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Bromodeoxyuridine (BrdU) is widely used in immunology to detect cell div-

ision, and several mathematical models have been proposed to estimate

proliferation and death rates of lymphocytes from BrdU labelling and de-

labelling curves. One problem in interpreting BrdU data is explaining the

de-labelling curves. Because shortly after label withdrawal, BrdUþ cells are

expected to divide into BrdUþ daughter cells, one would expect a flat

down-slope. As for many cell types, the fraction of BrdUþ cells decreases

during de-labelling, previous mathematical models had to make debatable

assumptions to be able to account for the data. We develop a mechanistic

model tracking the number of divisions that each cell has undergone in

the presence and absence of BrdU, and allow cells to accumulate and

dilute their BrdU content. From the same mechanistic model, one can natu-

rally derive expressions for the mean BrdU content (MBC) of all cells, or the

MBC of the BrdUþ subset, which is related to the mean fluorescence inten-

sity of BrdU that can be measured in experiments. The model is extended to

include subpopulations with different rates of division and death (i.e. kinetic

heterogeneity). We fit the extended model to previously published BrdU

data from memory T lymphocytes in simian immunodeficiency virus-

infected and uninfected macaques, and find that the model describes the

data with at least the same quality as previous models. Because the same

model predicts a modest decline in the MBC of BrdUþ cells, which is con-

sistent with experimental observations, BrdU dilution seems a natural

explanation for the observed down-slopes in self-renewing populations.
1. Introduction
To study the population dynamics of T cells, immunologists use various labelling

techniques that are based on the fact that cells duplicate their DNA during cell

division. Using non-radioactively labelled molecules that are incorporated into

de novo synthesized DNA strands, one can detect cell division in any particular

population. The two DNA labelling techniques that are currently widely used are

based on a label that can be provided in the drinking water. One is bromodeoxy-

uridine (BrdU), which is an analogue of thymidine (i.e. one of the four bases

making up DNA). BrdU can be detected in a cell with antibodies. The other is deu-

terium. Deuterium labelling uses mass spectrometry to detect the deuterium

atoms that have replaced some of the hydrogen atoms in newly synthesized

DNA. DNA has also been labelled with radioactive thymidine (3H-thymidine),

but for in vivo experiments this has mostly been replaced by BrdU and deuterium.

Another important labelling technique used for tracking the division history of

lymphocytes is carboxyfluorescein succinimidyl ester (CFSE). CFSE is a fluor-

escent dye which does not label DNA, but binds cytoplasmic proteins and

equally dilutes upon cell division. Most in vivo experiments with CFSE rely on
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the adoptive transfer of CFSE-labelled lymphocytes [1,2]. The

interpretation on CFSE data is complicated, and several dedi-

cated mathematical models have been developed to quantify

lymphocyte turnover using CFSE data [3–10].

BrdU has been used for decades in mice [11,12], and more

recently in monkeys [13–15]. Because of potential problems

with toxicity, it has been used infrequently in humans [16–20],

and only over short-term periods. Indeed, it has been reported

that BrdU is toxic for various cell types, and may trigger an

injury response leading to activation and division [21,22],

which would perturb the normal population dynamics. Other

laboratories found little toxicity of BrdU [23,24], and BrdU

data have hitherto been interpreted under the assumption that

BrdU does not influence the rates of cell proliferation or death.

In the presence of BrdU, an unlabelled cell (U) that divides

will give rise to two labelled daughter cells (L), and a labelled

cell that divides increases the number of BrdUþ cells by one,

i.e. U ! 2L and L! 2L. During the first part of the de-label-

ling phase, a BrdUþ cell that divides will give rise to two

BrdUþ cells, each expressing half of the parent’s BrdU content

[13]. Thus, a typical BrdU experiment consists of a labelling

phase during which the fraction of labelled cells increases,

and a de-labelling phase during which one would expect

this fraction to decrease and ultimately approach zero. We

will refer to the initial slopes of these two phases as the

up-slope and the down-slope, respectively.

Let us consider a population such as self-renewing memory

T cells that are largely maintained by random division and

death [2], and let the total number of cells in the population

be described by the equation dN/dt ¼ ( p 2 d)N. To model

BrdU labelling, we let unlabelled cells disappear by prolifer-

ation and death during the labelling phase, and let labelled

cells—at least initially—divide into labelled daughter cells

and disappear by death during the de-labelling phase. By

having no external source, the corresponding model is a

simplification of the model proposed by Mohri et al. [13]:

dNU

dt
¼ �ð pþ dÞNU

dNL

dt
¼ 2pNU þ ð p� dÞNL

9>=
>;during labelling;

and

dNU

dt
¼ ð p� dÞNU

dNL

dt
¼ ð p� dÞNL

9>=
>;during de-labelling; ð1:1Þ

where p and d are (daily) division and death rates, and NU

and NL are the numbers of unlabelled and labelled cells,

and N ¼ NL þNU. To fit this model to BrdU data, one has

to define the fraction of labelled cells, i.e. L ; NL=N, and

derive the differential equation for the fraction of labelled

cells from equation (1.1). Straightforward calculus reveals

that dL/dt ¼ (dNL/dt)/N 2 (L/N)dN/dt. Substituting

dNL/dt and dN/dt from equation (1.1) finds that dL/dt ¼
2p(1 2 L) during the labelling phase, and that dL/dt ¼ 0

during the de-labelling phase. Thus, the death rate cancels

and the fraction of labelled cells is expected to increase

with an initial up-slope of 2p during the labelling phase.

From the dL/dt ¼ 0 result, one expects that the down-slope

is—at least initially—flat during the de-labelling phase.

For most cell types, the fraction of BrdUþ cells indeed

increases during the labelling phase, but tends to decrease

during the de-labelling phase, which is at conflict with the dL/
dt¼ 0 result. To solve this problem, different authors have pro-

posed different solutions. Several authors [13,25–27] allowed

for an external source of cells, for example coming from the

thymus or from a compartment of quiescent cells, and by allow-

ing the generation of unlabelled cells during the de-labelling

phase they were able to explain the observed down-slopes.

Others [28–30] argued that labelled cells have recently divided,

and that recently divided cells should have a faster death rate

than non-divided unlabelled cells, which also allows for a

decline of the fraction of BrdUþ cells. Several authors in the

field of immunology [23,28,31] and in the field of haematopoie-

tic stem cells [21,24,32] have argued that the loss of BrdUþ cells

can be explained by BrdU dilution during the de-labelling

phase. Indeed, the classical paper by Tough & Sprent [11] pro-

vided evidence for a decrease in BrdU mean fluorescence

intensity (MFI) of BrdUþ memory phenotype T cells during

the de-labelling phase. However, there is ongoing discussion

in immunology on the role of BrdU dilution in the loss of

BrdUþ cells because BrdU intensity profiles sometimes do not

change substantially during the de-labelling phase [13].

To track BrdU dilution during the de-labelling phase,

previous authors wrote simple cascade models of the form

dx0

dt
¼ �ð pþ dÞx0;

dxi

dt
¼ 2pxi�1 � ð pþ dÞxi; i ¼ 1; 2; . . . ;1;

9>=
>; ð1:2Þ

where xi is the number of cells having completed i divisions after

BrdU withdrawal [21,23,24,32]. At the start of the de-labelling

phase, all cells are considered to be fully labelled, and to have

completed zero divisions, i.e. x0(0)¼ N(0). After a critical

number of divisions, the cells have diluted their BrdU content

so much that they fall below a fluorescence detection limit, and

will subsequently be scored as BrdU2. Parretta et al. [23] found

their best fit of BrdU data from mouse memory CD8þ T cells

when assuming that BrdUþ T cells become BrdU2 upon the

second division. The haematopoietic stem cell studies suggest

that stem cells may have to complete three [24] or five [21] div-

isions before they breach the detection limit. Because the critical

number of divisions that is required for a BrdUþ cell to result in

BrdU2 progeny should depend on the BrdU content of the cell

at the end of the labelling phase and the detection limit, this differ-

ence between stem cells and T cells could be due to the number of

divisions they have completed during the labelling phase.

We therefore generalize equation (1.2) into a model for BrdU

accumulation and dilution during the labelling and de-labelling

phases, respectively. By solving the differential equations of this

random-division/death model, we find that the fraction of

BrdUþ cells is given by the product of Poisson distributions

describing the number of divisions cells are expected to have

completed in each phase. These distributions also allow us to

derive equations for the mean BrdU content (MBC) of the

cells, which is related to the MFI of BrdU in labelled cells. Con-

sidering the MBC of the total population of cells, our results are

in agreement with another simple model proposed previously

for the de-labelling phase: Bonhoeffer et al. [25] argued that

the total BrdU intensity is not changed by cell division, which

yields two cells with approximately half the intensity each.

The total fluorescence intensity, IT, can decrease only by cell

death, i.e. dIT/dt ¼ 2 dIT. If total cell numbers obey dN/dt ¼
( p 2 d)N, the average BrdU intensity, IM ¼ IT/N, obeys dIM/

dt ¼ 2 pIM, suggesting that the MBC decreases exponentially

at rate p during the de-labelling phase [25]. Using the Poisson
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Figure 1. Distribution of labelled DNA strands in cells (a) during BrdU labelling and (b) during de-labelling phases. Under the assumption of 100% labelling
efficacy, after one division in the labelling phase, cells will have half of their DNA strands labelled, l1 ¼ 1/2 (in cartoon, labelled strands are shown in red and
unlabelled strands are shown in black). After two divisions, this is an average of l2 ¼ 3/4 strands, and so on. Let ln,m denote the fraction of labelled strands in a cell
having completed n divisions during the labelling phase, and m divisions during the de-labelling phase. During the de-labelling phase, a cell having all DNA strands
labelled, for example l1;0 ¼ 1, divides into daughter cells having l1;1 ¼ 1=2 labelled strands, and so on. The BrdU fluorescence of a cell is an increasing function
of l and cells will be classified as BrdU2 when l , lu. For lu � 0:5; the division of unlabelled cells during labelling results in two BrdU-labelled cells. If at the end
of the labelling phase a cell has a BrdU content 0:5 � ln , 1, two divisions are required to make progeny of this cell to become BrdU2 during de-labelling for the
level of detection lu ¼ 0:25. If the detection limit were set at lu ¼ 0:125, this would take three divisions.
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distributions, we generalize this result by also considering the

MBC of only labelled (BrdUþ) cells, because in experiments

one typically reports BrdU MFI of the labelled fraction. We

find moderate changes in the MBC of BrdUþ cells in situations

where the fraction of labelled cells, L, changes markedly. This

reconciles the observation of a declining fraction of BrdUþ

cells in situations where the BrdU intensity profiles are hardly

changing [13].
2. Results
2.1. Homogeneous population
We start with a simple ordinary differential equation (ODE)

model for cell division and death (random-division/death

model [3,33]), and first consider a homogeneous cell popu-

lation. At time t ¼ 0, BrdU is administered and dividing

cells start incorporating BrdU. Changes in the number of

cells NnðtÞ, having undergone n divisions by time t, are

given by the conventional system of ODEs,

dN0ðtÞdt¼�ðpþ dÞN0ðtÞ;
dNnðtÞdt¼ 2pNn�1ðtÞ� ðpþ dÞNnðtÞ; n¼ 1;2; . . .1;

�

ð2:1Þ

where p and d are the rates of cell proliferation and death,

respectively. Because we start tracing cell division at the

time BrdU administration begins, the initial condition

N0ð0Þ ¼ N0 and Nnð0Þ ¼ 0 for n ¼ 1; 2; . . . ;1. The general

solution of this model is

NnðtÞ ¼ NðtÞ � ð2ptÞn

n!
e�2pt ¼ NðtÞ � fnðt; pÞ; ð2:2Þ

where the total cell number is changing over time as

NðtÞ ¼ N0 eð p�dÞt, and where fnðt; pÞ is the Poisson distribution

for cells dividing at rate p. For the de-labelling phase,

equation (2.2) is generalized into Nn;mðtÞ for the number of

cells having completed n divisions during labelling and m
divisions during de-labelling,

Nn;mðtÞ ¼ NðtÞ � fnðT; pÞ � fmðt� T; pÞ; ð2:3Þ
where the fnðT; pÞ term gives the Poisson distribution at the

end of the labelling phase, and the latter fmðt� T; pÞ term is

the Poisson distribution after labelling (t . T), respectively.

Both Poisson distributions depend on the division rate p of

cells in the population.

The efficiency at which cellular DNA will become labelled

during BrdU administration will probably depend on the BrdU

concentration in the environment and the cell type. In the follow-

ing analyses, we assume that labelling is 100 per cent efficient.

Because DNA is replicated during the cell cycle, cells having com-

pleted one division, N1, have exactly half of their DNA strands

labelled (assuming 100% efficiency of labelling; figure 1).

Owing to the random segregation of chromosomes, on average

three-quarters of the DNA strands are labelled after two div-

isions,1 and so on (figure 1). On average, the fraction of

DNA strands labelled after n divisions is ln ¼ 1� 2�n. Know-

ing the fraction of labelled DNA strands after n divisions, and

assuming that the measured fluorescence intensity increases

with the fraction of chromosomes labelled, one can use

equation (2.2) to define the fraction of labelled cells in the lab-

elling phase as LðtÞ ¼
P1

n¼1 Hðln � luÞ NnðtÞ=NðtÞ, where lu is

the threshold BrdU intensity below which a cell is measured as

BrdU2. H(x) is a Heaviside function, i.e. H(x) ¼ 0 whenever

x , 0 and H(x) ¼ 1 otherwise, counting cells with ln ¼ lu
and up as BrdUþ. During the de-labelling phase, each cell

on average loses half of its labelled DNA strands per division.

Their fluorescence intensity is naturally defined as

ln;m ¼ ð1� 2�nÞ=2m (figure 1), and we can use equation (2.3)

to obtain the fraction of labelled cells in the de-labelling

phase. For the fraction of BrdUþ cells, this adds up to

LðtÞ ¼

P1
n¼1

Hðln� luÞ� fnðt; pÞ; if t� T;

P1
n¼1

P1
m¼1

Hðln;m� luÞ� fnðT; pÞ� fmðt�T; pÞ; otherwise:

8>><
>>:

ð2:4Þ

Thus, we mechanistically derived a simple two-parameter

model for self-renewing populations that—at no extra

assumptions—includes the effects of BrdU dilution
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Figure 2. Properties of the one-compartment model. Considering a population at steady state, with p ¼ d ¼ 0.1 day21, we depict the fraction of labelled cells
(equation (2.4) in a), the mean BrdU content (MBC) of the whole population (equations (2.5) and (2.6) in b), the MBC of BrdUþ cells (equation (2.7) in c) and the
MBC of BrdU2 cells (d ) for three reasonable detection limits, i.e. Iu ¼ 0.125 (solid line), 0.25 (short dashed line) and 0.5 (long dashed line). These detection limits
corresponds to 3, 2 and 1 divisions to become BrdU2, respectively, for a cell with high BrdU content (l � 0:5).
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during the de-labelling phase, provided one knows the

threshold BrdU intensity above which a cell is measured

as BrdUþ in the experiment. Because equation (2.4) is

defined as a fraction, it is independent of the death rate

d, which is a property shared with the solution of

equation (1.1) in §1.

The properties of this model are illustrated in figure 2a,

where we depict the fraction of BrdUþ cells for a population

at steady state with p ¼ d ¼ 0.1 day21 for three reasonable

values of the detection limit, i.e. lu ¼ 0:125; 0:25 and 0.5,

respectively. The three labelling curves increase in the same

manner because, for all three detection limits, the first division

already provides two BrdUþ daughter cells. By equation (2.4)

the initial up-slope of the curves is 2p because the mean of

the Poisson distribution
P1

n¼1 fnðt; pÞ ¼ 2pt and HðlnÞ ¼ 1 for

all values of n � 1. Thus, if the first division is sufficient to

breach the detection limit, the up-slope equation (2.4)

is identical to that of equation (1.1) in §1 (which is an expected

result). The de-labelling phase starts at T ¼ 10 days and we see

that the down-slope depends on the detection limit, and hence

does not reflect p, d, or p 2 d, as was derived in previous

models [13,25–27]. Importantly, the new model allows for a

decline in the fraction of BrdUþ cells in self-renewing popu-

lations, in the absence of additional assumptions such as a

source of unlabelled cells [13,25–27] or a faster death rate of

recently divided cells [28,29].

In addition to tracking the fraction of BrdUþ cells, the

complete BrdU intensity profiles, or their MFI, have also

been measured. As the fluorescence intensity is typically rep-

resented on a log scale, there is ambiguity on the meaning of

the term MFI as one could take the arithmetic mean, the geo-

metric mean, or the median. In our model, we only have a

measure for the BrdU content, i.e. ln or ln,m, of a cell, and

we therefore define the MBC as a measure for the MFI. The

MFI should be an increasing function of the MBC, with an

MBC of zero defining the mean autofluorescence, and

an MBC of 1 corresponding to the maximum MFI. Because

our model of equations (2.2) and (2.3) tracks the relative
BrdU content per cell, it is natural to define the total, IT,

and the mean, IM, BrdU content as

ITðtÞ ¼
X1
n¼1

lnNnðtÞ ¼ ð1� e�ptÞNðtÞ

and IMðtÞ
ITðtÞ
NðtÞ ¼ 1� e�pt;

9>>>>=
>>>>;

ð2:5Þ

which is valid because
P

n ð1� 2�nÞðð2ptÞn=n!Þ e�2pt ¼
ð1� e�ptÞ. This suggests that the rate at which the MBC

increases during the labelling phase reflects the division

rate p. For the de-labelling phase, one obtains

ITðtÞ ¼
X1
n¼1

X1
m¼1

ln;mNn;mðtÞ

¼ NðtÞe�ptðe pT � 1Þ1e�dtðe pT�1Þ

and IMðtÞ ¼
ITðtÞ
NðtÞ1e�ptðe pT � 1Þ;

9>>>>>>>=
>>>>>>>;

ð2:6Þ

which confirms the result of Bonhoeffer et al. [25] that during de-

labelling the MBC decreases with the proliferation rate, whereas

the total fluorescence intensity decreases with the death rate.

Because the BrdU MFI is typically estimated only for

BrdUþ cells, and not for the total population, it is useful to

also write the MBC for cells having at least a fraction lu of

their DNA strands labelled. This is simply done by cancelling

the BrdU2 subpopulations from the sum terms in

equations (2.5) and (2.6) using the Heaviside function. For

instance, for the labelling phase, this boils down to

IþT ðtÞ ¼
X1
n¼1

Hðln � luÞlnNnðtÞ;

IþMðtÞ ¼
IþT ðtÞP1

n¼1 Hðln � luÞNnðtÞ
:

9>>>>=
>>>>;

ð2:7Þ

Note that the latter expression is undefined for t � T if

lu � 0:5. For the de-labelling phase, one obtains the equival-

ent by using equation (2.3) and similarly adding Heaviside
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functions Hðln;m � luÞ. Similarly, one can calculate the MBC of

BrdU2 cells.

This result is important in several ways. First, the BrdU

dilution model can be tested by comparing predictions of the

model with experimentally measured dynamics of the fraction

of BrdUþ cells and BrdU MFI of BrdUþ cells. A good match

between the model predictions and the data would indicate

that BrdU dilution is indeed the main mechanism explaining

the loss of BrdUþ cells during the de-labelling phase. Second,

the BrdU dilution model involves an unknown parameter lu
(BrdU threshold level), and this parameter can be estimated

by fitting the model predictions on the dynamics of MFI of

BrdUþ or all cells in the population. Finally, as we will show

next, the MBC need not decline much in circumstances

where the fraction of BrdUþ cells is decreasing markedly.

The changes of the MBC during a typical BrdU labelling

experiment are depicted in figure 2b–d. The MBC of all cells

(figure 2b) does not depend on the detection limit lu and

increases and decreases with slope p ¼ d (see equations (2.5)

and (2.6)). Interestingly, the MBC of the BrdUþ subpopulation

behaves differently. The labelling phase starts at an MBC of

one-half because all divided cells at t! 0 will have half of

their DNA strands labelled. We observe an initial linear increase

in the MBC during the labelling phase because the average

number of divisions increases linearly with time, and most

cells have completed only one division. During the de-labelling

phase, the decline of the MBC depends on the limit of detection

(figure 2c). Note that the model predicts moderate changes in

the MBC of BrdUþ cells during the de-labelling phase. For

instance, when lu ¼ 0:25, we expect a rapid loss of BrdUþ

cells (figure 2b) in combination with a minor reduction in the

MBC of BrdUþ cells (figure 2c). This is interesting because pre-

vious authors have argued against a role of BrdU dilution in

explaining the loss of BrdUþ cells because they found that the

BrdU MFI was hardly declining [13].
2.2. Kinetic heterogeneity
Extending the work of Ganusov et al. [34], we define a kine-

tically heterogeneous population consisting of k-independent

subpopulations, each described by dNi=dt ¼ ð pi � diÞNi, for

i ¼ 1; 2; . . . ; k. The total number of cells is simply

NðtÞ ¼
Pk

i¼1 Nið0Þ eð pi�diÞt. Because during a BrdU exper-

iment the fraction of labelled cells in each of the

subpopulations should obey equation (2.4), one can similarly

define Li(t) as the fraction of BrdUþ cells in the ith subpopu-

lation. The fraction of labelled cells in the total population

would be LðtÞ ¼
Pk

i¼1 LiðtÞ. Summarizing, in theory, one

can extend equation (2.4) into k populations, having k, pi

and di parameters, and a k-dimensional initial condition

Ni(0) vector, and fit this model to BrdU data from any

kinetically heterogeneous population.

This heterogeneity model becomes much simpler for

populations at steady state because pi ¼ di for all i, and one

can define a vector ai for the fixed fraction of cells with

turnover rate pi ¼ di [34]. Therefore, we write

LðtÞ ¼

Pk
i¼1

ai
P1
n¼1

Hðln � luÞ � fnðt; piÞ; if t � T;

Xk

i¼1

ai

X1
n¼1

X1
m¼1

Hðln;m � luÞ � fnðT; piÞ

� fmðt� T; piÞ; otherwise;

8>>>>>>><
>>>>>>>:

ð2:8Þ
where ai is the fraction of cells with turnover rate pi ¼ di, and

fnðt; piÞ and fmðt; piÞ are the Poisson distributions defined ear-

lier. Owing to kinetic heterogeneity, the labelled cells will be

enriched in cell subpopulations with fast turnover rates, and

the initial down-slope of labelling curves will be faster than

the up-slope. Again, the decline of the BrdUþ cells need not

be a single exponential and can account for data that

appear to have an at least biphasic down-slope. A Mathema-

tica notebook implementing this model for fitting BrdU

labelling data is provided online (http://theory.bio.uu.nl/

vitaly/mathematica or http://web.bio.utk.edu/ganusov).

To test whether our novel model can properly describe BrdU

data, we have fitted the model (equation (2.8) with k ¼ 2) to

the BrdU data of Mohri et al. [13] for which rhesus macaques

were labelled with BrdU in the drinking water for a period of

three weeks, and were followed during a subsequent de-

labelling period of seven weeks. Total cell numbers are indeed

not supposed to change during the experiment. Animals were

classified into three groups: uninfected (U) and simian immuno-

deficiency virus (SIV)-infected monkeys with either a low (L) or

high (H) viral load. Representative fits of our novel model to

the data on BrdU labelling of CD3þCD45RA2CD4þ and

CD42 memory T cells in one monkey from each group are

depicted in figure 3. The new model describes these data at

least as well as previous models did [13,26,27]. Thanks to the

kinetic heterogeneity, the model readily accounts for the bipha-

sic down-slopes in the monkey H1284 with a high viral load.

Summarizing, we can account for the decline in the fraction of

BrdUþ cells during de-labelling without having to invoke an

external source of unlabelled cells [13,26,27] or a faster death

rate of recently divided cells [28,29].

The MBC of this kinetically heterogeneous cell population

model can be defined very similarly to above. For instance,

the MBC during the labelling phase is described by

ITðtÞ ¼
Xk

i¼1

NiðtÞ
X1
n¼1

lnfnðt; piÞ; IMðtÞ ¼
ITðtÞ
NðtÞ ; ð2:9Þ

where NiðtÞ ¼ Nið0Þ eð pi�diÞt, fnðt; piÞ is a Poisson distribution,

and NðtÞ ¼
Pk

i¼1 NiðtÞ. For the de-labelling phase, one

similarly obtains

ITðtÞ ¼
Xk

i¼1

NiðtÞ
X1
n¼1

X1
m¼1

ln;m � fnðT; piÞ � fmðt� T; piÞ;

IMðtÞ ¼
ITðtÞ
NðtÞ :

9>>>>=
>>>>;
ð2:10Þ

To model the MBC of just the BrdUþ population, one can

again extend the last two equations with the Heaviside functions

Hðln � luÞ and Hðln;m � luÞ, respectively. For a system at steady

state, N(t)¼ N, pi¼ di, ai is the fixed fraction of cells with turn-

over rate pi, and one substitutes NiðtÞ ¼ aiN into the equations.

Because the model is explicit in the number of divisions

that cells in the population have completed, the parameters

estimated for the six monkeys in figure 3 directly allow us

to predict the MBC in these monkeys. Using equations (2.9)

and (2.10), and their extensions computing the MBC of

BrdUþ cells only, we obtain the curves depicted in figure 4.

Interestingly, the changes in the MBC of BrdUþ cells

remain relatively moderate, varying around a relative MBC

of 0.5 within a range of 0.4–0.7. Thus, the reduction of the

BrdU MFI during the de-labelling phase may be very hard

http://theory.bio.uu.nl/vitaly/mathematica
http://theory.bio.uu.nl/vitaly/mathematica
http://theory.bio.uu.nl/vitaly/mathematica
http://web.bio.utk.edu/ganusov
http://web.bio.utk.edu/ganusov
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Figure 3. Fits of the novel mathematical model to experimental data on BrdU labelling of CD3þCD45RA2CD4þ and CD42 memory T cell data in monkeys [13]. We
fit the mathematical model given in equation (2.8) with k ¼ 2 kinetic compartments and a detection limit lu ¼ 0:25. The symbols denote the data, and the lines
depict the fit. Parameters for each fit can be found in tables 1 and 2. We show a representative example of an uninfected monkey (U1458), of a SIV-infected monkey
with a low viral load (L1394), and an infected monkey with a high SIV load (H1284).

Table 1. Parameters and their 95% CIs estimated by fitting equation (2.8) to the CD4þ memory T cells data of Mohri et al. [13]. The detection limit was set
to lu ¼ 0:25. Monkey H1314 was only labelled for two weeks and was fitted with T ¼ 14 days, all other monkeys with T ¼ 21 days. In fits we set
a2 ¼ 1� a1. Confidence intervals were calculated by bootstrapping the residuals with 1000 simulations.

monkey p1 (day21) p2 (day21) a1 a1p1 þ ð1� a1Þp2 (day21)

H1316 0.0041 (0.0019 – 0.0063) 0.081 (0.063 – 0.105) 0.56 (0.48 – 0.62) 0.038 (0.032 – 0.046)

H1284 0.0018 (0 – 0.0063) 0.049 (0.035 – 0.087) 0.57 (0.44 – 0.74) 0.022 (0.018 – 0.031)

H1292 0.0014 (0 – 0.0029) 0.034 (0.002 – 0.441) 0.92 (0.54 – 0.98) 0.004 (0.002 – 0.031)

H1296 0.0017 (0.0013 – 0.002) 0.398 (0.229 – 0.462) 0.86 (0.85 – 0.88) 0.056 (0.032 – 0.069)

H1314 0.0023 (0 – 0.0049) 0.072 (0.025 – 0.408) 0.82 (0.63 – 0.91) 0.015 (0.008 – 0.052)

H1348 0.0016 (0 – 0.0031) 0.072 (0.056 – 0.096) 0.66 (0.6 – 0.72) 0.025 (0.021 – 0.031)

H1442 0.0018 (0 – 0.0048) 0.050 (0.032 – 0.227) 0.71 (0.59 – 0.85) 0.016 (0.011 – 0.038)

L1294 0.0013 (0 – 0.0025) 0.046 (0.023 – 0.108) 0.86 (0.75 – 0.93) 0.008 (0.006 – 0.013)

L1324 0.0025 (0 – 0.0033) 0.036 (0.009 – 0.31) 0.93 (0.58 – 0.98) 0.005 (0.004 – 0.012)

L1380 0.0020 (0.0012 – 0.0027) 0.069 (0.043 – 0.115) 0.89 (0.84 – 0.92) 0.010 (0.007 – 0.013)

L1394 0.0016 (0.001 – 0.0019) 0.076 (0.049 – 0.12) 0.92 (0.89 – 0.94) 0.007 (0.006 – 0.01)

L1436 0.0029 (0 – 0.0062) 0.069 (0.039 – 0.143) 0.67 (0.51 – 0.8) 0.025 (0.017 – 0.041)

U1372 0.0030 (0.0025 – 0.0032) 0.092 (0.032 – 0.377) 0.97 (0.94 – 0.98) 0.005 (0.004 – 0.013)

U1426 0.0006 (0 – 0.0035) 0.015 (0.009 – 0.066) 0.67 (0.5 – 0.95) 0.005 (0.005 – 0.007)

U1458 0.0037 (0 – 0.0044) 0.058 (0.015 – 0.193) 0.93 (0.6 – 0.97) 0.007 (0.006 – 0.012)

U1466 0.0016 (0 – 0.0036) 0.031 (0.019 – 0.065) 0.75 (0.59 – 0.88) 0.009 (0.007 – 0.012)
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to detect in BrdU experiments even though the fraction of

BrdUþ cells is declining considerably, and our model seems

consistent with the observation that the BrdU MFI hardly

declines during the de-labelling phase [13].
2.3. Estimated turnover rates
Now that we have a simple and mechanistic model for BrdU

accumulation and dilution that is able to describe BrdU data

at least as well as previous models, the most relevant biological

question is whether the estimated turnover rates depend on the

choice of the model. One complication is the choice of the
detection limit, lu, which was not determined by Mohri et al.
[13]. Experiments with mice [23] and with hematopoietic

stem cells [21,24] indicate that BrdUþ cells result in BrdU2

progeny after approximately two to five divisions, respectively.

We have fitted all memory T cell data for several values of lu,

and found using the Akaike information criterion [35] that

most of the data are best described when lu ¼ 0:25. The quality

of the fit is, however, very similar for data from many animals

when lu ¼ 0:125 or lu ¼ 0:0625 (not shown). The estimated

turnover rates are somewhat higher for lower detection limits

because the model then requires more divisions to explain

the observed loss of BrdUþ cells (figure 5).
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Figure 4. Predicted changes in the mean BrdU content (MBC) of the heterogeneous model. Using the parameters estimated for three monkeys in figure 3 we
compute the MBC of all cells (dashed line) and of BrdUþ cells (solid line). The experimentally observed BrdU MFI in these monkeys should correlate with the
predicted MBC. The MBC of labelled cells hardly declines during the de-labelling phase, which is in agreement with data [13].

Table 2. Parameters and their 95% CIs estimated by fitting equation (2.8) to the CD42 memory T cells data of Mohri et al. [13]. The detection limit was set
to lu ¼ 0:25. Monkey H1314 was only labelled for two weeks and was fitted with T ¼ 14 days, all other monkeys with T ¼ 21 days.

monkey p1 (day21) p2 (day21) a1 a1p1 þ ð1� a1Þp2 (day21)

H1316 0.0042 (0 – 0.0075) 0.076 (0.058 – 0.107) 0.50 (0.39 – 0.59) 0.040 (0.033 – 0.05)

H1284 0.0019 (0 – 0.0063) 0.049 (0.038 – 0.072) 0.47 (0.37 – 0.63) 0.027 (0.022 – 0.034)

H1292 0.0007 (0 – 0.0037) 0.023 (0.003 – 0.429) 0.80 (0.31 – 0.97) 0.005 (0.003 – 0.031)

H1296 0.0017 (0.0007 – 0.0026) 0.087 (0.057 – 0.134) 0.82 (0.77 – 0.86) 0.017 (0.013 – 0.023)

H1314 0.0035 (0 – 0.0059) 0.052 (0.019 – 0.22) 0.82 (0.53 – 0.92) 0.012 (0.008 – 0.028)

H1348 0.0028 (0 – 0.0046) 0.049 (0.037 – 0.065) 0.64 (0.51 – 0.71) 0.019 (0.017 – 0.023)

H1442 0.0020 (0 – 0.0056) 0.048 (0.029 – 0.183) 0.68 (0.55 – 0.85) 0.017 (0.01 – 0.037)

L1294 0.0023 (0 – 0.0038) 0.065 (0.03 – 0.15) 0.83 (0.69 – 0.9) 0.013 (0.009 – 0.021)

L1324 0.0035 (0.0027 – 0.0043) 0.073 (0.058 – 0.09) 0.75 (0.71 – 0.79) 0.021 (0.018 – 0.024)

L1380 0.0030 (0.0005 – 0.0041) 0.089 (0.045 – 0.263) 0.82 (0.71 – 0.88) 0.018 (0.012 – 0.041)

L1394 0.0016 (0 – 0.0029) 0.060 (0.033 – 0.187) 0.84 (0.74 – 0.91) 0.011 (0.007 – 0.022)

L1436 0.0025 (0 – 0.0057) 0.053 (0.033 – 0.123) 0.67 (0.52 – 0.81) 0.019 (0.013 – 0.032)

U1372 0.0028 (0 – 0.0038) 0.047 (0.021 – 0.1) 0.87 (0.67 – 0.92) 0.008 (0.006 – 0.013)

U1426 0.0024 (0 – 0.0032) 0.037 (0.018 – 0.082) 0.88 (0.69 – 0.94) 0.007 (0.005 – 0.009)

U1458 0.0037 (0 – 0.0064) 0.014 (0.008 – 0.126) 0.68 (0.24 – 0.98) 0.007 (0.007 – 0.01)

U1466 0.0010 (0 – 0.0028) 0.044 (0.032 – 0.07) 0.79 (0.72 – 0.88) 0.010 (0.008 – 0.013)
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We therefore depict the estimated turnover rates for CD4þ

and CD42 memory T cells in figure 5 for the two reasonable

values of lu, and observe that the turnover rates do not

strongly depend on the choice between these detection limits.

To test whether the estimated turnover rates differ between

the models, we have refitted all memory T cell data from the

Mohri et al. [13], and in figure 6 we depict our best estimates

together with those obtained in De Boer et al. [27].

The turnover rates estimated by the source model are

somewhat higher than those in the dilution model, but the

estimates made by both models correlate very well. One

reason for the higher average turnover rates estimated by

the source model could be due to the fact that this model
has a single exponential to describe the sometimes biphasic

up- and down-slopes, whereas the kinetic heterogeneity in

the dilution model readily accounts for biphasic curves.

Fortunately, the difference between the two sets of estimates

is not large, and would have been even smaller if we had

fitted the data with the—slightly suboptimal—lu ¼ 0:125

because that tends to give higher turnover rates for these

data (figure 5).

The individual estimates in tables 1 and 2 show that the

parameters p1, p2 and a have quite wide confidence intervals,

and that when these get combined into an average turnover
�d ¼ �p ¼ a1p1 þ ð1� a1Þp2, this average has much more

narrow confidence limits.
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Apparently, the p1, p2 and a parameter estimates are not

independent; for example, a high pi can be compensated for

by a small ai. This confirms earlier conclusions that one can

only robustly estimate an average turnover rate from the

labelling data of heterogeneous populations [26,27,36].

2.4. Cells produced by a source
This paper is about explaining the loss of the fraction of

BrdUþ cells during de-labelling in self-renewing populations.

Still, we would like to extend our analysis for cell types that

are partly, or largely, maintained by an external source.

Examples would be naive T cells originating from the

thymus, B cells from the bone marrow, and one could

argue that even memory T cell populations are partly main-

tained by a source of clonally expanded naive T cells after

antigenic stimulation.
Thus, we extend equation (1.1) in §1 and go back to the

original model proposed by Mohri et al. [13],

dNU

dt
¼ �ð pþ dÞNU

dNL

dt
¼ sþ 2pNU þ ð p� dÞNL

9>=
>;during labelling

and

dNU

dt
¼ sþ ð p� dÞNU

dNL

dt
¼ ð p� dÞNL

9>>=
>>;

during de-labelling; ð2:11Þ

where we, for simplicity, assume that the source of s cells

per day consists of labelled versus unlabelled cells during

the two phases of the experiment, respectively. Using

the same methodology as in §1, we find that dL/dt ¼
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[2p þ s/N(t)](1 2 L) during the labelling phase, and

that dL/dt ¼ 2 [s/N(t)]L during the de-labelling phase.

The s/N(t) term can be interpreted as the daily fractional

replacement by the source. Indeed, we see that allowing for

an unlabelled source allows for a loss of BrdUþ cells at a

rate of turnover due to the source. If the total cell number

N(t) is changing during the experiment, i.e. by dN/dt ¼
s þ ( p 2 d )N, it is difficult to assign a simple interpretation

to the up- and down-slopes, and one would have to know

the total cell number, N(t), over time to fit the data. If,

on the other hand, the total cell number is not changing

over the experiment, one can substitute N ¼ s=ðd� pÞ
to ‘rediscover’ that dL/dt ¼ ( p þ d )(1 2 L) during the

labelling phase, and that dL=dt ¼ ð p� dÞL during

the de-labelling phase. Obviously, if s ¼ 0 we obtain the

dL/dt ¼ 2p(1 2 L) ¼ 2d(1 2 L) and the dL/dt ¼ 0 results dis-

cussed earlier. Importantly, if one is describing a population

that is solely maintained by the source, i.e. p ¼ 0, the equations

become dL/dt ¼ d(1 2 L) and dL/dt ¼ 2 dL, respectively.

Thus, if naive and memory T cells were to have the same

expected lifespan, 1/d, i.e. the same turnover rate d, one still

expects a twofold higher up-slope for self-renewing memory

T cells than for the non-dividing naive T cells. In other

words, if one is labelling naive and memory T cells with

BrdU and observes a twofold higher up-slope in the memory

T cell data, this should not be taken as evidence for a twofold

faster turnover, but would rather suggest equal turnover

rates. This model also predicts different down-slopes for

memory and naive T cells, i.e. flat and 2d, but as we argued

above that at least part of the down-slope is readily explained

by BrdU dilution, this has little predictive power.

2.5. Division-linked/death model
In our basic mathematical model, we assumed that

division and death of cells in the population are indepen-

dent processes, and that, after cell division, both daughter

cells have equal chances of dying. Alternatively, cell division

may be associated with an increased chance of death, or,

owing to asymmetric division of cellular proteins, one of the

daughter cells may experience a higher chance of death than

the other cell. Such division-linked models have been dis-

cussed previously for the analysis of CFSE data [3,33].

Extending equation (1.1) with division-linked death, the

dynamics of the labelled and the total number of cells during

the labelling phase are then given by equations

dNL

dt
¼ 2pð1� fÞNU � ð pþ dÞNL;

dN
dt
¼ 2pð1� fÞN � ð pþ dÞN;

9>=
>; ð2:12Þ

where f is the probability of cell death following division. Pro-

ceeding as above, the dynamics of the fraction of BrdUþ cells

in the population is dL/dt ¼ 2p(1 2 f)(1 2 L), and is therefore

increasing at the initial slope of 2p(1 2 f ). For the steady state

of a self-renewing population in which all death is linked to

division (d ¼ 0), one obtains that f ¼ 1/2, and that the initial

up-slope is simply p, which corresponds to the average rate of

cell turnover. When cell death is not linked to cell division,

i.e. if f ¼ 0, this slope is 2p (see equation (1.1)), or twice the aver-

age turnover rate at steady state. Thus, the initial slope of the

fraction of labelled cells, and, as a result, the estimate of the aver-

age turnover rate, depends on the details of how death is

distributed over the life cycle of the self-renewing cells. The
same twofold difference in estimates of the rate of cell division

complicates the quantitative interpretation of CFSE data [3,33].
3. Discussion
In this paper, the conventional birth–death model for a self-

renewing population was re-formulated into a mechanistic

BrdU accumulation and dilution model based upon the exact

number of divisions cells have completed. The main advantage

of this approach is that one can account for BrdU dilution during

the de-labelling phase without having to introduce new assump-

tions. If the detection limit below which cells are scored as

BrdU2 is known, this model readily accounts for the loss of

BrdUþ cells during de-labelling where the division rate p
matches the death rate d. Thanks to the simple structure of the

model, it was also straightforward to extend this model with kin-

etic heterogeneity, and we have shown that a two-compartment

model consisting of a slow and a more rapid subpopulation

provides a good description of existing BrdU data.

We have seen that the de-labelling phase of this model

is not reflecting the death rates, nor the difference between

the division and the death rates in the population, and is

influenced by the kinetic heterogeneity of the population,

the detection limit and the degree of labelling that cells

have achieved during the labelling phase. It is therefore not

correct to use simple regression techniques to estimate

the exponentials underlying observed de-labelling curves,

and to interpret these exponentials as the death rates of

subpopulations of the cells that were labelled [17–19].

By combining CFSE with BrdU labelling experiments,

Takizawa et al. [22] showed that the BrdU intensities of cells

saturate with the number of divisions these cells have com-

pleted (their figure 1b). This seems to be in a reasonable

agreement with the definition ln ¼ 1� 2�n (figure 1). In the

data, there is a wide distribution of BrdU intensities for each

value of n [22]. However, even after one division in the pres-

ence of BrdU, a large fraction of the cells remains below the

detection threshold, suggesting a low efficacy of BrdU label-

ling in this experiment. Indeed, it is possible that the efficacy

of BrdU incorporation in the DNA during the labelling

phase varies with the cell type and the cell location in the

body, and it probably depends on the local BrdU con-

centration. The incorporation of the efficacy of BrdU

labelling in our mechanistic model is a challenging task.

Mechanistically, one expects that a low efficacy of BrdU incor-

poration translates into a lower level of labelling of each newly

synthesized DNA strand, and hence into a lower level of fluor-

escence of the whole cell. The observed distribution of BrdU

intensities for each value of n [22] would then be a conse-

quence of heterogeneity between cells in the incorporation of

BrdU, as there will be a distribution of BrdU intensities of

cells having a fraction ln ¼ 1� 2�n of their DNA strands

labelled. Because labelling efficacy can change with every div-

ision owing to cells dividing in different locations in the body,

the model will have to involve a probability distribution for

labelling efficacy. Extensions of the mathematical models

that include probabilistic nature of BrdU incorporation in the

DNA will be addressed in future work.

We have shown that the estimates of the average turnover

rate obtained with BrdU labelling depend on the detection

threshold lu, i.e. on the number of divisions required for a

BrdUþ cell to result in BrdU2 progeny. Lower lu in general
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results in higher estimates for the average turnover rates

(figure 5). For obtaining precise estimates of the average turn-

over rate, it is therefore critical to have good estimates for the

detection limit. We see at least two possible approaches for

obtaining an estimate for the critical BrdU intensity, lu, in any

particular experimental set-up. First, one can harvest cells at

the end of the labelling phase, label these with CFSE and

trace in vitro after how many divisions these cells become

BrdU2. Second, one could stay with the in vivo data by tracing

not only the fraction of BrdUþ cells over time, but also the

dynamics of MFI of all cells, or possibly only that of BrdUþ

cells. Fitting these data simultaneously by the mathematical

model (equations (2.8)–(2.10)) might allow one to obtain well-

defined estimates for both the rate of lymphocyte turnover pi

and the critical BrdU intensity lu. It remains to be established

whether combining the data on the fraction and the BrdU

MFI provides enough information to estimate these two

parameters with a sufficient level of confidence.

In populations maintaining themselves with transient bursts

of proliferation, one expects that a higher death rate of the

recently divided, and hence BrdUþ, cells contributes to the loss

of BrdUþ cells during de-labelling [28–30]. This is sometimes

called ‘temporal heterogeneity’ [37]. Recently, we developed

simple models for temporal heterogeneity [36], and showed

that if one were to perform labelling experiments with deuterium

in such a system, the solutions describing the labelling curves

would be very similar to those of the kinetic heterogeneity

model considered here, and developed by Ganusov et al. [34].

A similar analysis has yet to be performed for BrdU labelling

as it is not obvious that temporal and kinetic heterogeneity will

result in similar equations for the fraction of BrdUþ cells.

For various reasons, it is preferable to label with deuter-

ium rather than with BrdU, and the only good reason for

using BrdU is that the fraction of BrdUþ cells can be deter-

mined by flow cytometry, making it cheaper and simpler

than deuterium labelling. Deuterium should have no side-

effects in terms of toxicity or being mitogenic, and under

steady-state conditions deuterium data are much easier to

interpret. During deuterium labelling, one tracks the enrich-

ment of deuterium in the total DNA, and not in individual

cells. In other words, the general equations are

dNU

dt
¼ �dNU;

dNL

dt
¼ sþ pN � dNL

9>>=
>>;

during labelling

and

dNU

dt
¼ sþ pN � dNU;

dNL

dt
¼ �dNL

9>>=
>>;

during de-labelling; ð3:1Þ

where NU and NL are proportional to the number of labelled

and un-labelled DNA strands in the population [38], and for

simplicity we let the source be completely labelled or un-

labelled during the two phases of the experiment,
respectively. By defining L ¼ NL=N as the fraction of labelled

strands, one readily arrives at the dL=dt ¼ ½ pþ s=N�ð1� LÞ
and the dL=dt ¼ �½ pþ s=N�L during labelling and de-

labelling, respectively. Thus, when the total cell number is

not at a steady state, one would have to know N to be able

to fit the deuterium enrichment. However, assuming

steady state, these expressions become the satisfyingly

simple dL=dt ¼ dð1� LÞ and dL=dt ¼ �dL, respectively.

Thus, whether or not part of the cells is maintained by a

source, the up- and down-slope can correctly be interpreted

as the death or turnover rate of the population. This was

not the case for BrdU labelling curves where we expect a two-

fold difference in the up-slope of cells maintained by division

or a source (see equation (2.11)).

Combining BrdU and deuterium labelling may allow one

to estimate the contributions of cell division and cells from a

source to the overall cell turnover. Our analysis mentioned

earlier suggests that during labelling the increase in the

fraction of BrdUþ cells occurs at the initial slope of a1 ¼

2p þ s/N, while the deuterium enrichment during labelling

will increase at an initial slope a2 ¼ p þ s/N. The difference

between the slopes, i.e. a1 2 a2 ¼ p, therefore provides an

estimate for the rate of cell division in the population, and

2a2 2 a1 ¼ s/N is an estimate for the daily replacement of

cells in the population from the source.

The model that we have developed seems to be a good

first choice for fitting BrdU data measured in self-renewing

populations because it does not require additional assump-

tions other than the existence of a detection limit, and

because it can easily be extended with kinetic heterogeneity.

Although this is a major step forward, the new model is not

completely general. In order to estimate the rate of turnover

of cells in a population, one needs to know how new cells

in that population are produced. Production by division of

cells within the population requires a different model from

production by influx of cells from another cell population.

Other complications include the effect of temporal heterogen-

eity [36], and the possibility of division-linked death whereby

cell division on average leads to fewer than two daughter

cells [3,33,39]. Nevertheless, the new model should improve

the interpretation of BrdU data measured in self-renewing

populations, and opens new venues for combining of label-

ling with both deuterium and BrdU.

We thank Hiroshi Mohri and David Ho for sharing their BrdU data
with us, and Ruy Ribeiro for helpful comments on an earlier version
of this paper. The work of R.J.D.B. was supported by an NWO Vici
grant no. 016.048.603 and the work of V.V.G. was supported in
part by the start-up funds of the University of Tennessee and in
part by a grant from the Russian Ministry of Education (NK-550P/
2). Part of this research was performed at the Santa Fe Institute.
Endnote
1Note that Kiel et al. [24] wrote a similar model for BrdU accumulation,
but while considering random segregation they incorrectly assumed
that after the second division all DNA strands were labelled.
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