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Low-amplitude electric field (EF) is an important component of wound-

healing response and can promote vascular tissue repair; however, the

mechanisms of action on endothelium remain unclear. We hypothesized

that physiological amplitude EF regulates angiogenic response of microvas-

cular endothelial cells via activation of the mitogen-activated protein

kinase/extracellular signal-regulated kinase (MAPK/ERK) pathway.

A custom set-up allowed non-thermal application of EF of high (7.5 GHz)

and low (60 Hz) frequency. Cell responses following up to 24 h of EF

exposure, including proliferation and apoptosis, capillary morphogenesis,

vascular endothelial growth factor (VEGF) expression and MAPK pathways

activation were quantified. A db/db mouse model of diabetic wound heal-

ing was used for in vivo validation. High-frequency EF enhanced capillary

morphogenesis, VEGF release, MEK-cRaf complex formation, MEK and

ERK phosphorylation, whereas no MAPK/JNK and MAPK/p38 pathways

activation was observed. The endothelial response to EF did not require

VEGF binding to VEGFR2 receptor. EF-induced MEK phosphorylation

was reversed in the presence of MEK and Ca2þ inhibitors, reduced by endo-

thelial nitric oxide synthase inhibition, and did not depend on PI3K pathway

activation. The results provide evidence for a novel intracellular mechanism

for EF regulation of endothelial angiogenic response via frequency-sensitive

MAPK/ERK pathway activation, with important implications for EF-based

therapies for vascular tissue regeneration.
1. Introduction
Endogenous physiological (40–250 mV mm21) electric field (EF) is an impor-

tant component of the body’s wound-healing response [1]. Different types of

low, physiological amplitude electromagnetic field have been shown to influ-

ence a wide variety of biological systems [2] and have been used as a

therapeutic tool for tissue repair, including bone healing, soft tissue repair

and the healing of chronic wounds [3–7]. However, the widespread acceptance

of EF therapies for wound healing has been prevented by the lack of standar-

dized protocols and associated variability in the healing outcomes [8]. This

variability often stems from the arbitrary choice of EF therapeutic parameters

[9], resulting from an incomplete understanding of the fundamental pathways

that are involved in EF interactions with specific tissues.

There has been emerging evidence that certain types of EFs can promote

blood vessel formation (angiogenesis) and tissue vascularization [10]. However,

research focused on the angiogenic effects of EF has been limited to a small

number of EF modalities [2], and no comprehensive relationship exists between

EF orientation, frequency, amplitude and endothelial cell angiogenic responses.

The process of angiogenesis includes endothelial cell activation by angiogenic
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factors or changes in the extracellular environment, followed by

cell migration, proliferation, formation of nascent capillaries,

vasculature remodelling and maturation [11]. Pulsed electric

and magnetic field stimulation have been shown to enhance in
vivo angiogenesis in both ischaemic and non-ischaemic rat

limbs [5,12,13] and in mouse wound healing [14]. Migration,

tubular formation, proliferation and vascular endothelial

growth factor (VEGF) expression in human umbilical cord endo-

thelial cells (HUVECs) were stimulated by direct current (DC) as

well as pulsed electromagnetic fields [10,15–17].

Importantly, the majority of previous studies have used in-

plane DC field configuration, where exposure to the DC EF

resulted in dramatic cell reorientation and directional migration

(electrotaxis) [10], as well as an altered pattern of integrin receptor

clustering and the associated actin reorganization in endothelial

cells and fibroblasts [2,18,19]. However, there is significant varia-

bility in EF-induced cell migration, not only between cells of

different types [2], but also between endothelial cells of different

origin. Thus, bovine aortic endothelial cells migrate towards

cathode [18], while HUVECs migrate towards anode [10]. Over-

all, experimental evidence suggests that the mechanisms

responsible for EF-mediated angiogenic endothelial cell acti-

vation may be different from those that govern electrotaxis.

Therefore, stimulation of electrotaxis alone may not necessarily

result in an overall enhanced angiogenic response and

improved wound healing. This is consistent with the results of

the clinical studies that suggest that a pulsed (not DC) EF may

be the most efficient modality in the treatment of chronic

wounds [7,8,20] and in alleviating the symptoms of multiple

sclerosis [9,21,22]. Importantly, mechanistic understanding of

EF effects on endothelial cells is essential for the informed

choice of the field parameters for wound-healing therapies.

Among the intracellular responses that may be mediated

by EF, mitogen-activated protein kinase (MAPK) signalling

cascade family [23] is the primary candidate. Of this family,

extracellular signal-regulated kinase (ERK), c-Jun NH2-

terminal kinase (JNK) and stress-activated protein kinase-2

(p38) pathways are known to be involved in angiogenic

as well as stress-activated signalling in the absence of EF

[24–30]. There is also evidence that these pathways can be

activated in response to EF. It has been reported that

900 MHz mobile phone radiation activated the heat shock

protein 27 (Hsp27)/p38MAPK stress response pathway in

human endothelial cells [31], while a 50 Hz sinusoidal mag-

netic field affected the cellular distribution of Hsp27 and

increased Hsp70, but not Hsp27 mRNA in aortic endothelial

cells [32]. Also, DC EF activated ERK, JNK and p38 in

embryonic stem cells and induced endothelial differentiation

[33]. Different types of electromagnetic fields have been

shown to affect the activation of ERK, JNK and p38 in several

non-endothelial cell types [34–36]. However, the role of

different EF modalities on MAPK activation in endothelial

cells is not understood.

Previous studies have shown that EF-induced intracellular

responses in non-endothelial cells may depend on the field fre-

quency [2,37]; however, the possible role of this parameter in

angiogenic responses of endothelial cells to EF is not known.

It has been suggested [38] that at frequencies below

100 MHz, the cell (including cytoplasm and nucleus) can be

considered as a conductive media surrounded by high capaci-

tance membrane, which results in excluding the field from the

cell cytoplasm. In contrast, at higher frequencies (gigahertz

range), the low membrane impedance allows the current to
flow through intracellular space (dielectric behaviour), which

results in the field penetration across the membrane. The

experimental evidence in this area remains limited.

The objective of this study was to elucidate the possible

intracellular mechanisms for EF-mediated angiogenic

responses in endothelial cells in a controlled setting in the

absence of electrotaxis, to allow direct mechanistic interpret-

ation of the data. We tested the hypothesis that EF with

amplitudes in the physiological range regulates endothelial

angiogenic response via activation of MAPK/ERK pathway.

Experiments were conducted by using a custom-engineered

multi-component system for microvascular endothelial cell

exposure to EF with spatially controlled field distribution,

combined with cell culture, microscopy and molecular biology

methods. Initial in vivo validation was performed using an

in vivo db/db mouse model of diabetic wound healing.
2. Material and methods
2.1. Microvascular endothelial cell isolation and culture
Murine microvascular endothelial cells were isolated from the

lungs of C57 mice (Jackson Laboratory, ME, USA), as described

previously [39]. Cells were doubly sorted using PECAM-1- and

ICAM-2-conjugated magnetic beads (Invitrogen Corporation,

CA, USA) and cultured in medium M199 (HyClone, UT, USA)

supplemented with 10 per cent foetal bovine serum (FBS; Atlanta

Biologicals, GA, USA), 1 per cent antibiotic/antimycotic (AB/AM;

Atlanta Biologicals), 1 per cent heparin (Sigma-Aldrich, MO, USA)

and 10 ng ml21 endothelial growth factor supplement (Sigma-

Aldrich). Cells from passages four to nine were used. All exper-

iments were conducted in the culture medium (medium M199,

10% FBS, 1% antibiotic/antimycotic and 1% heparin) without

additional growth factor supplementation.

2.2. In vitro electric field exposure set-up
A high-frequency and a low-frequency set-up were built to allow

cell exposure to EF with a well-characterized field distribution,

which was confirmed for each frequency by numerical simulations,

as described below.

2.2.1. High-frequency electric field set-up
A custom set-up was built that allowed EF exposure operating at

7.5 GHz frequency (figure 1a). This frequency represents the

regime where the membrane impedance becomes low (dielectric

behaviour), resulting in the field penetration across the mem-

brane [38]. The high-frequency EF set-up operated in transverse

magnetic mode (TM010), where the dominant EF was normal

to the plane of the cultured cells, and the magnetic field at the

location of the cells was approximately zero. The apparatus con-

sists of a cylindrical cavity resonator made from a copper

waveguide with length of 31.9 mm and diameter of 31.7 mm.

The cavity resonator was placed in a temperature-controlled

5 per cent CO2 cell culture incubator and connected to a semi-

rigid coax (Microcoax, PA, USA) transmission line supplying

7.5 GHz EF from a vector network analyser (Anritsu, CA, USA).

Cells were seeded in 12 mm diameter culture insert (Millipore,

MA, USA), which was placed in a small plastic dish filled with

the culture medium (20 mm in diameter) located inside the cavity

resonator. This dish was connected to a large reservoir outside

the resonator to ensure a constant medium level. Once coupled, a

frequency sweep of the reflected power showed a dip that occurred

when the frequency matched the resonant frequency of the cavity

(7.5 GHz). Under these critical coupling conditions, the reflected

signal on resonance dropped, and more than 90 per cent power
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Figure 1. Experimental set-up for microvascular endothelial cells exposure to EF. (a) High-frequency (7.5 GHz) EF set-up: an insert with endothelial cells was placed
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different between two configurations, EF distributions at the location of the cells were similar (c) and uniform in the central part of the insert (d ). (e) Temperature of
the sample medium remained constant at 378C during EF exposure.
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supplied by the coaxial was used to support the oscillating cavity

mode (TM010). The quality factor (Q) of the cavity was 170, and

the calculated field intensity for the set-up with the insert without

cells was 156 mV mm21, which is in physiological range [1].
2.2.2. Low-frequency electric field set-up
The custom-built set-up used for low-frequency (60 Hz) EF exposure

(figure 1b) consisted of a parallel-plate capacitor (135 � 128, 26 mm

apart) assembled in the same cell culture incubator. This frequency

is within the range where intracellular space is shielded by

the applied field [38], and where the angiogenic effects of EF have

been previously observed [5,12]. The plates of the capacitor were

connected to an Agilent 33250A function/arbitrary waveform gen-

erator (Agilent Technologies, Inc., CA, USA) and an oscilloscope

(Tektronix Inc., OR, USA). Endothelial cells were seeded in the
culture insert, which was placed in a small dish located between

the plates. The EF was normal to the cell plane, and the calculated

field intensity for the set-up with the insert without cells was

within physiological range (209 mV mm21).

2.2.3. Numerical calculation of the electric field

distribution
A detailed numeric calculation of the EF distribution in the high-

frequency resonator and the low-frequency capacitor was per-

formed using an accurate three-dimensional model of the

apparatus and the sample insert using the ANSYS HFSS package

(ANSYS, PA, USA). The simulation program calculated a sol-

ution of the Maxwell equations, using measured dimensions

of the dielectric insert and the media container and inputs

(microwave power and the capacitor excitation voltage).
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Independence of the software output of the grid density was

ensured by performing multiple calculations on grids of different

sizes and densities. Results demonstrated that the EF distri-

butions at the location of the cells were within the

physiological range and similar for both set-ups (figure 1c), as

well as uniform in the central part of the insert (figure 1d ). The

upper bound for the field power-specific absorption rate (SAR)

for the sample in the resonator was estimated for the assumption

that all of the field power fed to the resonator (50 mW in all exper-

iments reported here) is absorbed in the sample. Under these

‘worst case’ assumptions that significantly overestimate the

absorption rate, the SAR value is at most 0.1 W kg21, which is

considerably lower than the SAR human health safety limit [40].

2.2.4. Temperature measurements
For temperature measurements, EF exposure was briefly

stopped, and the recordings of the temperature in the culture

medium were made using an infrared thermometer (Braun,

OH, USA, 0.28C accuracy) without taking the samples out of

the exposure set-up. To confirm the accuracy of the temperature

measurements, the following controls were included. First, a con-

trol sample was placed inside the same incubator as the EF

exposure apparatus, but was not subjected to EF stimulation.

Second, the temperature of a large medium reservoir located in

the same incubator was measured. All measurements were per-

formed in duplicates and experiments were repeated three

times. The results show (figure 1e) that the average temperature

of all samples did not change during EF exposure and remained

within a 37 + 0.12 degree interval with 95% confidence.

2.3. In vitro electric field experiments
Capillary morphogenesis and MAPK pathways activation

were quantified following 12 h of EF exposure, and the analyses

of VEGF expression, cell proliferation and apoptosis were

conducted up to 24 h of EF exposure. The experimental

groups included endothelial cells exposed to high-frequency

EF, low-frequency EF and a group not exposed to EF.

2.4. In vitro capillary morphogenesis
Capillary morphogenesis was assessed using a nanofibre-based

angiogenesis assay previously developed in the laboratory

[41–43], in which endothelial cells seeded on RAD16-II peptide

nanofibre hydrogel (RARADADARARADADA; SynBioSci

Corporation, CA, USA) undergo spontaneous capillary morpho-

genesis with clearly identifiable lumens in the absence of external

angiogenic growth factors. Endothelial cells were seeded on the

surface of 1 per cent (w/v) hydrogel in cell culture inserts (Milli-

pore) at a seeding density of 105 cells cm22. Cells seeded on

5 per cent gelatin-coated inserts were used as a negative control.

Cells were labelled with CellTracker dye (Invitrogen) before seed-

ing or with Phalloidin-TRITC (Sigma-Aldrich). After EF exposure,

samples (at least n ¼ 10 separate EF exposure experiments

per group) were fixed with 2 per cent formaldehyde, and images

of the sample surface (n ¼ 5 per sample) were captured at

20�magnification using an inverted fluorescent microscope

(Olympus IX81; Olympus, PA, USA). The characteristic size of

capillary-like networks was determined using correlation analysis

and custom-written Matlab code (The Math Works, MA, USA) [43].

2.5. Cell proliferation and apoptosis
Cells were seeded (2 � 104 cells cm22) on 5 per cent gelatin-coated

culture inserts (Millipore). Some samples were incubated with

bromodeoxyuridine (BrdU; Invitrogen) for 8 h prior to exper-

iments. After 12 and 24 h of EF exposure, cells were immediately

fixed (2% formaldehyde) and stained with either anti-BrdU
antibody (Invitrogen) or with anti-active Caspase-3 antibody

(Promega, WI, USA) followed by goat anti-rabbit Alexa Fluor 594

and 40,6-diamidino-2-phenylindole nuclear staining (both from

Invitrogen) to identify proliferating and apoptotic cells, res-

pectively. Percentages of proliferating or apoptotic cells were

determined from five images at 20� magnification per sample.

For each assay, experiments were repeated four times.

2.6. Vascular endothelial growth factor and placenta
growth factor protein expression

VEGF and placenta growth factor (PlGF) are two major angiogenic

cytokines acting through VEGF receptors pathway. VEGF binds to

both VEGFR1 and VEGFR2 receptors, although it signals through

VEGFR2. By contrast, PlGF only binds to and signals through

VEGFR1 [44,45]. To determine the effect of EF on the VEGF and

PlGF protein release by endothelial cells, culture medium samples

(at least n ¼ 6 separate experiments) were used to measure VEGF

and PlGF protein levels using appropriate ELISA kits (R&D Sys-

tems, MN, USA).

2.7. ERK, JNK, p38 MAPK pathways activation
After EF exposure, cells were lysed using buffer containing

20 mM Tris–HCl, 150 mM NaCl, 1 mM Na2EDTA, 1 mM

EGTA, 1 per cent Triton, 2.5 mM sodium pyrophosphate, 1 mM

b-glycerophosphate, 1 mM Na3VO4, 1 mg ml21 leupeptin and

1 mM phenylmethylsulphonyl fluoride. The total protein concen-

tration in each sample lysate was determined using Coomassie

plus assay kit (Thermo Fisher Scientific, IL, USA). A 10 mg

bolus of total protein was used for all MAPK pathway

enzyme-linked immunosorbent assays (ELISAs). The total and

phosphorylated levels of ERK, MEK, p38 and JNK proteins

were quantified using appropriate sandwich ELISA kits (Cell

Signaling Technology, MA, USA). MEK-cRaf complex levels

and free (unbound) MEK levels were quantified according to pre-

viously described protocols with modifications (see the electronic

supplementary material, figure S1) [46–48]. The total MEK levels

are presented in optical densities and phosphorylated MEK,

MEK-cRaf and pMEK-cRaf levels are normalized to total MEK

levels. For negative control, b-actin (Invitrogen) was immunopre-

cipitated from the lysate and subjected to ELISAs. All ELISA

assays were performed in duplicates or triplicates, with all exper-

iments repeated at least six times.

2.8. Inhibitor studies
To determine the role of VEGF signalling in EF-mediated angio-

genic responses, experiments were repeated in the presence of

0.1 mg ml21 soluble anti-mouse VEGF blocking antibody (R&D

Systems), or 5 mM SU5416 (Sigma-Aldrich), a specific pharmaco-

logical VEGFR2 inhibitor [49–51], or in the presence of 10 mM

U0126 MEK inhibitor (Sigma-Aldrich). The efficiency of

SU5416 has been verified using a standard approach of inducing

MEK activation by 20 ng ml21 VEGF and then inhibiting the

response with SU5416 (see the electronic supplementary

material, figure S2). To examine the role of PI3K, Ca2þ and

endothelial nitric oxide synthase (eNOS) signalling in EF-

mediated MEK activation, cells were treated with 10 mM LY294002

(PI3K inhibitor) [52], 10 mM 1,2-bis(o-aminophenoxy)ethane-

N,N,N0,N0-tetraacetic acid (BAPTA) (Ca2þ chelator) [53] or

200 mM Nv-nitro-L-arginine methyl ester hydrochloride

(L-NAME, eNOS inhibitor) [54], respectively, and the total and

phosphorylated MEK levels were measured using ELISA. All

inhibitors were added to the culture supernatant and pre-incu-

bated for 1 h to equilibrate respective target blocking prior to

EF exposure. All analyses were done in duplicate/triplicate,

and all inhibitor experiments were repeated at least three times.
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2.9. In vivo diabetic wound-healing model and electric
field treatment

Eight to 10 week old female BKS.Cg - mþ/ þ Leprdb/J (db/db)

mice with serum glucose levels greater than 450 mg dl21 were

used. Previous studies have shown that this animal model is

characterized by a delayed wound healing, with reduced neovas-

cularization of the repair tissue [41,55]. Two full-thickness

excisional skin wounds (8 mm) were created on the back of the

mice, washed with 50 ml of sterile phosphate-buffered saline

and covered with sterile adhesive dressing (TegadermTM, 3 M,

MN, USA) [55]. EF treatment of the wounds was achieved

through a custom-built EF exposure set-up (see figure 8a),

which included two antennae connected to the EF source

(8350B Sweep Oscillator, Agilent Technologies) through a flexible

co-axial cable. Prior to exposure, the animals were anaesthetized,

and EF antennas were placed approximately 5 mm away from

the wounds. EF stimulation of 7.5 GHz and approximately

200 mV mm21 was applied for 1 h every day for 7 days. Control

group included animals that underwent the same wounding pro-

cedure, but were not exposed to EF (n ¼ 5 animals per group).

All animals were sacrificed and wounds were harvested at day 8.

2.10. Vascular endothelial growth factor expression
in the wounds

The harvested wounds were homogenized in 50 mM Tris–HCl

buffer containing 1 per cent NP40, aprotinin (3.3 mg ml21), leu-

peptin (10 mg ml21) and pepstatin (4 mg ml21). VEGF protein

expression in wound tissue homogenate was measured using

ELISA kit (R&D Systems).

2.11. Statistical analyses
The results are reported as average + s.d. Multi-factor ANOVA and

post hoc tests with Bonferroni corrections (SPSS, IL, USA) were used

to test for the effects of EF, field frequency and the inhibitors on the

capillary morphogenesis, VEGF expression and total as well as
phosphorylated levels of MAPK pathway proteins. Results were

considered statistically significant at p , 0.05.
3. Results
3.1. Electric field enhances angiogenic response

by microvascular endothelial cells
In the capillary morphogenesis assay used in this study,

endothelial cells undergo spontaneous formation of multi-

cellular capillary structures with clearly identifiable lumens

by 12 h of cell seeding on the nanofibre hydrogel [41,42].

High-frequency EF exposure resulted in significantly larger

structures, when compared with low-frequency and no-EF

groups ( p , 0.001, figure 2a,b), while no significant differ-

ences between low-frequency and no-EF groups were

observed. Similarly, VEGF expression was significantly

increased in cells exposed to high-frequency EF, when

compared with low-frequency or no-EF groups ( p , 0.001,

figure 2c), while there was no significant difference in

VEGF levels between low-frequency and no-EF groups. The

pro-angiogenic effects of EF were not associated with EF-

induced directional cell responses (electrotaxis), as demon-

strated by the absence of cell re-orientation when seeded on

the gelatin-coated inserts in this field configuration (see the

electronic supplementary material, figure S3). Interestingly,

the effects of EF on both capillary morphogenesis and

VEGF released by endothelial cells were retained in the pres-

ence of soluble anti-VEGF blocking antibody ( p , 0.05,

figure 3a), when compared with the no-EF group. An

addition of potent VEGFR2 receptor inhibitor SU5416 com-

pletely abolished capillary morphogenesis and significantly

reduced VEGF release in all experimental groups, including

no-EF controls (figure 3b). Next, we investigated the effects

of EF on the signalling downstream of VEGFR2 by
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quantifying the phosphorylation of MEK, which is upstream

of ERK. High-frequency EF resulted in increased MEK phos-

phorylation, where the magnitude of the effect did not

depend on the presence of SU5416 or exogenous VEGF and

remained at the 1.5-fold to twofold levels (figure 3c). This

effect was not present in the low-frequency group. These

results suggest that external VEGF binding to its receptor

may not be required for pro-angiogenic effects of EF in this

system, and that the EF stimulation is not strong enough to

reverse a complete inhibition of VEGFR2-mediated angiogen-

esis induced by SU5416. However, the EF-induced VEGFR2-

independent activation of the MEK/ERK pathway may be

responsible for the increased release of VEGF observed in

the high-frequency group (figure 2c) and potentially acti-

vation of the VEGF autocrine loop.

To further confirm the involvement of the MEK/

ERK pathway in EF-mediated angiogenic responses, capillary

morphogenesis and VEGF release by endothelial cells were

quantified in the presence of high-affinity MEK inhibitor

U0126. These responses were significantly reduced in all

experimental groups, when compared with no inhibitor con-

trols ( p , 0.05, figure 4a,b). Interestingly, treatment with

U0126 effectively reversed the effect of high-frequency EF
on capillary morphogenesis and VEGF release, where signifi-

cantly lower values for characteristic network size and VEGF

release were observed, when compared with those in low-

frequency EF and no-EF groups ( p , 0.001). There was no

significant difference in network size between low-frequency

EF and no-EF groups in the presence of U0126. There was no

effect of EF exposure on PlGF release by endothelial cells

when compared with the no-EF group (see the electronic

supplementary material, figure S3).

3.2. High-frequency electric field increases ERK, but not
JNK or p38 phosphorylation in endothelial cells

Both high-frequency and low-frequency EF did not affect the

total levels of ERK, JNK or p38 protein expression (figure 5a).

However, cell exposure to high-frequency EF resulted in sig-

nificantly increased levels of ERK phosphorylation, when

compared with the no-EF group ( p , 0.001, figure 5b),

while no significant effects of high-frequency EF on JNK

and p38 phosphorylation were observed. Also, endothelial

cells exposed to low-frequency EF had significantly lower

levels of ERK and p38 phosphorylation, when compared

with no-EF group, while no differences were detected in
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(n ¼ 6, p , 0.001).
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phosphorylated JNK levels between low-frequency EF and

no-EF groups ( p , 0.001, figure 4b).
3.3. High-frequency electric field enhances MEK
phosphorylation and MEK-cRaf complex formation
in endothelial cells

Cell exposure to high-frequency EF resulted in significantly

higher levels of phosphorylated MEK, while the total MEK

levels remained unchanged with EF exposure both in the

absence or the presence of MEK inhibitor U0126 (figure 6a). Pre-

vious studies have shown that the binding of upstream cRaf

with MEK at serine 218 and serine 222 motifs [56] is necessary

for MEK phosphorylation and downstream pathway activation.

Therefore, to determine the involvement of this MAPK/MEK-

ERK pathway in EF-induced angiogenic affects, the levels of

cRaf bound to MEK (MEK-cRaf complex), levels of MEK phos-

phorylation within the complex (pMEK-cRaf) and the free

MEK (unbound MEK) levels were quantified. Results showed

that cell exposure to high-frequency EF significantly increa-

sed protein levels and phosphorylation of the MEK–cRaf

complex, when compared with low-frequency or no-EF

groups (figure 6b, p , 0.001). This was consistent with low

levels of free (unbound) MEK in the high-frequency EF

group, when compared with those in low-frequency and no-

EF groups (figure 6b, p , 0.05). In the case of low-frequency

EF exposure, the free MEK levels were significantly higher
than high-frequency and no-EF groups ( p , 0.05, figure 6b).

In contrast to the EF effects observed in the absence of U0126

(figure 6b), cell exposure to high-frequency EF in the presence

of U0126 resulted in reduced protein levels and phos-

phorylation of the MEK–cRaf complex, as well as increased

free MEK levels (figure 6c, p , 0.05), when compared with

low-frequency or no-EF groups (n ¼ 7, p , 0.01).
3.4. Effects of PI3K, eNOS inhibition and Ca2þ chelation
on electric field-mediated MEK phosphorylation in
endothelial cells

PI3K is another upstream mediator of the MAPK/MEK path-

way, in addition to VEGFR2 [54,57]. In our experiments,

inhibition of PI3K resulted in a significant reduction in

MEK phosphorylation, as expected based on the previous

reports [49,58]. However, the stimulatory effect of high-

frequency EF on MEK phosphorylation was still retained

even in the presence of LY294002 (PI3K inhibitor), where

pMEK levels were significantly greater in EF groups, when

compared with no-EF controls ( p , 0.05, figure 7a).

Cell permeant Ca2þ-chelating agent BAPTA significantly

reduced MEK phosphorylation levels in high-frequency EF

and no-EF groups ( p , 0.05, figure 7b). Interestingly, the

phosphorylated MEK levels were lower in the high-frequency

EF group when compared with no-EF controls in the pres-

ence of BAPTA ( p , 0.05, figure 7b), which was similar to

the trends in cell responses observed in the presence of MEK

inhibitor U0126 (figures 4 and 6), indicating the possible
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involvement of Ca2þ signalling in regulation of MEK pathway

activation by high-frequency EF. These effects were not

observed in low-frequency EF groups.

Pre-treatment of endothelial cells with eNOS inhibitor

(L-NAME) did not affect the base pMEK levels in no-EF con-

trols (figure 7c). However, inhibition of eNOS by L-NAME

abolished the EF-induced increase in pMEK, suggesting that

eNOS signalling may play a partial role in EF-mediated

MAPK/ERK pathway activation.
3.5. Electric field exposure did not affect endothelial
cell apoptosis or proliferation

Caspase-3 staining showed no significant effect of EF

on endothelial cell apoptosis (see the electronic supplementary

material, figure S4a), with less than 5 per cent apoptotic cells

observed in all experimental groups at 12 h as well as 24 h of

EF exposure. At 12 h of EF exposure, BrdU staining of endo-

thelial cells indicated a trend of increased cell proliferation

with increased frequency, although it was not statistically
significant (see the electronic supplementary material,

figure S4b). Also there were no significant differences in the

number of proliferating cells after 24 h of EF exposure.
3.6. In vivo electric field exposure enhances
vascular endothelial growth factor expression
in diabetic wounds

For a preliminary in vivo validation of the in vitro results, a

mouse db/db model of diabetic wound healing was used

[55]. Wound treatment with high-frequency EF (figure 8a)

resulted in significantly increased VEGF protein levels in the

wound tissue when compared with no-EF-treated control

wounds (figure 8b). No detrimental effects of EF exposure on

wound healing were observed during EF treatment. Impor-

tantly, previous studies demonstrated that increased VEGF

expression results in improved healing in diabetic wounds

[59], suggesting that high-frequency low-amplitude EF

exposure has therapeutic potential. Ongoing studies are
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Figure 7. Effects of PI3K and eNOS inhibition and Ca2þ chelation on EF-
mediated MEK phosphorylation: (a) addition of PI3K inhibitor LY294002 did
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controls (n ¼ 4, p , 0.05), suggesting that this pathway may not be critical
for EF-mediated angiogenic cell responses. (b) Interestingly, addition of Ca2þ
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with no-EF controls, which was similar to the trends in cell responses
observed in the presence of MEK inhibitor ( figure 4). (c) eNOS inhibition
using L-NAME did not affect pMEK levels in low-frequency and no-EF groups,
and effectively abolished high-frequency EF-induced increase in MEK
phosphorylation (n ¼ 4, p , 0.05). These results indicate the involvement
of Ca2þ and eNOS pathways in EF-mediated MEK pathway activation.
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focusing on evaluating EF-mediated wound healing and

neovascularization in more detail.
4. Discussion
The results of this study demonstrate that physiological

(low-amplitude) EF can stimulate angiogenic responses in

microvascular endothelial cells via a frequency-sensitive

VEGFR2-independent activation of the MAPK/ERK path-

way. This activation then results in enhanced release of

VEGF and may synergistically promote angiogenesis along

with the EF stimulation. The in vitro effects are observed

in the regime where the EF component is normal to the cell

surface and no EF-induced directional cell migration (electro-

taxis) is present, suggesting that the pro-angiogenic effect of

EF is uncoupled from electrotaxis-related cytoskeletal

rearrangements reported in other systems [18].
Importantly, our results provide new information regard-

ing the major roles of both field orientation and frequency in

endothelial cell angiogenic responses, which may be critical

for choosing optimal field parameters for EF-based pro-

angiogenic therapies. In our configuration, high-frequency

EF enhanced capillary morphogenesis, MAPK/ERK pathway

activation and VEGF release. However, low-frequency

(60 Hz) EF did not affect cell responses, and has actually

resulted in decreased phosphorylation levels of ERK. These

results are in contrast to previous studies, where profound

effects of 50 Hz electromagnetic field on angiogenic processes

[60] and MAP kinase activation in HL-60 cells [34] were

observed, which may be due to the differences in field orien-

tation used in the present study (field normal to the cell

surface) and previous studies (field is parallel to the cell sur-

face), field component (electric in our study and magnetic in

Monache et al. [60]), or cell type. Previous studies also

reported that DC EF of physiological amplitude oriented par-

allel to the cell plane promoted cell responses such as

reorientation, migration, actin assembly and VEGF release

in human umbilical cord (HUVEC) and bovine aortic endo-

thelial cells [10,18]. A study by Monache et al. [60]

demonstrated that low-frequency (50 Hz) magnetic fields

normal to the cell plane enhanced HUVEC angiogenic

response in vitro through VEGF- (and ERK)-dependent

signal transduction pathways. Another low-frequency EF

modality with EF parallel to cell surface (asymmetric 4.5 ms

pulses repeated at 15 Hz) stimulated angiogenic response in

HUVECs via fibroblast growth factor-2 (FGF-2), but not

through the VEGF expression [16,17], and accelerated

wound healing under diabetic and normal conditions in
vivo by up-regulation of FGF-2-mediated angiogenesis [14].

Interestingly that in vivo, where direction of the field is diffi-

cult to control precisely, both 50 Hz electrical stimulation as

well as pulse EF (0.3 msec square-wave pulses) significantly

enhanced in vivo angiogenesis in both ischaemic and non-

ischaemic rat limbs, which was mediated through the

increased expression of VEGF [5,12]. These results are consist-

ent with the findings of this study, where high-frequency EF

stimulation resulted in increased VEGF expression both

in vitro and in the wound tissue in vivo. Overall, our results,

together with the previous studies by other groups, suggest

that endothelial cells may respond differently to field type

(magnetic and/or electric), frequency and orientation. More

studies are needed to dissect the mechanisms for such

selectivity, which are currently not understood.

In this study, we have focused on the effects of physio-

logical EF on MAPK signalling cascades (figure 9a). Of this

family, the ERK pathway is the major regulator of angio-

genic responses in endothelial cells [25,29,56], and is

activated in response to growth factors (e.g. VEGF),

and/or cytokines, radiation and oxidative stress [56,61].

This pathway can also cross-talk with Ca2þ and eNOS

[62–64] and PI3K pathways [65,66]. Two other members

of the MAPK family—JNK and p38 pathways—are involved

in both angiogenic and stress-activated apoptotic signalling,

and can also be activated by radiation and oxidative stress

[24,26–28,30]. Our results show that high-frequency EF

enhances capillary morphogenesis and VEGF release via

the mechanism that probably does not require VEGF bind-

ing to VEGFR2 receptor, but involves signalling via the

ERK pathway and, specifically, MEK protein. MEK is a cen-

tral regulatory component in the MAPK/ERK pathway [61]
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and shows high specificity towards upstream cRaf and

downstream ERK protein [67]. In the present study, EF

does not alter the total MEK levels, which is consistent

with previous reports of no effect of applied fields on

ERK expression [35]. However, high-frequency EF results
in increased MEK–cRaf complex formation, increased

MEK phosphorylation levels (overall and within this com-

plex), decreased levels of free MEK and enhanced ERK

phosphorylation in endothelial cells, while these responses

are not elicited by low-frequency EF.
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The difference in cell responses to high (7.5 GHz) and low

(60 Hz) frequencies observed in this study may also be related

to the different mechanisms of EF interactions with the cells. It

has been suggested that at low frequencies (below 100 MHz),

the cell (including cell membrane, cytoplasm and nucleus)

can be considered a conductive medium with high membrane

impedance, which results in shielding the inside of the cell

from the external field. On the other hand, at high frequencies

(in the gigahertz range), the membrane impedance becomes

negligible, which leads to the flow of current through intra-

cellular space [38,68,69]. In this scenario, 7.5 GHz EF may be

able to directly access intracellular space and regulate intra-

cellular processes, such as protein–protein interactions, while

60 Hz EF would not have this capability. Indeed, our results

in the presence of the highly specific MEK inhibitor U0126

are consistent with this model. Mechanistically, several studies

have shown that MEK phosphorylation and MAPK/ERK

pathway activation require MEK binding with upstream cRaf

at serine 218 and serine 222 motifs [56,61]. On the one hand,

cell exposure to 7.5 GHz EF in our experiments enhanced the

formation of MEK–cRaf complexes, decreased free MEK

levels and increased MEK phosphorylation levels when com-

pared with 60 Hz or no-EF groups (figure 6), ultimately

resulting in stimulation of angiogenic response by endothelial

cells. On the other hand, in the presence of U0126, cell exposure

to 7.5 GHz EF resulted in significantly decreased formation of

MEK-cRaf complex levels and increased free MEK levels

when compared with 60 Hz or no-EF groups, effectively abol-

ishing downstream angiogenic response under these

conditions. These results can be explained using the model in

figure 9b, where 7.5 GHz EF enhances interaction between

MEK and its binding partner (c-Raf or U0126), resulting in

stimulation of capillary morphogenesis and VEGF release in

the absence of U0126 or inhibition of capillary morphogenesis

and VEGF release when U0126 is present.

Further studies of the mechanism for EF-mediated MEK

phosphorylation show that both Ca2þ chelator and MEK

inhibitor lead to significant decreases in MEK phosphoryl-

ation and angiogenic responses to high-frequency EF.

Reduced MAPK/ERK levels in BAPTA treated samples

have been reported previously [53]. It has also been shown

that Ca2þ activates PKC [70], which in turn directly phos-

phorylates MEK [71]. Therefore, it is possible that EF also

enhances MEK phosphorylation through Ca2þ–PKC–MEK

crosstalk, along with activating cRaf–MEK–ERK. These

findings suggest a major role for cRaf/MEK and Ca2þ

pathways in EF-mediated stimulation of angiogenic

responses. These results are also consistent with recent

studies in non-endothelial cells which have shown that

high-frequency EF can affect intracellular processes, includ-

ing activation of the ERK1/2 pathway in Rat1 and HeLa

cells by a 800–950 MHz electromagnetic field [35], as well

as Ca2þ redistribution in Jurkat cells following stimulation

with a nanosecond high-amplitude pulse EF [68,69].
In contrast to cRaf/MEK and Ca2þ results, our data show

that while inhibition of eNOS with L-NAME does not alter

MEK phosphorylation in the absence of EF, it decreases

pMEK levels that have been increased by EF to control

values. These results are consistent with previous studies that

L-NAME does not affect VEGF-induced ERK activity [51,54].

However, the mechanisms for the observed response to

eNOS inhibition in the presence of EF are not clear and will

be the subject of our future work.

Our results suggest that PI3K pathway does not play a

major role in EF-mediated MEK activation in endothelial

cells. PI3K in one of the upstream mediators of MEK, and

PI3K/Akt signalling can regulate MEK phosphorylation in

various cell types. The interactions between the Raf/MEK/

ERK and PI3K/Akt pathways occur when Akt regulates

Raf activity, which results in the downstream activation of

the MEK-ERK pathway [65]. As expected [57], addition of a

specific PI3K inhibitor LY294002 results in an overall decrease

in pMEK levels (figure 7b); however, the EF-mediated

increase in pMEK in the high-frequency group relative to

the no EF controls is still retained.

In conclusion, this study provides evidence for a novel mech-

anism of EF-mediated regulation of endothelial cell angiogenic

responses via frequency-sensitive VEGFR2-independent acti-

vation of the MAPK/ERK signalling pathway. In vivo, this

mechanism translates into VEGF accumulation in the wound,

which may result in increased wound vascularization and

improved healing [59]. Therefore, these findings may have

important implications with regard to the therapeutic use of EF

to stimulate vascular tissue regeneration and repair, where the

informed choice of the therapeutic field parameters for angio-

genic activation of endothelial cells in the chronic wounds is

essential. Currently, the FDA-approved use of EF-based devices

in the USA is mostly limited to the healing of bone fractures and

treatment of pain and oedema and preventing muscle atrophy

[6,72]. Our results in combination with other studies provide

valuable information regarding how EF of various modalities

can affect different steps in pro-angiogenic signal transduction

pathways, which expands our understanding of the biophysical

interactions between the cell and the surrounding environment.

Therefore, the findings of this study may contribute to the tech-

nological advancement and the development of new treatment

strategies for chronic wound healing and ischaemic vascular dis-

ease without introducing systemic effects [8,73].
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