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Synthetic gene circuits for metabolic
control: design trade-offs and constraints
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Centre for Synthetic Biology and Innovation, Department of Bioengineering, Imperial College London,
London SW7 2AZ, UK

A grand challenge in synthetic biology is to push the design of biomolecular

circuits from purely genetic constructs towards systems that interface different

levels of the cellular machinery, including signalling networks and metabolic

pathways. In this paper, we focus on a genetic circuit for feedback regulation

of unbranched metabolic pathways. The objective of this feedback system is

to dampen the effect of flux perturbations caused by changes in cellular

demands or by engineered pathways consuming metabolic intermediates. We

consider a mathematical model for a control circuit with an operon architecture,

whereby the expression of all pathway enzymes is transcriptionally repressed

by the metabolic product. We address the existence and stability of the

steady state, the dynamic response of the network under perturbations, and

their dependence on common tuneable knobs such as the promoter character-

istic and ribosome binding site (RBS) strengths. Our analysis reveals trade-offs

between the steady state of the enzymes and the intermediates, together with a

separation principle between promoter and RBS design. We show that enzy-

matic saturation imposes limits on the parameter design space, which must

be satisfied to prevent metabolite accumulation and guarantee the stability of

the network. The use of promoters with a broad dynamic range and a small

leaky expression enlarges the design space. Simulation results with realistic

parameter values also suggest that the control circuit can effectively

upregulate enzyme production to compensate flux perturbations.
1. Introduction
Synthetic biology aims at engineering cellular systems to perform customized

and programmable biological functions. The seminal works published in

2000 [1,2] kick-started the development of a wide range of gene circuits with

prescribed functions, including bacterial logic gates [3], mechanisms for pro-

grammed cell-to-cell communication [4] and light-responsive modules [5].

This progress has recently been followed by the so-called ‘second wave’ of

synthetic biology [6], which aims at scaling up the designs from individual gen-

etic modules to whole cellular systems that operate across different layers of

cellular regulation, including signalling networks and metabolic pathways [7,8].

One of the most prominent applications of synthetic biology is the manipu-

lation of bacterial metabolism for chemical production in sectors such as

energy, biomedicine and food technology [6]. Effective control of metabolism

hinges on the ability to upregulate or downregulate pathways in response to

changes in the intracellular conditions, cell requirements or environmental per-

turbations [9]. These requirements call for dynamic control strategies that

can modulate enzyme expression in a metabolite-dependent fashion [10,11].

One of the key bottlenecks in this respect is our limited understanding of

how genetic design knobs modulate the metabolic responses.

The goal of this paper is to reveal new insights into the design limitations and

trade-offs arising from the interplay between gene circuits and metabolic pathways.

To that end, we analyse a dynamic model for a feedback system comprising non-

linear kinetic equations for the metabolic species, together with product-

dependent enzyme expression controlled by a synthetic gene circuit. We focus
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Figure 1. Control design for metabolic pathways. (a) Transcriptional regulation of metabolic pathways seen as a feedback control system: effector molecules (such as
transcription factors) sense metabolite concentrations and modulate the expression of catalytic enzymes, which act as inputs to the pathway. (b) Engineered
pathways can divert part of the native metabolic flux to the production of foreign compounds. (Online version in colour.)
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on the existence and stability of the steady state, the dynamic

response of the network under perturbations and the depen-

dence of these on the design knobs of the synthetic gene circuit.

Two landmark implementations of engineered genetic–

metabolic circuits are the genetic control of lycopene

production [12] and the metabolic oscillator described in

Fung et al. [13]. These works were followed up by the recent

study by Zhang et al. [14], whereby the authors reported the

first successful implementation of a genetic control circuit to

increase biofuel production. In a way akin to man-made tech-

nological systems, the use of feedback control plays a pivotal

role in ‘robustifying’ pathway dynamics under changing

environmental conditions, cell-to-cell variability and bio-

chemical noise. Despite the ubiquity of control engineering

methods [15], only a few works have rigorously addressed

the problem of genetic feedback design on the basis of math-

ematical models. Notably, Anesiadis et al. [16] demonstrated

the use of a genetic toggle switch [2] as an ON–OFF controller

for metabolism, whereas Dunlop et al. [17] explored different

genetic control architectures for biofuel production.

From a control engineering standpoint, catalytic enzymes

act as inputs to a metabolic pathway in order to drive the metab-

olite dynamics (i.e. the outputs). The pathway outputs are then

sensed by metabolite-responsive molecules that can modulate

enzyme expression levels (e.g. transcription factors (TFs) or

riboswitches [18]). In the control engineering jargon, this feed-

back system can be seen as a ‘plant’ (i.e. the pathway to be

controlled), and a ‘controller’ (i.e. the gene regulatory circuit

controlling the expression of the catalytic enzymes); see

figure 1a. The design of the genetic controller must then account

for two complementary control objectives: firstly, it must dyna-

mically adjust pathway activity to match the cellular demand

for product and sustain the homeostatic balance of native cellu-

lar processes. Secondly, a common strategy in metabolic

engineering is to modify host microbes by expressing heter-

ologous enzymes that convert metabolic intermediates into a

chemical of interest [19]. The consumption of intermediates

diverts part of the flux allocated to the host native processes

(figure 1b), and, therefore, the controller must also alleviate

the impact of these engineered pathways on the native flux.

In this paper, we study an unbranched metabolic path-

way under transcriptional repression from the product. The

synthetic circuit consists of an operon encoding all the cataly-

tic enzymes that is repressed by a product-responsive TF (§2).

The operon feedback architecture mimics natural circuits

enabling cellular adaptations to environmental perturbations

(e.g. in bacterial amino acid metabolism [20] and nutrient

uptake [21]). To maintain a general analysis, we do not

specify the kinetics of the metabolic model, but rather work

with a generic class of enzyme turnover rates satisfying
mild assumptions. These are satisfied by a wide range of

saturable enzyme kinetics, including Michaelis–Menten kin-

etics and cooperative behaviour described by sigmoidal

kinetics [22]. We parameterize the genetic model in terms

of the promoter characteristic and the ribosome binding site

(RBS) strengths, which are typical design elements used as

tuneable knobs in synthetic biology applications. As with

the enzyme kinetics, we do not fix the shape of the promoter

characteristic, but rather consider a generic class of repressive

functions that account, in particular, for the standard Hill

equation model for transcriptional repression [23].

Model analysis revealed that enzymatic saturation and

promoter leaky expression limit the RBS strength design

space (§3.1). These constraints must be satisfied to guarantee

the existence of an equilibrium point, to prevent the accumu-

lation of metabolites and to ensure the stability of the

network under small perturbations. The feasible set for the

RBS strengths depends critically on the promoter leakiness

and substrate availability. Within the feasible set, RBS

strengths may be used to fine-tune the balance between the

intermediate metabolite levels and the gene expression

burden imposed on the host cell. We also obtained analytical

formulae for the modes of the feedback system; these showed

that the operon architecture leads to slow fixed modes, and

suggests a separation principle between the effect of RBS

strengths and the promoter characteristic (§3.2).

We also show that engineered pathways consuming an inter-

mediate add further constraints to the RBS strengths design

space, which can be relaxed by using promoters with a high

dynamic range and small leakiness (§4.1). We performed

numerical simulations of the model with physiologically realistic

parameters in Escherichia coli (§§3.2 and 4.2). The simulations

show that the control circuit can effectively upregulate enzyme

production to compensate an increase in the cell’s native

demand for product and the impact of engineered pathways.

These also suggest that, in terms of both flux and product homeo-

stasis, the synthetic circuit always outperforms an uncontrolled

pathway (i.e. with constant enzyme levels), thus highlighting

the advantages of using a dynamic feedback control strategy.
2. Unbranched pathway under transcriptional
feedback regulation

We consider an unbranched metabolic pathway as in figure 2b,

where s0 denotes the concentration of substrate, s1 and s2 are

intermediate metabolites and s3 is the metabolic product. The

metabolic reactions occur at a rate vi (each one catalysed by an

enzyme with concentration ei) and d denotes the rate of product

consumption by the cell. The metabolic genes are encoded in a



ribosome
binding site

s0 s1 s2
v1 v2

e2e1

s3
v3

e3

d transcription
factor
promoter

coding region

Figure 2. Generic model for an unbranched metabolic pathway under
transcriptional repression from the product. The enzymes ei catalyse the
reactions at a rate vi, and the cell consumes the product at a rate d. The
enzymes are encoded in an operon under the control of a single promoter
that is repressed by a TF. (Online version in colour.)
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single operon controlled by a product-responsive TF that

represses enzyme expression. This kind of transcriptional feed-

back is common, for example, in bacterial nutrient uptake

systems (e.g. the lactose operon [21]) and amino acid

metabolism (e.g. the tryptophan operon [20]).
 20120671
2.1. Metabolic pathway
The network in figure 2 exchanges mass with the environ-

ment and/or other networks in the cell. The model

accounts for this interaction via the input substrate s0 and

the product consumption rate d. We are interested in biologi-

cally meaningful phenotypes, and, therefore, we assume that

s0 is constant to ensure that, the network can reach a non-zero

steady state [24]. Note that, if the substrate decays in time, the

network eventually reaches a zero equilibrium, whereby the

substrate, intermediate metabolites and product are fully

depleted. The constant substrate assumption is also suitable

for scenarios where s0 is an extracellular substrate pool

shared by a low-density cell population (so that the effects

of cell-to-cell competition are negligible).

In a pathway with n reactions and n metabolites, the rate

of change of metabolite concentrations can be described by

_si ¼ viðsi�1; eiÞ � viþ1ðsi; eiþ1Þ; ð2:1Þ

for i ¼ 1, 2, . . . , n and vnþ1 ¼ d(sn). This model arises from the

mass balance between the reactions that produce and con-

sume si, and the enzyme kinetics are included in the

reaction rates vi(si21, ei). To keep a general analysis, we will

not presuppose a specific form for the enzyme kinetics.

Instead, we will generically assume that the metabolic

reaction rates are linear in the enzyme concentrations [22]

viðsi�1; eiÞ ¼ giðsi�1Þei; ð2:2Þ

where gið�Þ is the enzyme turnover rate (i.e. the reaction rate per

unit of enzyme concentration) satisfying gi(0)¼ 0. We will also

assume that the enzyme turnover rates are increasing and

saturable functions of the metabolite concentrations, so that

g0iðsi�1Þ ¼
@giðsi�1Þ
@si�1

. 0 ð2:3Þ

and

lim
si�1!1

giðsi�1Þ ¼ ĝi : ð2:4Þ

Assumptions (2.2)–(2.4) account for a broad class of saturable

enzyme kinetics, including both irreversible Michaelis–

Menten and Hill equation kinetics [22,25].

The rate of product consumption d(sn) is typically mod-

elled as a saturable function of Michaelis–Menten type [20],

but, for the sake of generality, we will consider a generic satur-

able function d(sn) satisfying d(0) ¼ 0, d0 ¼ @dðsnÞ=@sn . 0 and
limsn!1dðsnÞ ¼ dmax (cf. assumptions (2.3) and (2.4) for the

turnover rates). The cellular demand for product depends on

the concentration of a product-catalysing enzyme (which is

not explicitly modelled in (2.1)). For typical consumption

kinetics such as the Michaelis–Menten or Hill equation, the

maximal consumption rate dmax is proportional to the enzyme

concentration, and therefore in our model we can describe

changes in cellular demand as changes in the parameter dmax.
2.2. Synthetic gene circuit
In an operon architecture all the enzymes are under the con-

trol of a single promoter (for the multi-promoter case see

[26]), and therefore we model the expression of catalytic

enzymes as

_ei ¼ bi|{z}
RBS

strength

ðk0 þ k1sðsnÞÞ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
promoter

characteristic

�giei; ð2:5Þ

for i¼ 1, 2, . . ., n. This model comes from the balance between

protein synthesis and degradation. We consider a first-order

degradation process with kinetic constants gi, which accounts

for the aggregate effect of degradation and dilution by cell

growth. A common strategy in synthetic biology is to control

protein degradation by adding a degradation tag to the

gene sequence [27], and thus we assume that all enzymes are

tagged and degraded at the same rate, i.e. gi¼ g. In the model

(2.5), we have parameterized enzyme expression in terms

of the promoter characteristic and RBS strengths, both of

which are common design elements in synthetic gene circuits

(figure 3a):

— Promoter characteristic. It describes the regulatory effect

of the TF on gene transcription. The function sð�Þ depends

on the specific molecular mechanisms underlying the

product–TF and TF–promoter interactions. In order to

keep a generic description of the regulatory effect, and

to parameterize the model in terms of experimentally

accessible design parameters, we opt for a phenomenolo-

gical description of the promoter characteristic. We

therefore consider a function sð�Þ that depends directly

on the product concentration and represents the net

effect of the product on the transcription rates. Gene tran-

scription under the action of a repressible promoter is

typically modelled using Hill functions, but to keep the

analysis general we consider generic transcription repres-

sion functions satisfying s(0) ¼ 1, s0 ¼ @s=@sn , 0 and

limsn!1sðsnÞ ¼ 0.

Promoters are typically described in terms of their

tightness (k0) and strength (k1); see figure 3b. The tightness

refers to the level of baseline transcription (i.e. under full

repression by the product), whereas the strength is the

gap between the ON and OFF transcription levels. The

promoter strength is quantified in terms of the dynamic
range m,

m ¼ k0 þ k1

k0
: ð2:6Þ

Note that, since the promoter strength is always positive,

the dynamic range satisfies m � 1, and we can model the

uncontrolled case (i.e. pure constitutive expression with-

out regulation) by taking m ¼ 1.

— Ribosome binding site strengths. RBSs are mRNA sequences

that are bound by the ribosomes to initiate translation
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Figure 3. Tuneable knobs in a synthetic operon control circuit. (a) The promoter characteristic and RBS strengths modulate gene transcription and translation rates,
respectively (the symbols are described in the legend of figure 2). (b) Sigmoidal characteristic of a repressible promoter. (Online version in colour.)
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[10]. The translation rate of the enzymes can then be

modified by choosing RBS sequences with different affi-

nities to ribosome binding [28]. We model the effect of

the RBS strengths on the enzyme expression rate via the

parameters bi.

With the above assumptions and definitions, we can

write the complete model for the feedback system as

_si ¼ giðsi�1Þei � giþ1ðsiÞeiþ1; i ¼ 1; 2; . . . ; n� 1;
_sn ¼ gnðsn�1Þen � dðsnÞ;
_ei ¼ biðk0 þ k1sðsnÞÞ � gei; i ¼ 1; 2; . . . ;n:

9=
;
ð2:7Þ

In the remainder of the paper, we focus on the existence

and stability of the steady state of the model (2.7), its

response to perturbations, and its behaviour as a function

of the promoter characteristic and the RBS strengths.

3. Circuit design for cellular demands
3.1. Trade-offs and constraints in the design of

ribosome binding site strengths
The operon circuit must be able to sustain a metabolic flux

that feeds the product into the downstream native processes

of the host. In this section, we show how this essential

requirement translates into constraints on the RBS strength

design space.

We will denote the steady-state metabolite concentrations,

enzyme concentrations and reaction rates as �si, �ei and �vi,

respectively. We first note that the steady-state enzyme concen-

trations can be obtained by setting _ei ¼ 0 in (2.7), leading to

�ei ¼
bi

g
ðk0 þ k1sð�snÞÞ; for all i: ð3:1Þ

At steady state, the product consumption rate dð�snÞ determines

the metabolic flux of the network by the relation �v1 ¼ dð�snÞ,
and therefore the steady-state product concentration must

satisfy dð�snÞ ¼ g1ðs0Þ�e1. Combining this expression with (3.1)

for the first enzyme, we obtain an implicit equation for the

steady-state concentration of the product

dð�snÞ
g1ðs0Þ

¼ b1

g
ðk0 þ k1sð�snÞÞ: ð3:2Þ
The equilibrium concentrations of the intermediates can

be obtained by setting gið�si�1Þ�ei ¼ g1ðs0Þ�e1 for i � 2,

gið�si�1Þ ¼ g1ðs0Þ
�e1

�ei
¼ g1ðs0Þ

bi

b1

� ��1

; for all i � 2: ð3:3Þ

The solution of the implicit equation (3.3) gives the steady-

state concentrations of the intermediates as a function of the

RBS ratio bi/b1. Note that because the enzyme turnover

rates gi are monotonically increasing functions, increasing

the bi/b1 ratio leads to a lower steady-state concentration of

the intermediate si21. From equations (3.2) and (3.3), we

can infer how the different tuning knobs affect the steady

state of the network:

— Effect of the promoter characteristic. From the steady-state

equation in (3.2), we can calculate (see appendix A.1 for

a detailed derivation) the sensitivity of the product con-

centration to changes in promoter tightness k0, promoter

strength k1 or RBS strength b1,

d�sn

dk0
¼ b1

g
Fð�snÞ; ð3:4Þ

d�sn

dk1
¼ b1

g
sð�snÞFð�snÞ ð3:5Þ

and
d�sn

db1
¼ dð�snÞ

g1ðs0Þb1
Fð�snÞ; ð3:6Þ

where Fð�snÞ ¼ ðd0ð�snÞ=g1ðs0Þ � ðb1k
1=gÞs0ð�snÞÞ�1. We note

that since d0ð�snÞ . 0 and s0ð�snÞ , 0, the function Fð�Þ is

positive and therefore the sensitivities in (3.4)–(3.6) are

also positive. We thus conclude that an increase in the

promoter parameters (k0 and k1) or RBS strength b1 will

lead to a higher steady-state product concentration,

which in turn translates into a higher flux. Moreover,

since the genes cannot be transcribed at a rate beyond

(k0þ k1), from (3.2), we observe that the flux is con-

strained by the promoter parameters according to

dð�snÞ , g1ðs0Þ
b1

g
ðk0 þ k1Þ: ð3:7Þ
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— Effect of the RBS strengths. Using (3.1), we can write the

steady state of the downstream enzymes as

�ei ¼
bi

b1
�e1; for all i � 2; ð3:8Þ

which indicates that a higher bi/b1 ratio leads to a higher

concentration for the ith enzyme. Taken together,

equations (3.3) and (3.8) indicate that the concentrations

of enzymes and intermediates can both be adjusted by

tuning the RBS ratio bi/b1. Comparing the dependencies

of (3.3) and (3.8) on the RBS ratio reveals a design trade-

off between enzyme expression and the intermediate

metabolite concentrations (figure 5a): low bi/b1 ratios

lead to low enzyme expression levels at the expense of

high concentrations for the intermediates. Conversely,

high bi/b1 ratios tend to increase enzyme expression

(and therefore the gene expression burden on the host

cell) in favour of low concentrations for the intermediates.

In the above discussion, we have implicitly assumed that a

solution to equations (3.2) and (3.3) exists. However, because
of the saturable characteristic of the product consumption rate

(d) and enzyme kinetics (gi), both equations may lack a solution.

Firstly, the solution of (3.2) can be computed as the intersection

of the two curves shown in figure 4. From these plots, we can

see that an intersection exists only when dmax/g1(s0 ) . b1k
0/

g, or equivalently

b1 ,
dmaxg

g1ðs0Þk0
; ð3:9Þ

which defines a constraint on the RBS strength of the first

enzyme. Since both sides of (3.2) are monotonic in �sn, the

solution is unique. By equation (3.1), the existence of �sn

also guarantees the existence of the steady-state enzyme

concentrations.

Secondly, since the enzyme turnover rates saturate at ĝi,

equation (3.3) has a finite solution provided that

bi

b1
.

g1ðs0Þ
ĝi

; for all i � 2; ð3:10Þ

which defines a constraint on the bi/b1 ratio. Taken together,

conditions (3.9) and (3.10) define a feasible region in the RBS
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strengths design space that prevents the accumulation of

intermediates and product (figure 5b). If the condition in

(3.9) is not satisfied, the substrate will be consumed at a

higher rate than the maximal product consumption, and

therefore the design will lead to an infinite accumulation of

the product. Likewise, violation of at least one of the

bounds in (3.10) will cause enzymatic saturation and lead

to infinite accumulation of an intermediate.

Conditions (3.9) and (3.10) link together genetic and

metabolic parameters (the RBS strengths bi and promoter

tightness k0, together with the substrate availability s0 and

the enzyme saturation ĝi), and therefore they shed light on

how the design constraints appear due to the interplay

between metabolic and enzyme expression dynamics. In

figure 5c,d, we illustrate the effect of promoter tightness

and substrate availability on the feasible region for the RBS

strengths. Tighter promoters relax condition (3.9) and there-

fore enlarge the feasible region (figure 5c). In the limit case

of a perfect leak-less promoter (i.e. k0 ¼ 0), condition (3.9)

does not limit the RBS strength of the first enzyme. Conver-

sely, by conditions (3.9) and (3.10), a higher substrate tends

to tighten the feasible region (figure 5d ).

3.2. Adaptation to changes in cellular demand
One of the purposes of the genetic feedback circuit is to sus-

tain pathway operation under changes in the cellular demand

for product. From a control engineering standpoint, a change

in cellular demand can be seen as a perturbation signal acting

on the network. A useful approach to study dynamical sys-

tems under perturbations consists in examining their linear

approximation around their equilibrium points. If we write

the model (2.7) as _x ¼ FðxÞ and compute its Jacobian matrix

( J ¼ @F=@x), then trajectories starting in a small vicinity of

the steady state �x can be approximated as

xðtÞ ¼ �xþ
Xq

i¼1

Xqi

j¼1

aijt j�1 e�lit; ð3:11Þ

where li, i ¼ 1, 2, . . . , q, are the q distinct eigenvalues of J
evaluated at x ¼ �x, qi is the algebraic multiplicity of li and

the coefficients aij depend on the initial conditions and the

eigenvectors of the Jacobian. The terms t j�1 e�li t in (3.11),

known as feedback modes, provide a local approximation

of the trajectories around the equilibrium point.

In the case of the feedback system in (2.7), we can exploit

the structure of the Jacobian matrix to obtain analytic

expressions for its eigenvalues in terms of the design knobs

of the gene circuit (see appendix A.2 for details). We found

that the 2n eigenvalues can be classified into three categories

lfixed, lRBSi and lprom. The system has the following:

— (n 2 1) stable eigenvalues at lfixed ¼ 2 g , 0. These eigen-

values are independent of the circuit design parameters,

and therefore they lead to fixed modes, which can be

adjusted only by changing the degradation rate (e.g.

with various degradation tags). They cannot be sup-

pressed or changed by tuning the circuit design knobs,

and, from (3.11), we see that they translate into (n 2 1)

modes of the form e2t/g, t e2t/g, . . . , tn22 e2t/g. The

enzyme degradation rates g are inversely proportional to

their half-lives, which are in turn much longer than meta-

bolic time scales (enzymatic half-lives are of the order of

minutes to hours, whereas metabolic time scales are
typically milliseconds to seconds [22]). Therefore, depend-

ing on the initial conditions the network can potentially

display very slow transients, and this appears to be aggra-

vated in long pathways.

— (n 2 1) stable eigenvalues at

lRBSi ¼ ��ei g0ið�si�1Þ , 0 for i ¼ 2; 3; . . . ;n; ð3:12Þ

with gið�si�1Þ ¼ @gi=@si�1j�si�1
. 0. Since the steady-state

concentration of the enzyme �ei; i � 2, and the intermediate

�si; i , n, depend only on the corresponding RBS ratio bi/b1

(see equations (3.3) and (3.8)), this ratio can be used to

independently fine-tune the feedback mode associated

with lRBSi.

— Two stable eigenvalues at

lprom ¼
�ðgþ d0Þ+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðd0 � gÞ2 þ 4g1ðs0Þs0k1b1

q
2

; ð3:13Þ

with d0 ¼ d0ð�snÞ . 0 and s0 ¼ s0ð�snÞ , 0. Unlike lfixed and

lRBSi, these two eigenvalues depend on the steady-state

product concentration, and therefore they can be fine-

tuned through the promoter characteristic (see equation

(3.2)). To study the dependence of lprom on the promoter

design parameters, we computed them for a pathway with

realistic parameter values. In figure 6a, we show the

steady-state values of the product, flux and first enzyme

level for a wide span of promoter dynamic range m. We

observe that strong promoters tend to increase pathway

flux, in agreement with the sensitivity equation previously

derived in (3.5). We also see that, as shown by the steady-

state relation dð�snÞ ¼ g1ðs0Þ�e1, the flux corresponds to a

scaled version of the concentration of the first enzyme.

In figure 6b, we plot the location of the promoter-depen-

dent eigenvalues lprom in the complex plane. These

indicate that, in the case of weak promoters, the eigen-

values lprom lie on the real axis, becoming complex only

for a sufficiently broad dynamic range m. For strong pro-

moters, the real part <flpromg becomes closer to the

imaginary axis, potentially leading to slow transients.

Moreover, since stronger promoters lead to a higher flux,

the eigenvalues in figure 6b suggest that flux maximiza-

tion may entail a reduction in the response speed.

To illustrate the dynamic response of a pathway under the

control of the transcriptional control circuit, we simulated the

network under a change in the cell demand for product (see

figure 7a). We modelled a change in the cell demand as a

slow S-shaped temporal increase in the maximal product con-

sumption rate dmax (see the inset in figure 7a). This describes,

for example, cases in which the demand increase is due to

native processes upregulating the enzyme that metabolizes

the product. Note that, from the steady-state equation in

(3.2), a higher dmax inevitably leads to a higher flux and

a lower steady-state product concentration (see also

figure 4a). Before the perturbation, the network is in steady

state with a pre-stimulus flux dpre ¼ 19.5 mM min21. We con-

sidered a Michaelis–Menten consumption rate of the form

d(sn) ¼ dmaxsn/(Kd þ sn), with Kd being the product concen-

tration needed for half-maximal consumption. Upon the

increase in dmax at t ¼ 50 min, we observe that the promoter

responds to the drop in product concentration and upregu-

lates enzyme expression so as to drive the pathway to a

new post-stimulus flux dpost that is approximately 40 per

cent higher than dpre, and a product concentration that is
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approximately 20 per cent lower than its pre-stimulus value.

Using equations (3.1) and (3.2), we can compute the enzyme

upregulation factor as

�epost
i ��epre

i

�epre
i

¼ k0 þ k1sð�spost
n Þ

k0 þ k1sð�spre
n Þ
� 1 ¼ dpost � dpre

dpre
; ð3:14Þ

which is equivalent to the relative change in pathway flux.

The dynamic upregulation of enzyme expression can be
seen in the lower panel of figure 7a, where we can also

verify that the upregulation factor is approximately 40 per

cent as predicted in (3.14). Note that as a consequence of

the operon architecture, all the enzymes are upregulated by

the same fold-factor. This factor depends on the pre- and

post-stimulus fluxes, which by (3.2) depend only on the

promoter design and first RBS strength.

As a way of comparison, in figure 7a, we have also simu-

lated the response of a pathway without feedback regulation
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(i.e. with constant enzyme levels eiðtÞ ¼ �e pre
i chosen to match

the flux of the controlled case dpre). The uncontrolled pathway

is unable to increase the flux, and we observe that this leads

to a considerable decrease in product concentration (approx.

70% reduction). In the uncontrolled case, the rate of substrate

uptake is fixed to v1
unc so that the equilibrium product satisfies

dð�sunc
n Þ ¼ vunc

1 ; ð3:15Þ

and therefore any increase in dmax translates into a lower pro-

duct concentration �sunc
n , which in turn depends only on the

kinetic parameters of the consumption rate d(sn). In contrast,

the feedback-controlled pathway can partly compensate the

drop in product by dynamically upregulating enzyme

expression, substantially outperforming the uncontrolled case.

We study the performance of the control circuit in more

detail in figure 7b, where we show the drop in product concen-

tration relative to the pre-stimulus level as a function of the

change in flux and dynamic range of the promoter. We observe

that stronger promoters can significantly improve the compen-

sation of the drop in product concentration (a perfect

compensation would correspond to a flat curve at 0% in

figure 7b). For example, under a 50 per cent increase in the path-

way flux, a mild promoter (m ¼ 10) leads to a drop in product of

approximately 47 per cent, whereas a strong promoter (m ¼ 100)

can bring down the drop in product to approximately 20 per cent

(the latter corresponds to the design simulated in figure 7a). As

predicted by the upper bound in (3.7), the flux is limited by

the promoter strength, and therefore weak promoters do not

allow for large increases in flux (as a consequence, the domain

of the curves in figure 7a decreases with decreasing promoter

strength); for example, for the weakest promoter tested, the

flux could not be increased beyond approximately 10 per cent.
4. Circuit design for compensation of flux
perturbations

A common strategy in metabolic engineering is to modify

bacteria by expressing heterologous enzymes that convert
natural metabolic intermediates into a compound of interest

[19]. The target compound is synthesized by ‘branching

out’ a specific intermediate from a natural pathway, and

therefore part of the metabolic flux needed to sustain the

host native processes is redirected to the production of the

foreign chemical. The choice of a good branching point (i.e.

one that does not lead to lethal metabolic imbalances for

the host) is a major problem typically addressed with the

aid of optimization-based computational tools [31,32]. In

this section, we turn our attention to the effect of a pertur-

bation in the native flux as a consequence of branching out

from an intermediate metabolite.

4.1. Trade-offs and constraints in the design of the RBS
strengths

To account for an engineered pathway consuming the inter-

mediate s‘ at a constant rate dext, we include dext as a

consumption rate in the ODE for s‘

_si ¼ giðsi�1Þei � giþ1ðsiÞeiþ1; i � f‘; ng;
_s‘ ¼ g‘ðs‘�1Þe‘ � g‘þ1ðs‘Þe‘þ1 � dext;

_sn ¼ gnðsn�1Þen � dðsnÞ;

_ei ¼ biðk0 þ k1sðsnÞÞ � gei; i ¼ 1; 2; . . . ;n:

9>>>>=
>>>>;

ð4:1Þ

The system is shown in figure 8a, and in this case the

steady-state equation for the product and the first enzyme is

dð�snÞ þ dext

g1ðs0Þ
¼ b1

g
ðk0 þ k1sð�snÞÞ; ð4:2Þ

where the left-hand side is a shifted version of the one in (3.2).

For the intermediates before the branch point, the steady-state

concentration is given by the same equation as in (3.3)

gið�si�1Þ ¼ g1ðs0Þ
b1

bi
; 2 � i � ‘; ð4:3Þ

whereas for the intermediates after the branch point, we have a

modified equation

gið�si�1Þ ¼ g1ðs0Þ
b1

bi
� dext

�ei
; i . ‘; ð4:4Þ
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with �ei ¼ ðbi=gÞðk0 þ k1sð�snÞÞ. From these steady-state

equations, we observe similar properties as in the case without

a branch. The promoter characteristic and the first RBS strength

determine the metabolic flux, whereas the RBS ratio bi/b1 can

be used to fine-tune the balance between enzyme expression

and the concentrations of the intermediates. In addition, in this

case, we see that the intermediates after the branch point also

depend on the promoter characteristic.

Using similar arguments to those in figure 4, we find that

a solution to (4.2) exists if

b1 ,
ðdmax þ dextÞg

g1ðs0Þk0
ð4:5Þ

and

b1 .
dextg

g1ðs0Þðk0 þ k1Þ : ð4:6Þ

For equation (4.4) to have a solution, in principle, we need

ðg1ðs0Þb1=bi � dext=�eiÞ , ĝi, but this condition is less stringent

than the one previously derived in (3.10) for the case dext ¼ 0.

Since the design must also prevent the accumulation of

intermediates in the absence of perturbations, we conclude

that (3.10), i.e.

bi

b1
.

g1ðs0Þ
ĝi

; for all i � 2; ð4:7Þ

is sufficient for the existence of all the intermediates. The

inequalities in (4.5)–(4.7) define the feasible region for the

RBS design space under a perturbation consuming one of

the intermediates (see figure 8b). As in the case without the

branch (figure 5b), the limits (4.5) and (4.7) prevent the
accumulation of the product and intermediates, respectively.

The condition in (4.6), however, adds a new type of constraint

to the design space: it guarantees that the synthetic gene cir-

cuit can upregulate enzyme expression strongly enough to

cope with the flux through the branch, hence preventing

the depletion of the product. This new constraint also

depends on the promoter dynamic range, which was absent

in the case without a branch. From (4.5) and (4.6), we can

compute the gap between the upper and lower bounds for

the first RBS strength (see figure 8b)

D ¼ g

g1ðs0Þk0
dmax þ dext

m� 1

m

� �� �
; ð4:8Þ

which reveals that promoters with a broad dynamic range

and small leakage enlarge the RBS design space (see

figure 8c).
4.2. Adaptation to a flux perturbation
To illustrate the effect of an engineered branch on the

dynamic response of the feedback system, we simulated a

network with two metabolites and two enzymes under a

flux perturbation that consumes the intermediate s1 (see

figure 9a). Before the perturbation, the network is in steady

state with a native flux dpre ¼ 19.5 mM min21. We modelled

the engineered branch as an S-shaped increasing rate dext(t)
(see the inset in figure 9a). Upon the activation of the

branch, induced at t ¼ 50 min, the synthetic operon circuit

upregulates enzyme expression by approximately 45 per

cent to drive the pathway to a new native flux dpost. Using

equation (3.1), together with the pre- and post-stimulus



rsif.royalsocietypublishing.org
JR

SocInterface
10:20120671

10
steady-state equations ((3.2) and (4.2)), we find that the

enzymes are upregulated by the factor

�epost
i ��epre

i

�epre
i

¼ k0 þ k1sð�s post
n Þ

k0 þ k1sð�s pre
n Þ
� 1

¼ dpost þ dext

dpre
� 1

¼ dpost � dpre

dpre|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
change in

native flux

þ dext

dpre
:|ffl{zffl}

effect of
branch

ð4:9Þ

As in the case without the branch, the expression in (4.9)

indicates that all enzymes are upregulated by an identical

fold-factor that depends on the promoter design and the

first RBS strength.

In figure 9a, we have also simulated the response of a

pathway without feedback regulation (i.e. with constant

enzyme levels etðtÞ ¼ �epre
i chosen to match the flux dpre of

the controlled case). In terms of both flux and product con-

centration, we observe that the feedback-controlled network

displays a dramatic improvement compared with the uncon-

trolled case: the operon circuit reduces the loss in native flux

from 50 per cent to approximately 5 per cent, whereas the

decrease in steady-state product concentration is brought

down from approximately 82 per cent to 20 per cent. In the

uncontrolled case, the rate of substrate uptake is fixed to

v1
unc and therefore the post-stimulus flux is given by

dpost�unc ¼ vunc
1 � dext; ð4:10Þ

and hence the post-stimulus flux scales linearly with the rate of

the branch. In figure 9b, we show this linear dependence together

with the feedback-regulated case for a wide span of the promoter

dynamic range. We observe that the feedback control circuit out-

performs the uncontrolled case even with promoters with a

narrow dynamic range, and that this improvement can be

achieved with a relatively low enzyme upregulation factor.
5. Discussion and outlook
In this paper we have presented a detailed analysis of a synthetic

gene circuit designed to dynamically control metabolic path-

ways. The goal of this feedback control system is twofold: to

adjust pathway activity so as to match the cell demand for pro-

duct, and to dampen flux perturbations that divert the native

flux to the synthesis of foreign molecules. The control strategy

relies on encoding the metabolic genes in a single operon

repressed by a product-responsive TF. The TF can sense a drop

in product concentration and upregulate enzyme expression to

bring the pathway close to its homeostatic levels.

Since the seminal operon paper [33], the interaction between

the genetic machinery and metabolism has been extensively

studied in the context of natural systems. These studies typically

focus on understanding how observed phenotypes emerge

from the genetic–metabolic cross talk [34–38], and a number

of detailed mechanistic models for operon regulation have

been developed (e.g. [20,21]). The goal in synthetic biology,

however, is to design regulatory circuits for controlling metab-

olism in a customized fashion. Model-based design therefore

requires mathematical descriptions that are explicitly parame-

terized in terms of the design knobs that can be manipulated

in synthetic biology applications. Consequently, we have used
a gene expression model that is deliberately not mechanistic,

and instead describes the genetic feedback in terms of tuneable

parameters such as the promoter’s dynamic range, RBS

strengths and protein half-lives. This approach has proved to

be adequate to explore the genetic design space and to quantify

the impact of the promoter characteristic and RBS strengths on

the system response.

A typical complication in engineered pathways is that enzy-

matic saturation may cause intermediates to accumulate in

prohibitively large concentrations, thus affecting the viability

of the host due to toxic effects [11]. Metabolite accumulation

arises when the steady state lies beyond the saturation limit of

a catalytic step, and available models for pathways under tran-

scriptional regulation [20,39–41] have generally overlooked the

impact of enzyme saturation on the existence of a metabolic

steady state. In our aim to carry out a general analysis, we

have used a metabolic model that accounts for a whole class

of saturable enzyme kinetics under mild assumptions. By expli-

citly accounting for enzyme saturation, we characterized a

feasible set for the design parameters which ensures that the

steady state lies within the saturation limits. The feasible

set also guarantees the local stability of the network, and we

found that the constraints on the RBS strengths can be relaxed

with the use of promoters with a high dynamic range and

small leakiness. The geometry of the feasible set depends on a

combination of genetic and kinetic parameters, thus highlight-

ing the emergence of design constraints as a consequence of

the interplay between the genetic and metabolic subsystems.

The steady-state equations reveal a trade-off between the

steady-state enzyme expression levels and the concentration

of intermediates: the enzyme concentrations are inversely

proportional to the concentration of the intermediate they cat-

alyse. We found that a critical parameter is the RBS ratio,

i.e. the relative strength of an RBS with respect to the strength

of the first one in the operon, which can be used to fine-

tune the circuit between high-enzyme/low-intermediate or

low-enzyme/high-intermediate designs.

The two considered design knobs, promoter characteristic

and RBS strengths, seem to have decoupled roles in the

steady state and transient behaviour of the network. The promo-

ter characteristic together with the first RBS determine the

steady state of the product and the first enzyme. A strong pro-

moter and a strong RBS for the first enzyme can be used to

increase the pathway flux, but this may come at the expense

of slow modes in the transient response. In the absence of an

engineered pathway consuming an intermediate, the remaining

RBS strengths can be used to independently adjust the concen-

trations of the intermediates and the remaining enzymes. In the

case of consumption of an intermediate, however, this design

rule applies only to the metabolites upstream of the consumed

intermediate, i.e. the steady state of the downstream metabolites

depends on a combination of the RBS strength, promoter

characteristic and the size of the perturbation.

The closed-form expressions for the transient modes of

the feedback system show further evidence of the separation

principle between promoter and RBS design. From the 2n
modes of an n-step pathway, we found that only two

depend on the promoter characteristic, whereas further

(n 2 1) modes depend exclusively on the RBS ratio. The

remaining (n 2 1) modes correspond to the enzyme half-

lives and are independent of the promoter characteristic

and RBS strengths. Since enzyme half-lives are considerably

slower than metabolic time constants (even with the use of
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protein degradation tags), the system dynamics can be

dominated by slow transients.

We ran numerical simulations that demonstrate the poten-

tial of the proposed control strategy. Using physiologically

realistic parameter values for E. coli, the synthetic operon control

circuit can dramatically compensate the loss in flux by sensing

the drop in product concentration and subsequently upregulat-

ing the enzyme concentrations. The feedback-controlled

pathway outperforms the uncontrolled one even when weak

promoters are used, thus underscoring the tremendous

advantage of taking a feedback approach to metabolic control.

In this work we focused on a control circuit with an operon

architecture, a choice inspired by the fact that operons

are one of the building blocks in genome-wide bacterial networks

[42]. The ubiquity of natural metabolic pathways under operon

regulation [43] makes them a reasonable choice as template archi-

tectures for engineered circuits. In addition, the main difficulty in

building genetic–metabolic systems is to find suitable regulatory

molecules to interface a metabolite of interest with the genetic

machinery. Some of the available alternatives are engineered pro-

moters [44,45], metabolite-responsive riboswitches [18,46,47]

and natural TFs (for a comprehensive catalogue of natural

metabolite-responsive TFs see Zhang et al. [14, supp. table 5]).

In this respect, an operon architecture stands as a simple yet effec-

tive topology, as it requires only one metabolite-responsive TF.

More complex architectures can certainly add more flexibility

to the design, but this will probably come at the expense of

more intricate relationships between the design parameters and

the metabolic response. For example, the use of multi-promoter

circuits allows for independent tuning of the enzyme upregula-

tion factor, but at the same time the pathway may display

sustained oscillations if the characteristics of the different

promoters are not carefully designed [26].

We should point out that the derived design constraints

guarantee the existence and stability of the metabolic steady

state, and thus they are only baselines for the correct function-

ing of the genetic control circuit. In most applications, the

design must also account for more demanding objectives

such as maximization of flux, minimization of energy expen-

diture, or a combination of these. Since these objectives may

conflict with each other, selecting an appropriate combi-

nation of circuit parameters requires the use of multi-

objective optimization methods within the feasibility sets

derived here (see, for example, figures 5 and 8). Optimization

routines can therefore be used to single out the parameter

values that lead to an acceptable compromise between

mutually colliding objectives; see Banga [48] for a review of

a number optimization methods available.

As a consequence of a compromise between model complex-

ity and the generality of the analytic results, our results have two

main limitations. Firstly, we have restricted the analysis to path-

ways with irreversible reactions, and, secondly, our results are

limited to unbranched pathways operating in isolation of the

remaining metabolism of the host cell. Enzymatic reactions are

inherently reversible processes and, although many biosyn-

thetic reactions operate in a regime where the forward reaction

is much more likely to occur than its backward counterpart

[22], their reversibility cannot always be neglected [49]. In our

case, the use of irreversible reactions is an important simplifica-

tion that allowed the derivation of intuitive and easy to interpret

relations between the network parameters and its steady state.

Other instances where the analysis of irreversible pathways

led to new insights into biological design principles include,
for example, the works in [38,43]. Our derivation of the design

constraints on the promoter parameters and RBS strengths

relies on the structure of the steady-state equations and the

fact that most of them are decoupled from each other. However,

in the case of an n-step pathway with reversible reactions, the

steady-state equations form a system of 2n coupled algebraic

equations. These equations may admit an analytic solution for

specific enzyme kinetics (see Heinrich & Klipp [50] for the sol-

ution in the case of linear and Michaelis–Menten kinetics with

constant enzyme concentrations), but its extension to transcrip-

tionally controlled enzymes and general reversible kinetics is

cumbersome and lies outside the scope of our paper.

A possible workaround to deal with reversible kinetics is to

exploit the natural timescale separation between enzyme

expression and metabolic reactions. In this approach, the metab-

olite trajectories are assumed to evolve in a much faster time scale

than the enzyme concentrations. This allows us to approximate

the metabolite concentrations as algebraic functions of the

enzymes, leading to an enzyme-only ODE model subject to

the algebraic relations between metabolites and enzymes. We

have previously used such an approach in the case of ON–OFF

promoters [36] (i.e. promoters that are either fully active or inac-

tive, without intermediate levels of gene expression), and future

work will focus on its use with graded promoters such as those

considered here. Another advantage of the time scale separation

is that it may allow for the analysis of pathways with more com-

plex stoichiometries. This is of enormous relevance in practical

applications, as the cross talk between the controlled pathway

and the rest of the host metabolism is likely to have a detrimental

impact on the performance of the feedback control system.

We are exploring a number of extensions to this work,

aiming primarily at the use of alternative feedback topologies

and at quantifying the impact of biochemical noise on the path-

way performance. The implementation of genetic–metabolic

circuits, let alone parameter fine-tuning, can be costly and

time-consuming. Our work provides a first step towards under-

standing the fundamental limitations and trade-offs that must

be addressed at the design stage, potentially facilitating the

implementation using a model-guided rationale.

We thank Dr John Heap for fruitful discussions and all the members of
the Control Engineering for Synthetic Biology group at Imperial College
London. We also thank the anonymous referees, whose detailed and
constructive feedback considerably improved this paper.
Appendix A
A.1. Derivation of the sensitivities
To obtain the sensitivities in (3.4)–(3.6), we differentiate the

steady-state equation in (3.2) with respect to the parameter

of interest, and then use the chain rule. For example, to

obtain (3.4) we differentiate (3.2) with respect to k0

d0ð�snÞ
g1ðs0Þ

d�sn

dk0
¼ b1

g
þ b1k

1

g
s0ð�snÞ

d�sn

dk0
; ðA 1Þ

and then solve for d�sn =dk0 to obtain

d�sn

dk0
¼ b1

g
Fð�snÞ; ðA 2Þ

where Fð�snÞ ¼ ðd0ð�snÞ=g1ðs0Þ � ðb1k
1=gÞs0ð�snÞÞ�1. The remain-

ing sensitivities d�sn =dk1 and d�sn =db1 can be calculated in an

analogous manner.
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A.2. Local stability analysis
Here we show that, under the conditions (3.9) and (3.10), the

network (2.7) has a locally stable steady state. Moreover, its

Jacobian has:

— n 2 1 stable eigenvalues at lfixed ¼ 2 g;

— n 2 1 stable eigenvalues at lRBSi ¼ �g0i �ei, i ¼ 2; 3; . . . ;n; and

— and two stable eigenvalues at

lprom ¼
�ðgþ d0Þ+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðd0 � gÞ2 þ 4g1ðs0Þs0k1b1

q
2

: ðA 3Þ

We first write the vector of metabolite and enzyme con-

centrations as s and e, respectively, so that the model (2.7)

can be written as

d
dt

s
e

� �
¼ f sðs; eÞ

f eðsn; eÞ

� �
: ðA 4Þ

The conditions in (3.9) and (3.10) guarantee the existence of

the steady state. The entries of the Jacobian matrix are

@f s
i

@sj
¼

ai; j ¼ i� 1;
�aiþ1; j ¼ i;
0 otherwise;

8<
: ðA 5Þ

@f s
i

@sj
¼ k1

i s
0ð�snÞ; j ¼ n;

0 otherwise;

�
ðA 6Þ

@f s
i

@ej
¼

gið�si�1Þ; j ¼ i;
�giþ1ð�si�1Þ; j ¼ iþ 1;
0 otherwise;

8<
: ðA 7Þ

and
@f e

i

@ej
¼ �g for all j; ðA 8Þ

and the coefficients ai are defined as

ai ¼ g0i �ei; i ¼ 2; 3; . . . ;n ðA 9Þ

and

anþ1 ¼ d0ð�snÞ: ðA 10Þ

Note that because gi and d are non-decreasing, it follows that

ai � 0. Using (3.3), we can write the terms gið�si�1Þ in terms

of the RBS ratio

gið�si�1Þ ¼ g1ðs0Þ
bi

b1

� ��1

: ðA 11Þ

We can therefore write the Jacobian as a block matrix

J ¼ J11 J12

J21 J22

� �
; ðA 12Þ

where the four blocks are n� n matrices

J11 ¼

�a2 0 0 � � � 0
a2 �a3 0 � � � 0

0 a3
. .

. . .
. ..

.

..

. . .
. . .

.
�an

..

.

0 � � � � � � an �d0

2
6666664

3
7777775
; ðA 13Þ
J12 ¼ g1ðs0Þb1

b�1
1 �b�1

2 0 � � � 0

0 b�1
2 �b�1

3 � � � 0

0 0 b�1
3

. .
. ..

.

..

. . .
. . .

. . .
.

�b�1
n

0 � � � � � � � � � b�1
n

2
666666664

3
777777775

ðA 14Þ

and J21 ¼ k1s0

0 � � � 0 b1

..

. . .
. . .

.
b2

..

. . .
. . .

. ..
.

0 � � � 0 bn

2
66664

3
77775; J22 ¼ �gI: ðA 15Þ

The characteristic polynomial of J (i.e. p(l)¼ det( J 2 lI)) is

pðlÞ ¼ detðJ22 � lIÞdetððJ11 � lIÞ � J12ðJ22 � lIÞ�1J21Þ

¼ ð�1Þnðlþ gÞndet J11 � lIð Þ þ J12J21

lþ g

� �
ðA 16Þ

where the product J12J21 is

J12J21 ¼ q

0 0 � � � 0
0 0 � � � 0

..

. . .
. . .

. ..
.

0 0 � � � 1

2
6664

3
7775 ðA 17Þ

and q ¼ g1(s0 )s0k1b1. From the structure of J11 and the product J12-

J21, we can carry one (l þ g) term into the determinant in (A 16)

and then into the last column of its argument. This leads to

pðlÞ ¼ ðlþ gÞn�1�pðlÞ: ðA 18Þ

The factor �pðlÞ is a polynomial given by

�pðlÞ ¼ det

ðlþ a2Þ 0 � � � 0

�a2
. .

.
� � � ..

.

..

. . .
.
ðlþ anÞ 0

0 � � � �an ðlþ d0Þðlþ gÞ � q

2
666664

3
777775

0
BBBBB@

1
CCCCCA

¼
Yn

i¼2

ðlþ aiÞððlþ d0Þðlþ gÞ � qÞ: ðA 19Þ

We therefore conclude that the Jacobian J has (n 2 1)

stable eigenvalues at l¼2 g , 0, (n 2 1) stable eigenvalues at

l¼2 ai , 0, for i¼ 2, 3, . . ., n, and two eigenvalues at

l1;2 ¼

�
� ðgþ d0Þ+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðd0 � gÞ2 þ 4g1ðs0Þs0k1b1

q �

2
: ðA 20Þ

These last two eigenvalues are also stable because d0 . 0 and

s0 , 0 imply that the quadratic polynomial

ðlþ d0Þðlþ gÞ � g1ðs0Þs0k1b1 ðA 21Þ

has only positive coefficients and therefore its roots satisfy

<fl1;2g, 0.
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