boxing) [44], chasing and mating in a group of three flies,

two males (M1 and M2) and one female (F).



Table 3. Courtship detection performance: true positive (TP), true negative (TN), false positive (FP), false negative (FN), sensitivity and specificity.

trial no. TP TN FP FN specificity (%) sensitivity (%)

1 536 2877 18 168 76.1 99.4

2 1486 2061 23 29 98.1 98.9

3 2106 1352 120 21 99.0 91.8

4 1280 1998 312 9 99.3 86.5

5 2208 1354 4 33 98.5 99.7

6 1831 1587 130 51 97.3 92.4

7 1962 1575 25 37 98.1 98.4

8 2192 1331 34 42 98.1 97.5

9 1477 2030 67 25 98.3 96.8

average 1675.3 1796.1 81.4 46.1 95.9 95.7

(a)

0 200 400 600 800 1000 1200 1400 1600

time (s)

1800 2000 2200 2400 2600 2800 3000 3200 3400 3599

(b)

Figure 9. Comparison between (b) manual and (a) automated annotation for trial 5. (Online version in colour.)
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First, we put the two males in the container (figure 3), and

after 1 h we introduced a female to the group. Flies were

wild-type inbred lines from Raleigh, NC. The settings for

recording videos were similar to the previous experiment,

but we added two more cameras to record high-resolution

images (1024 � 768) with lower frame rate (15 fps) synchro-

nized with the other four cameras. These high-resolution

images provided more details for the expert annotating the

videos. Similar to the previous experiment, video was anno-

tated by an expert and all of the two-way interactions

between individuals (M1–M2, M1–F, M2–F) were indicated.

We extracted three-dimensional trajectories in 1 h of video

and fixed the flagged frames to avoid any error in trajectories.

As training set, we randomly chose 65 per cent of the frames

and used the rest of the frames as a test set to measure our

performance. We kept the input features and the training

method for the SVM the same as in the courtship exper-

iments. We repeated the whole process of making training

and test sets 10 times to mitigate the effects of bias. The

results in table 4 give the average of these replicates.

As is shown in table 4, sensitivity and specificity are high

for all behaviours. Entities in the table for which there were

no frames with that specific behaviour are marked with an

asterisk. For example, there was no mating between M1 and
F and no aggression between F and M2. Sensitivity and speci-

ficity for chasing and mating is high. However, there is still

some room for improvement for detecting aggression. Training

an SVM with more samples should improve the performance.
6. Conclusion
We have developed a tool that enables us to detect and keep

track of multiple flies in a three-dimensional arena for a long

period of time. Our system opens the door to many animal

behaviour studies that were not previously feasible. There

are several features that make this system unique. First, mul-

tiple individuals can interact in a three-dimensional space

that has ethologically relevant features (such as food) and

we can keep track of each individual’s position, as well as

their interactions, for a long period of time. Most of the

current systems, such as [23,25], track individuals for short

periods (on the order of seconds), while we use our system

to track multiple flies for hours. This gives us the opportunity

to investigate behaviours that need more time to occur. More-

over, it enables us to study changes in behaviour over time.

While in one study [35], movement analysis of one fly is

reported, their approach is unable to measure activity of



Table 4. Performance on social behaviours (asterisks stand for undefinable).

individuals chasing mating aggression

sensitivity (%) F and M1 99.05 * *

M1 and M2 81.85 * 94.42

F and M2 81.37 92.38 *

specificity (%) F and M1 88.00 * *

M1 and M2 91.30 * 78.56

F and M2 80.60 84.33 *
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individuals in a group. There are other studies that have

reported aggregated activity analysis for a group of

flies [24,25]. However, the problem with this approach is

that the difference between individuals is ignored. As we

showed in §5.1, the activity levels of two individuals were

quite different at different times. The simple approach of

aggregating activity level disregards the differences between

individuals and can lead to erroneous conclusions. Because

we are able to provide three-dimensional trajectories of

each individual precisely, we can provide accurate analysis

of movement and activity level for each fly.

There are a few behavioural analysis assays, such

as [20,21], which try to automate quantification of behaviour-

al traits. However, the main disadvantage of their system is

that it is in two-dimensional. Our system is the first of its

kind that can provide high-throughput data for behavioural

studies in a three-dimensional environment. In this paper,

we presented results for interactions such as chasing, aggres-

sion and mating. Because we are using a machine-learning

approach, instead of hard cut-offs or manual thresholds,
our system is highly adaptable for different types of be-

haviour. Once the user provides training samples with

manually annotated frames, an SVM can be trained for that

specific behaviour and all other sample videos can be

annotated automatically for that behaviour.

Our system is highly portable and can be easily reproduced.

The physical set-up can fit in a 70� 70� 70 cm3 space and we

use a low-end workstation for storing and analysing videos.

Our system offers a complete package for recording, tracking,

fixing tracks and behaviour analysis. Because it is readily adapt-

able for different types of experiments, we expect it to be used

in many different behavioural studies.
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represent the official views of the National Institutes of Health. We
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