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Population-level measurements of phenotypic behaviour in biological

systems may not necessarily reflect individual cell behaviour. To assess

qualitative changes in the behaviour of a single cell, when alone and

when part of a community, we developed an agent-based model describing

the metabolic states of a population of quorum-coupled cells. The modelling

is motivated by published experimental work of a synthetic genetic regulat-

ory network (GRN) used in Escherichia coli cells that exhibit oscillatory

behaviour across the population. To decipher the mechanisms underlying

oscillations in the system, we investigate the behaviour of the model via

numerical simulation and bifurcation analysis. In particular, we study the

effect of an increase in population size as well as the spatio-temporal behav-

iour of the model. Our results demonstrate that oscillations are possible only

in the presence of a high concentration of the coupling chemical and are due

to a time scale separation in key regulatory components of the system. The

model suggests that the population establishes oscillatory behaviour as the

system’s preferred stable state. This is achieved via an effective increase in

coupling across the population. We conclude that population effects

in GRN design need to be taken into consideration and be part of the

design process. This is important in planning intervention strategies or

designing specific cell behaviours.
1. Introduction
Quantification of biological phenomena in cell populations is frequently based

on average measurements. Any measurements, and thus any properties

described by such measurements, may not necessarily reflect the properties of

a single cell and, vice versa, properties of single cells may not be representative

of population behaviour. This becomes even more important in synthetic biology

where system design is based on previously quantified molecular components at

the single-cell level, but in some cases analysis of the behaviour is assessed on

the level of a population. A recent example that highlights this is Milias-Argeitis

et al. [1], where a single-cell model is used to develop control principles that are

tested over a population of cells. Knowledge of whether specific cellular states are

possible only at single-cell and/or population-level is an essential step in design-

ing effective intervention strategies. Examples include modification of genetic

regulatory networks (GRNs) for maintaining health or preventing disease in

many biological settings. This is equally important from a modelling perspective.

It is essential to understand whether the predictive power of single-cell models

can scale up accordingly to capture population-wide behaviour.

For instance, as was shown recently [2], a population of synthetically engin-

eered bacteria communicating via quorum-sensing can produce synchronized

oscillations or be entrained to an external periodic input. An outstanding ques-

tion is to understand whether the oscillatory behaviour observed at the
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Figure 1. The model with spatio-temporal dynamics. In the spatially explicit model, external AHL is modelled with a PDE, each cell’s GRN with ODEs and motion is
modelled stochastically. Mixed boundaries are implemented. There is no chemical flux in the xz and yz-planes. Non-zero flux is defined with a constant gradient at
the y0 boundary only of the xy-plane, @½Ã�@y jy¼y0

¼ cÃ, where cÃ [ ½0; 1�. This non-zero flux represents the chamber’s exit.
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macroscopic, population level is a result of oscillatory

behaviour at the single-cell level or not. Indeed, it is possible

that oscillations emerge owing to the spatio-temporal

dynamics of the entire population rather than as a result of

synchronization of individual oscillating cells.

To shed light on these questions, whose answers are dif-

ficult to obtain experimentally, we developed an agent-based

model of the experimental set-up of Danino et al. [2]. The

model is studied over a range of scales to uncover the

nature of oscillations as stated earlier. A full spatially explicit

model describing a population of cells entrapped in a micro-

fluidic chamber (illustrated in figure 1) was also studied to

bridge the gap between the theoretical approach and the

physical setting of the experiment [2]. We focus on whether

population-level behaviour is carried over from a single cell

by first asking whether the oscillatory behaviour is an intrin-

sic stable state at the single-cell level and then studying

whether it persists when clusters of cells are considered.
The system design in Danino et al. [2] is based on a syn-

thetic version of the naturally occurring quorum-sensing

mechanism found in many prokaryotes, including some strains

of Escherichia coli [3]. The GRN is implemented in a laboratory

strain of E. coli cells that, prior to transformation, lack this

mechanism. Bacteria use quorum-sensing to communicate

between themselves and sense the size of the colony [3–5].

Quorum-sensing can be implemented using a variety of pro-

teins and molecular components [6]. However, the basic

mechanism remains the same across bacterial species. Every

bacterium in the quorum-sensing population is able to produce

a small hormone molecule, termed an autoinducer, and secrete

it into the environment. Once a threshold concentration of

the autoinducer is exceeded, bacteria respond by binding

the autoinducer to a receptor. This receptor is termed a

sensor. The autoinducer–receptor complex is a transcription

factor that regulates a GRN at the level of the promoter,

allowing bacteria to perform tasks at the colony level.
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Figure 2. Single-cell oscillating behaviour. (a) The GRN of a single cell in experiments presented in Danino et al. [2]. Th luxI gene encodes for the LuxI enzyme (LI),
which produces the molecule acyl homoserine lactone (A). AHL combines with the constitutively expressed LuxR that is modelled as a constant, to form a complex,
L:A, that can activate the promoter li-P. This drives the expression of all three genes: gfp, aiiA and luxI. AHL is removed from the system by enzymatic degradation
catalysed by the aA enzyme (aA). AHL can also freely diffuse through the cell membrane. Positive and negative feedbacks steps within this network are indicated
with a red plus/minus sign, respectively. (b) In the oscillating regime, oscillations are characterized by a period of approximately 410 – 420 min. The inset shows a
magnification of the area that is highlighted with a bold line on the x-axis to illustrate the oscillations of the lower concentration components. (c) A projection of
trajectories in three-dimensional space defined by the concentrations of aA, LA and Ã. Trajectories with sufficient external AHL concentration tend to the limit cycle.
The gradient key illustrates the value of the increasing concentration of external AHL ([Ã]) in initial conditions of model simulations.
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As shown in figure 2a, the GRN in Danino et al. [2] is com-

posed of three genes (luxI, aiiA and yemGFP) under the

influence of the same promoter, li-P. Genes have a C-terminal

degradation tag sequence that shortens the half-life of their

proteins considerably [7] and are introduced into bacteria

on separate plasmids. The luxI gene encodes for the LuxI

protein (LI), which produces acyl homoserine lactone (abbre-

viated AHL in main text and as A in equations). AHL can

interact with the constitutively expressed protein LuxR

(LR), which is modelled as a constant in the GRN, to form

the LuxR : AHL complex (L : A) and activate the promoter

li-P, allowing for the transcription of all three genes. The

AHL molecule is removed from the system by interacting

with the acyl homoserine lactonase enzyme (aA), which

degrades AHL. AHL can also freely diffuse across the cell

membrane, allowing for communication and hence coupling

between all cells in the population.

In order to systematically investigate the nature of the

oscillatory behaviour observed in Danino et al. [2], we

derive a mathematical model parametrized with values

found in the literature to describe the metabolic states of

cells as variables in a dynamical system. We use the math-

ematical formalism of ordinary differential equations

(ODEs) that is extensively applied in modelling GRNs

[8–11]. ODEs are amenable to analysis using mathematical

tools from dynamical systems theory, such as bifurcation

analysis [12], which enables the qualitative behaviour of the

system (such as oscillations) to be studied as a function of

key model parameter(s). Hence, the model can be used not
only to replicate experimental observations but also to

identify how parameter variation affects system behaviour.

To understand the behaviour at all levels, we use a hier-

archical, bottom-up modelling approach to describe the

biological process at different scales. We first analyse ODE-

only models of a single cell as well as a population of cells,

using a mean field and an agent-based approach. We then

assess the impact of including explicit spatial components

in the model system by performing large-scale simulations

using BSim [13,14], a novel three-dimensional framework

developed to study bacterial populations.

We find that oscillations are dependent on exceeding a

threshold concentration of AHL. The concentration of exter-

nal AHL varies as a function of cell density. An increase in

cell density can be achieved either by decreasing the micro-

fluidic device volume or by increasing the population size.

This also increases the coupling strength across population

members allowing oscillations to be the only stable behaviour

in the system. The increase in coupling strength also allows

for synchronized in-phase oscillatory behaviour. Our results

highlight the importance of taking into account population

as well as spatial effects in the process of GRN design and

model development.
2. Model equations
The GRN, which is the basis of the model equations, is illus-

trated in figure 2a. We model the system’s protein/molecule
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dynamics using quasi-steady-state assumptions on the dyna-

mics of mRNA and remain consistent with the GRN

description given in the introductory section. Proteins

that are produced directly from the GRN (LI and aA) are

described with two types of production rates, a basal rate

a0X
(where X is any protein), and Hill functions with

production rates kpX and Hill coefficient equal to two.

The concentration of free LuxR is obtained by subtracting

the concentration of the LuxR : AHL (L : A) complex from

the total concentration of LuxR, LTOT. Molecules not produ-

ced directly from the GRN are involved in linear reactions

proportional to their concentration with rates kr2/þ . With

the exception of AHL (A), they also follow first-order degra-

dation kinetics with the degradation rate constant tX.

Degradation of AHL is enzymatic with rate kcataA
represented

by a Michaelis–Menten function. AHL diffuses in and out

of the cell, depending on the intracellular (A) and extracellu-

lar (Ã) concentration difference with a rate hcell/env. The

parameter hcell/env adjusts the concentration of AHL, depend-

ing on the volume of the environment where the molecule is

found and thus also represents the cell density. The system of

equations is as follows:

d½LI�i
dt
¼ a0L þ k pLI

½L:A�2i ðtÞ
K2

mLA
þ ½L:A�2i ðtÞ

� d1½LI�iðtÞ
f ð½LI�iðtÞ þ ½aA�iðtÞÞ þ 1

; ð2:1Þ

d½A�i
dt
¼ kp2½LI�iðtÞ

� kr1þð½LTOT��½L :A�iðtÞÞþ
kcataA ½aA�iðtÞ
KmaAþ½A�iðtÞ

þtA

� �
½A�iðtÞ

þkr1� ½L :A�iðtÞ�hcellð½A�iðtÞ�½Ã�ðtÞÞ; ð2:2

d½aA�i
dt

¼ a0A þ k paA

½L:A�2i ðtÞ
K2

mLA
þ ½L:A�2i ðtÞ

� d2½aA�iðtÞ
f ð½LI�iðtÞ þ ½aA�iðtÞÞ þ 1

; ð2:3Þ

d½L :A�i
dt

¼ kr1þð½LTOT�½L :A�iðtÞÞ½A�iðtÞ

� kr1� ½L:A�iðtÞ � tLA½L:A�iðtÞ
ð2:4Þ

and

d½Ã�
dt
¼ henv

X
i

ð½A�iðtÞ � ½Ã�ðtÞÞ � tÃ½Ã�ðtÞ: ð2:5Þ

The terms at the end of equations (2.1) and (2.3) describe

the enzymatic degradation of LI and aA, respectively, by

the protease ClpX/P [15]. The parameters (d1 and d2) incor-

porate the maximum catalytic rate (Vmax) multiplied by the

total ClpX/P concentration. The entire term is normalized

by the Michaelis–Menten constant of enzyme ClpX/P

(KMclx
) for LI and aA, respectively. The parameter f is the

inverse of the Michaelis–Menten constant of ClpX/P. Note

that in the mean field approximation of the model and

under quasi-steady-state assumptions on equation (2.5), an

explicit expression can be derived that is proportional to

the number of cells [16]. Detailed derivation of the model

along with justification of the assumptions involved is pre-

sented in the supplementary material. The supplementary
material also contains a list of abbreviations used throughout

the text in table S2.

The ranges of possible values for each parameter were

identified via an extensive search of the literature. We ident-

ified lower and upper bound values for each parameter and

used particle swarm optimization to find optimal values

that allow oscillatory behaviour in the system. Detailed

explanation of the optimization process is given in the

supplementary material, section S1.1.

A model describing the dynamics of this GRN has

already being introduced in Danino et al. [2]. However, the

model presented here differs in several aspects. The most

notable difference is that in Danino et al. [2] the Hill function

involves a delay term. Hence, delay differential equations

(DDEs) are used to describe the dynamics of molecules pro-

duced directly from the GRN (here presented as aA and

LI). The delay dynamics separate temporally the transcription

and translation processes but in prokaryotes, there is no sub-

stantial delay associated with these processes [17–19];

therefore, we adopt the ODE modelling framework in this

study. In Danino et al. [2], the values of the production rates

for LI and aA are very different and adjusted with respect to

cell density. In this study, we assume that LI and aA have simi-

lar production rates as they are under the influence of the same

promoter. We also introduce an extra degree of freedom to

describe the dynamics of the transcription factor, L : A, while

in Danino et al. [2], AHL is assumed to be the transcription

factor. We assume that production of AHL is linear and pro-

portional to the concentration of LI, while in the model

presented at [2], AHL production is nonlinear.
3. Single cell behaviour
We begin our study by investigation of the behaviour of the

single-cell model (equations (2.1)–(2.5), i ¼ 1). Specifically,

we seek to determine whether the oscillations observed at

the population level in Danino et al. [2] could be accounted

for by this model. Direct numerical simulations illustrated

in figure 2b indicate that there are parameter regimes where

stable oscillatory behaviour is possible. Interestingly, we

also find that the convergence to this oscillating state depends

on the choice of initial conditions for the external AHL,

whose dynamics are described by equation (2.5). This

dependence is depicted in figure 2c, where we present a

three-dimensional projection of the full phase space onto

three of the model variables, namely the concentrations of

aA, L:A and external AHL ([aA], [L : A],[Ã]). Figure 2c
demonstrates that trajectories that start at concentrations of

external AHL that are below the required threshold for oscil-

lations converge to a fixed point characterized by zero

amounts of the rest of the system’s variables/proteins (depicted

in yellow). Trajectories that exceed the threshold concentration

of external AHL tend to a limit cycle attractor (depicted

in green). These results indicate that exceeding the threshold

concentration of external AHL is a sufficient condition for

convergence to a stable oscillatory state in our model.

In the oscillatory regime, the model is characterized by a

period in the order of hundreds of minutes (approx. 410 min),

a value close to the experimental observations reported in

Danino et al. [2]. A cycle of oscillation starts with the accumu-

lation of the activated form of LuxR, L : A. This leads to

production of LI and aA. aA quickly reaches maximum
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levels of expression, leading to enzymatic degradation of

AHL. Removal of AHL stops further production of LI and

aA; hence the dominating process becomes enzymatic degra-

dation of both LI and aA by the ClpX/P protease. This

completes a cycle of an oscillation. The maximum concen-

tration of aA within a cycle of oscillation is higher than the

maximum concentration of LI. We find the same qualitative

behaviour after testing 10 parameter sets, with oscillatory

period in the order of hours (simulations not shown). The

parameters that we vary by taking evenly distributed

values across each parameter range in the investigated sets

(kpaA
, kpli

, KMaA
, f,KcataA

, d1, d2) are within the minimum and

maximum ranges reported in the literature. Further details

are given in the supplementary material, table S1. We observe

similar oscillatory behaviour when the range of values a par-

ameter can assume is increased in both minimum and

maximum by an order of magnitude. This suggests that the

model robustly supports stable oscillatory behaviour across

a wide range of system parameters.

In order to identify the mechanisms leading to the onset

of oscillations and also systematically investigate the behav-

iour of the system as a function of key parameters, we

performed a bifurcation analysis of the single cell model

(equations (2.1)– (2.5), i ¼ 1). A projection of the bifurcation

diagram constructed by varying the parameter kcataA
is pre-

sented in the ([LI], kcataA
) plane (figure 3a). We find that the
system is bistable with respect to variation in kcataA
; a stable

steady state with nearly zero levels of expression (‘switched

off’ cell) coexists with a stable limit cycle attractor for a sig-

nificant range of control parameter values. In particular, for

high values of the concentration of LI, we find a stable

family (branch) of fixed points, shown in black in figure 3a,

that loses stability in a supercritical Hopf bifurcation (HB1)

as the control parameter (kcataA
) increases. This family of

fixed points regains stability in another supercritical Hopf

bifurcation (HB2) as kcataA
continues to increase. Eventually,

the branch of stable fixed points turns around (to the left;

not shown in figure 3a) as kcataA
starts to decrease, whereas

the concentration of LI has already dropped to nearly zero.

At near-zero values of the concentration of LI, the system is

characterized by a family of stable fixed points shown as a

black solid line in figure 3a. Furthermore, for a range of con-

trol parameter values (kcataA [ ð4142; 7499Þ), this stable family

of (nearly zero) fixed point solutions coexists with the stable

family of periodic orbits that are born and die in the pair of

supercritical Hopf bifurcation points, HB1 and HB2, respect-

ively. In biological terms, this means that in order for

oscillations to occur, the cell must overcome the boundary

between the two basins of attraction, of (i) the stable steady

state and (ii) the stable limit cycle, respectively. As shown

in figure 2c, this can be achieved by increasing the external

AHL concentration, [Ã], above a certain threshold. We find
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a bifurcation structure similar to figure 3a when varying other

parameters in the model, namely (kpli, kpaA, d1, d2, f, KMaÃ
, tA).

This finding supports further the oscillatory robustness of

the model and reinforces the conclusions that oscillatory

behaviour is intrinsic to the system.

It is important to note that stable oscillatory behaviour is

observed when we introduce an order of magnitude differ-

ence in the effective degradation rates of aA and LI, d1 and

d2, in the model, as can be seen in the supplementary

material, table S1. The dependence of oscillatory behaviour

on the degradation rates, which represent the normalized

maximum catalytic rate of the ClpX/P complex for LI and

aA, respectively, is summarized in the two-parameter bifur-

cation diagram shown in figure 3b. The orange curve

depicted in figure 3b represents the loci of the Hopf bifur-

cation points found in the model and discussed earlier, and

therefore outlines the regions in two-parameter space,

i.e. the (d1, d2) plane, where the system will oscillate, provided

that there is sufficient external AHL present. The order of

magnitude difference that we find sufficient for the existence

of oscillations effectively allows for time-scale separation

between the slow component of the system aA and the rest

of the network components. Similar time-scale separation

conditions have already been identified as a requirement

for oscillations in other studies [20,21].
4. Cell population behaviour
4.1. Mean field approximation
The single cell analysis demonstrates that oscillatory

behaviour is dependent on the concentration of external

AHL, the system’s autoinducer. To better characterize this

dependence at a population level, we begin by considering

a mean field approximation of the system, i.e. by representing

the interaction of all the cells present in the system as an

average effective coupling. Although this approach reduces

the many-cell system into a single cell system, it allows us

to study macroscopic properties such as the cell density rep-

resented by the parameter henv [16], which is inversely

proportional to the volume of the external medium and

affects AHL concentration.

In figure 3c, we depict a projection of the bifurcation dia-

gram for henv plotted in the ([LI], henv) plane. We find that for

low concentrations of LI, there is a stable family (branch) of

fixed points in the system that loses stability in a SN bifur-

cation as henv increases. At this point, the branch of now

unstable fixed points turns around (to the left), the parameter

henv begins to decrease and eventually undergoes another SN

bifurcation (not shown) turning to the right, so that henv starts

to increase again. Importantly, the concentration of LI has

also increased substantially. Further increase of henv allows

the branch of fixed points to regain stability in a supercritical

Hopf bifurcation (labelled HBwk in figure 3c).

The occurrence of a Hopf bifurcation at HBwk gives rise to

a family of stable periodic solutions at non-zero concen-

trations of LI that coexists with the family of stable fixed

points for near-zero concentrations. As the parameter henv

increases further, the branch of stable fixed points at

non-zero LI concentration loses stability in another Hopf

bifurcation (labelled HBst in figure 3c). HBst is again super-

critical and gives rise to another stable family of periodic

solutions. However, in this parameter range, the system is
no longer bistable, and the family of periodic solutions

(oscillations) is the only stable attractor of the system.

This is an important observation because increase in

the parameter henv reflects an increase in cell density; the

number of cells per unit volume. Our analysis demonstrates

that if the size of the population is sufficiently large within

a contained volume environment, as is the case of the exper-

imental set up in Danino et al. [2], the only stable state of the

system would be an oscillatory one. However, when henv is

small, it can be difficult for the system to maintain a sufficient

concentration of external AHL to support stable oscillatory

behaviour. This in turn can lead to a ‘switched off’ cellular

state represented by the near-zero concentration of LI. This

is seen as a stable branch of fixed points in both figure 3a,c).

The oscillatory behaviour of the system that is related

to cell density is best summarized in the two-parameter bifur-

cation diagram of kcataA
and henv, as shown in figure 3d. Here,

we plot the loci of the two Hopf bifurcation points, HBwk (left

curve) and HBst (right curve) in the (kcataA
, henv) plane. Stable

oscillations in the system exist to the left of the curve that rep-

resents HBwk points and to the right of the curve that depicts

the loci of HBst. In addition, the stable oscillations that belong

to the left half-plane (associated with low cell density) coexist

with stable steady-state solutions in the model. Interestingly,

the model predicts that there is an intermediate range of cell

density where the system could be either in a low or high (yet

non-oscillatory) stable steady state. This is dependent on

the concentration of external AHL and is represented by the

region between the two HB curves in figure 3d. Because the

coupling in the model is mediated via external AHL concen-

tration, the increase in cell density also results in an increased

coupling strength between cells of the same population,

whereas low density corresponds to weakly coupled cells.

4.2. The effect of increasing the number of
coupled cells

Next, we investigate the effect of a growing population in an

agent-based model setting. Because we would like to be

able to use continuation tools to perform bifurcation analysis,

we study various small populations of explicitly coupled

cells. This setting also allows us to study the modes of coordi-

nation between individual-coupled cells. We find that the

bifurcation structure of the coupled cells system is qualitat-

ively the same as the one shown in figure 3a. Continuation

of the higher stable fixed point solutions in the model

with respect to important parameters (kcataA
, kpli, kpaA, d1, d2,

f, KMaA
, tA, henv) shows that there is a slight reduction

in the range of stable oscillatory behaviour, as depicted in

figure 4. This is due to the fact that the Hopf bifurcation

pairs (HB1 and HB2) come closer together as the number of

cells increases.

Direct numerical simulations with various small popu-

lations (2–10 cells) of all-to-all coupled cells (figure 5a)

indicate that the oscillatory threshold of external AHL con-

centration is lower in the coupled cells system than in the

single cell system. This observation can be explained by a

shift in the boundary between attractors in the phase space

in favour of the limit cycle attractor. The increase in popu-

lation size affects not only the boundary between attracting

states, but also the waveform of oscillations in the model.

We observe a decrease in the period of oscillations, from

approximately 410–420 min in a single cell to approximately
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380–390 min in a population of 10 coupled cells. In addition,

the oscillations are characterized by a smaller amplitude, as

shown in figure 5b.

Finally, we simulate various population sizes with hetero-

geneous initial conditions in order to investigate if and when

in-phase (synchronized) oscillations across population mem-

bers can be obtained. An example of the phase difference

between cells observed in a three-cell population is shown

in figure 5c. In the case where cell density (represented by

henv) corresponds to weaker coupling, as described in the

mean field approximation of the system (i.e. oscillations

born from the HBwk loci), the oscillations among agents are

coordinated as shown by the constant phase difference

obtained in the simulations. As might be expected, increasing

the coupling strength between cells by setting henv at a larger

value (i.e. oscillations born from the HBst loci) results in
perfectly synchronized (in-phase) oscillations, as indicated

by phase difference convergence to zero.
5. Spatio-temporal dynamics
In order to study a more realistically sized population of cells

in an explicit spatial context, we model a static (non-dividing)

population of varying size (1–4800 cells) in microfluidic

chambers (the population upper limit is restricted by the

available computational power). The chamber dimensions

are consistent with [2]. The model is implemented in BSim

[13,14], a three-dimensional framework developed to study

bacterial populations. BSim is an agent-based simulator,

where each bacterial cell is defined as an agent that has expli-

cit spatial positions in the three-dimensional environment
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300 � 1 mm3 chamber with DÃ ¼ 0.009. The plot illustrates wave propagation through the chamber as cells become fully active sequentially in a neighbour-to-
neighbour fashion. The gradient key illustrates the value of the variable [LI] in micromolar. (d ) Time series illustrating synchrony of a heterogeneous population of
1139 cells in a 200 � 50 � 1 mm3 chamber. Time series of individual cells are plotted for the entire population in grey. The black line indicates the population
average. Heterogeneity was introduced by modifying parameter values ( production and degradation rates), using a Gaussian distribution with 5% standard deviation
around the mean value of each parameter.

rsif.royalsocietypublishing.org
JR

SocInterface
10:20120612

8

and contains a GRN allowing simulation of intracellular

dynamics. In particular, each agent in the simulation contains

the GRN given in equations (2.1)–(2.4) and the external AHL

chemical field is modelled with the reaction–diffusion PDE

@ ½Ã�
@t
¼ DÃr

2½Ã�|fflfflfflfflfflffl{zfflfflfflfflfflffl}
Brownian diffusion

þ
XN

i¼0

henvð½A�i � ½Ã�Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
AHL exchange

� tÃ½Ã�|fflffl{zfflffl}
degradation

;

ð5:1Þ

describing AHL Brownian diffusion with a diffusion constant

DÃ, the exchange of AHL between agents and the environ-

ment with rate henv, and AHL degradation rate tÃ. The

agent metabolic states, the agents’ spatial position and

environmental factors are coupled as illustrated in figure 1.

By using the same parameter set as with the ODE model

(reported in the supplementary material, table S1), we find

damped oscillations with the concentrations of GRN com-

ponents going to a non-zero stable steady state, indicating

the existence of a focus. Brownian diffusion of the external

chemical field allows AHL to diffuse away from the source,

i.e. the cell. This means that the exchange between intracellu-

lar and extracellular AHL is delayed. This is different from

the non-spatially explicit model where extracellular AHL

build-up is immediate and uniform in the entire volume,

which in turn leads to immediate exchange between cells

and environment. To obtain oscillations in the spatial version

of the model, it was necessary to alter the parameters from

those used in the single cell model (all parameter changes
are given the supplementary material, table S1). This modi-

fied parameter set was used to investigate population

behaviour. Note that parameter values are still within the

bounds given in the literature and are of biological relevance.

As shown in figure 6a, for chamber dimensions consistent

with [2], sustained oscillations occur for a population with a

minimum size of six cells and are maintained throughout the

various population sizes we model. The model predicts that

given sufficient time for the external AHL to build up even

a small population of cells will oscillate. This could not be

seen experimentally as in the physiological system, the popu-

lation size increases exponentially owing to continuous cell

divisions [2]. This is illustrated in figure 6a, where increase

in the population allows for faster onset of oscillatory behav-

iour and marginally increases the amplitude of oscillations.

Generally, the amplitude of oscillations is higher with respect

to the non-spatially explicit version of the model. Above a

certain threshold with respect to population size, a further

increase does not affect the period of oscillations. Above

this threshold, the observed period remains the same at

approximately 416 min.

On the basis of analysis of the mean-field model

described earlier, we expect that the strength of the coupling

between cells can affect the length of the transient to synchro-

nization. We conducted a series of numerical experiments

varying parameters that could affect synchronization and

oscillatory behaviour. We varied population size, chamber

dimensions, cell motility, variation of the Brownian diffusion

coefficient DÃ, GRN and chemical field initial conditions.
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Variation of DÃ affected the onset of oscillations. In simu-

lations where a few non-motile cells were present in a

200 � 50 � 1 mm3 chamber, higher DÃ values delayed the

onset of oscillations. Beyond DÃ ¼ 10 mm3 s21, no further

delay was seen in oscillatory onset. Example of effects of

local concentration gradients is shown in the supplementary

material. The value of the diffusion coefficient also affected

the synchronization properties of the population. Higher

values resulted in faster synchronization of the population

with cells having identical phase.

Motility affected only small populations (e.g. 5–15 cells)

and had the same effect as increasing the diffusion coeffi-

cient, DÃ (results not shown). This is not surprising as

motion of AHL-producing cells allows for more rapid

AHL equilibriation throughout the chamber. Populations of

greater than 15 cells were always perfectly synchronized for

DÃ . 10 mm3 s21 even when cells had different initial con-

ditions as shown in figure 6b, where a 1139 non-motile cell

population synchronizes within the first cycle of oscillation.

Our model has qualitatively similar behaviour to the

experiments presented in figure 3 of Danino et al. [2] showing

waves of bacterial population’s activity. Figure 6c depicts a

space–time plot illustrating waves of bacterial population’s

activity in our model that is similar to the experiments pre-

sented in figure 3c,d of [2] (see also accompanying video of

simulation in the supplementary material). Simulations of

the experiment shown in figure 3a,b of Danino et al. [2] is

presented in the supplementary information, figure S2.

To further investigate population effects, we also simulate

a heterogeneous population of cells in BSim. In a biological set-

ting, cells will have slight variation in the rates of reaction of

various processes as a result of cell-to-cell variability during

cell division [22]. This may affect their ability to oscillate.

We model cell-to-cell variability by varying the production

and degradation rates of each cell across the population

using a narrow Gaussian distribution around the mean

value of a parameter (where mean value is the value illustrated

the electronic supplementary material, table S1). Narrow dis-

tributions are chosen because variability should be minimal

in a clonal population growing in a tightly regulated exper-

imental environment. The results presented in figure 6d
assume a Gaussian distribution with standard deviation of

5 per cent and shows that heterogeneous populations maintain

synchrony in the spatially resolved version of the model.
6. Conclusions and discussion
In this study, we investigate whether macroscopic behaviour

reflects individual cell properties, and how the population

size affects this behaviour, by focusing on the example of oscil-

lations across a population of quorum-coupled cells [2].

We show the effect on oscillatory behaviour with respect to

increasing population size, using numerical simulation and

bifurcation analysis. We also demonstrate how spatio-temporal

dynamics affect the oscillatory behaviour of the population.

GRN design in the system under investigation [2]

includes positive and negative feedback loops. Such loops,

such as activation–inhibition pairs, are an important ingredi-

ent in GRN models, that allow for the occurrence of

oscillations [20,21,23], including oscillations that arise from

a Hopf bifurcation. GRN models introduce such feedback at

the level of the genetic code by affecting gene expression at
the level of the promoter (well-known examples are Gardner

et al. [8] and Elowitz & Leibler [9]). In the model, we present

in this study, positive feedback occurs at the level of the pro-

moter, via L : A, but negative feedback is indirect and

involves only the post-translational component aA.

We show that the GRN model in this study allows oscil-

lations to be born in a Hopf bifurcation, provided that there

is sufficient time scale separation among the model variables.

Time-scale separation is a sufficient condition for oscillations

in negative feedback systems, as explained in Novák &

Tyson [21] and first illustrated by Goodwin’s oscillator [24].

This separation allows the system to have a memory of pre-

vious states that can affect the current state leading to

oscillations. In Danino et al. [2], such delays are implemented

explicitly using DDEs that separate transcription and trans-

lation processes temporally and prevent the system from

settling to a steady state. However, the lack of compartmenta-

lization in bacteria prevents significant temporal separation of

transcription and translation processes [17–19]. Our analysis

indicates that oscillations are also possible without temporally

separating transcription and translation.

In our model, we introduce time-scale separation between

the dynamics of LI and aA, the post-translational modules

responsible for activation and inhibition in the system

by varying their degradation rates d1 and d2, respectively.

Although necessary from a mathematical perspective, the bio-

logical basis of this is not immediately apparent. Both proteins,

aA and LI, are substrates for the same degradation enzyme,

ClpX/P, and would be expected to have similar degradation

rates. However, a possible biological explanation can be

given involving the mechanics of the enzyme ClpX/P—a

molecular complex with two major functions [15,25]. Substrate

is unfolded by ClpX and processively passed to the ClpP

protease for degradation. In our model, we take into account

both molecular functions via the rate parameter dx. Because

the substrates of ClpX/P, aA and LI, are of similar size

[26,27], it is likely that the difference in the rates of degradation

can be attributed to an increased stability of aA during

the unfolding process. To the best of our knowledge, this

suggestion has not been confirmed experimentally.

The GRN has an interesting positive feedback design

via LI and AHL, whose concentration values are affected

by the production rate constants kpLI
and kp2, respectively.

Bifurcation analysis, in these parameters, indicates defined

ranges where oscillations exist (see electronic supplementary

material, figure S1). Increasing values within each range

increases the amplitude of oscillations offering additional

control over the oscillatory waveform [20]. The AHL pro-

duction rate constant is an order of magnitude bigger than

LI. Even if aA and LI, whose actions are opposing in the net-

work, are produced at similar rates, positive feedback is

sufficiently amplified via AHL for oscillations to exist.

Stable oscillatory behaviour in the model is dependent on

the amount of AHL present in the system. This is consistent

with quorum behaviour. GRN components become activated,

once a certain threshold concentration of an activator is

exceeded in the cellular medium [3,28], as previously

shown with other mathematical models [29,30]. Of greater

biological interest is the existence of two separate Hopf bifur-

cation loci. At high cell densities, as described by an increase

in parameter henv and shown in figure 3d, there exists only a

single stable attractor, the oscillatory one. By contrast, the

cells can oscillate at low cell-density only if there is
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sufficiently high concentration of external AHL present.

However, in realistic settings, it is more likely that this con-

centration is low initially but following a number of cell

divisions, the required cell density for oscillations is even-

tually achieved. High cell density also increases cell-to-cell

coupling as it modulates the communication mechanism—

the external AHL concentration. Increased coupling allows

for synchronized (in-phase) oscillations in the system.

Our results are consistent with the experiments of Danino

et al. [2]. However, our theoretical analysis offers an alterna-

tive explanation from the theoretical conclusions in Danino

et al. [2] that individual cells would oscillate independently

of cell density. Our analysis suggests that the experimentally

observed behaviour of bacterial populations is an intrinsic

population-level property, and not simply the result of indi-

vidually oscillating cells becoming synchronized. As such,

an increase in cell density not only affects the waveform

and synchrony of oscillations, but is also responsible for driv-

ing the system from a bistable to a monostable oscillatory

regime, as shown in the bifurcation diagram of figure 3c.

Experimentally, this can be tested by dilution assays and

external AHL concentration modulation possibly by the

introduction of the aA enzyme extracellularly.

Introduction of an explicit spatial component facilitates

the analysis of the system’s behaviour by studying additional

features that can affect the population-wide oscillations.

In this study, we showed that in a microfluidic environ-

ment, synchrony and oscillatory behaviour are also affected

by local and global concentrations of AHL as a result of

Brownian diffusion. Strongly coupled cells will oscillate syn-

chronously with the same phase throughout the population,

whereas weakly coupled cells will oscillate locally (in
synchrony only with their neighbours). Coupling is

affected by cell density and the diffusion of AHL within

the environment, both of which are features essential for

quorum-sensing.

To answer our original question regarding the nature of

macroscopic oscillations in Danino et al. [2], we conclude

that the system is able to provide robust and stable oscil-

lations at the population level as a result of high cell

density. It would be of great interest to investigate whether

such behaviour exists in higher organisms; whether groups

of cells use communication mechanisms intimately associated

with cell density to (re)enforce a specific population behav-

iour. In our particular example [2], it is possible to interrupt

the communal response by reducing cellular density and lim-

iting external AHL concentration. Such strategies have

already been observed among competing bacterial species

where quorum-quenching mechanisms are used to disrupt

communication and suppress quorum effects in the opposing

community [3,4,31,32]. Our results also highlight the impor-

tance of using microfluidic technology to approximate the

effects of large population sizes in a manageable, observable

and accessible environment. The predictive power of models

may be reduced if population and spatio-temporal effects are

not taken into account, as indicated by the results obtained at

different levels of abstraction.
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